MAX3744E/D [MAXIM]

Telecom Circuit, 1-Func, Bipolar, 0.030 X 0.050 INCH, DIE-10;
MAX3744E/D
型号: MAX3744E/D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Telecom Circuit, 1-Func, Bipolar, 0.030 X 0.050 INCH, DIE-10

放大器
文件: 总10页 (文件大小:373K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2927; Rev 1; 8/03  
2.7Gbps SFP Transimpedance  
Amplifiers with RSSI  
General Description  
Features  
The MAX3744/MAX3745 transimpedance amplifiers pro-  
vide a compact, low-power solution for communication  
up to 2.7Gbps. They feature 330nA input-referred noise  
at 2.1GHz bandwidth (BW) with 0.85pF input capaci-  
Up to 2.7Gbps (NRZ) Data Rates  
RSSI Implementation in 4-Pin TO46 Header  
(MAX3744)  
tance. The parts also have >2mA  
AC input overload.  
P-P  
10ps  
Deterministic Jitter for <100µA  
Input  
P-P  
P-P  
Both parts operate from a single +3.3V supply and con-  
sume 93mW. The MAX3744/MAX3745 are in a compact  
30-mil x 50-mil die and require no external compensa-  
tion capacitor. A space-saving filter connection is pro-  
vided for positive bias to the photodiode through an  
Current  
330nA  
Input-Referred Noise at 2.1GHz  
RMS  
Bandwidth  
28mA Supply Current at +3.3V  
2GHz Small-Signal Bandwidth  
on-chip 580resistor to V . These features allow  
CC  
easy assembly into a low-cost TO-46 or TO-56 header  
with a photodiode.  
2.0mA  
AC Overload  
P-P  
The MAX3744 and MAX3748A receiver chip set pro-  
vides an RSSI output using a Maxim-proprietary* inter-  
face technique. The MAX3744 preamplifier, MAX3748A  
postamplifier, and DS1858/DS1859 SFP controller meet  
all the SFF-8472 digital diagnostic requirements.  
Die Size: 30 mils x 50 mils  
Applications  
Ordering Information  
Up to 2.7Gbps SFF/SFP Optical Receivers  
PART  
MAX3744E/D  
MAX3745E/D  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
Dice**  
Optimized for Small-Form-Factor Pluggable (SFP)  
Optical Receivers  
Dice**  
**Dice are guaranteed to operate from -40°C to +85°C, but are  
tested only at T = +25°C.  
*Patent pending  
A
Typical Application Circuit  
SFP OPTICAL RECEIVER  
400pF  
V
CC  
400pF  
0.1µF  
HOST  
V
CC  
BOARD  
OUT+  
OUT-  
IN+  
IN-  
OUT+  
FILTER  
MAX3744  
0.1µF  
MAX3748A  
V
= 3.3V  
OUT-  
IN  
CC  
GND  
4.7k  
RSSI  
DISABLE  
LOS  
TO  
4-PIN TO CAN  
10kΩ  
3.3k  
MOD-DEF1  
MOD-DEF2  
DS1858/  
DS1859  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2.7Gbps SFP Transimpedance  
Amplifiers with RSSI  
ABSOLUTE MAXIMUM RATINGS  
Power-Supply Voltage (V ).................................-0.5V to +6.0V  
Continuous Input Current (FILTER).......................-8mA to +8mA  
Operating Junction Temperature Range (T )....-55°C to +150°C  
CC  
Continuous CML Output Current  
J
(OUT+, OUT-) ............................................. -25mA to +25mA  
Continuous Input Current (IN)...............................-4mA to +4mA  
Storage Ambient Temperature Range (T  
Die Attach Temperature...................................................+400°C  
) ...-55°C to +150°C  
STG  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +2.97V to +3.63V and T = -40°C to +85°C. Typical values are at V  
= +3.3V, source capacitance (C ) = 0.85pF, and T =  
CC IN A  
CC  
A
+25°C, unless otherwise noted.) (Notes 1, 2)  
PARAMETER SYMBOL  
Supply Current  
CONDITIONS  
MIN  
TYP  
MAX  
41  
UNITS  
mA  
I
Including CML output current (I = 0)  
IN  
28  
CC  
Input Bias Voltage  
Input Overload  
1.0  
V
(Note 3)  
2
mA  
P-P  
C
C
C
C
C
C
= 0.85pF, BW = 933MHz  
= 0.85pF, BW = 2.1GHz  
= 0.85pF, BW = 18GHz  
= 0.85pF, BW = 933MHz  
= 0.6pF, BW = 2.1GHz  
= 0.6pF, BW = 18GHz  
206  
330  
IN  
IN  
IN  
IN  
IN  
IN  
430  
620  
Input-Referred Noise  
I
nA  
RMS  
N
206  
300  
380  
550  
4.5  
Differential Transimpedance  
Small-Signal Bandwidth (Note 3)  
Low-Frequency Cutoff  
Differential output, I = 40µA  
2.8  
1.8  
1.6  
3.5  
2
kΩ  
IN  
AVE  
-3dB, C = 0.6pF  
IN  
BW  
DJ  
GHz  
kHz  
-3dB, C = 0.85pF  
IN  
1.8  
-3dB, input current = 20µA  
(Note 3)  
30  
31  
AVE  
2.1Gbps, K28.5 pattern  
< input ≤  
14  
24  
100µA  
2mA  
P-P  
31  
P-P  
2.7Gbps, 2 -1 pattern  
Deterministic Jitter  
(Notes 3, 5)  
ps  
P-P  
2.1Gbps, K28.5 pattern  
10  
16  
10µA  
< input ≤  
P-P  
31  
100µA  
2.7Gbps, 2 -1 pattern  
20  
P-P  
Filter Resistance  
510  
85  
580  
690  
115  
Differential Output Resistance  
(OUT+, OUT-)  
100  
280  
Maximum Differential Output  
Voltage  
Input > 50µA  
, output termination 50to  
AVE  
V
220  
400  
mV  
P-P  
OD  
V
(output in limited state)  
CC  
2
_______________________________________________________________________________________  
2.7Gbps SFP Transimpedance  
Amplifiers with RSSI  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.97V to +3.63V and T = -40°C to +85°C. Typical values are at V  
= +3.3V, source capacitance (C ) = 0.85pF, and T =  
CC IN A  
CC  
A
+25°C, unless otherwise noted.) (Notes 1, 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Single-Ended Output Common-  
Mode Minimum Level (MAX3744)  
Relative to V , I = 1mA  
540  
490  
mV  
CC IN  
AVE  
Input > 200µA  
(Note 3)  
20% to 80% rise/fall time  
P-P  
Output Data Transition Time  
Differential Output Return Loss  
80  
140  
ps  
Frequency 1GHz  
17  
10  
46  
34  
21  
dB  
1GHz < frequency 2GHz  
f < 1MHz  
I
IN  
= 0  
Power-Supply Noise Rejection  
RSSI Gain (MAX3744)  
PSNR  
dB  
A/A  
dB  
(Note 6)  
(Note 7)  
10log(A  
1MHz f < 10MHz  
A
RSSI  
/A  
) where A  
=
RSSI-NOM  
RSSI RSSI-NOM  
RSSI Gain Stability (MAX3744)  
0.24  
A
at 3.3V, +25°C (Note 3)  
RSSI  
Note 1: Die parameters are production tested at room temperature only, but are guaranteed by design and characterization from  
-40°C to +85°C.  
Note 2: Source capacitance represents the total capacitance at the IN pad during characterization of the noise and bandwidth para-  
meters.  
Note 3: Guaranteed by design and characterization.  
Note 4: Input-referred noise is:  
RMS output noise  
Gain at f =100MHz  
Note 5: Deterministic jitter is the sum of pulse-width distortion (PWD) and pattern-dependent jitter (PDJ).  
Note 6: Power-supply noise rejection PSNR = -20log(V / V ), where V is the differential output voltage and V is the  
CC  
OUT  
CC  
OUT  
noise on V  
.
CC  
Note 7:  
I
(I = 400µA)I  
(I = 0µA)  
OUT_CM IN  
OUT_CM IN  
A
=
RSSI  
400µA  
+ I  
I
OUT+  
OUT−  
where I  
=
OUT_CM  
2
RSSI range is from I = 6µA to 500µA  
IN  
_______________________________________________________________________________________  
3
2.7Gbps SFP Transimpedance  
Amplifiers with RSSI  
Typical Operating Characteristics  
(V = +3.3V, C = 0.85pF, T = +25°C, unless otherwise noted.)  
CC  
IN  
A
INPUT-REFERRED NOISE  
vs. TEMPERATURE  
INPUT-REFERRED NOISE  
vs. TEMPERATURE  
FREQUENCY RESPONSE  
75  
800  
800  
700  
600  
500  
400  
300  
200  
UNFILTER  
BW = 2.1GHz  
700  
600  
500  
400  
300  
200  
70  
65  
60  
55  
C
= 1.5pF  
IN  
C
IN  
= 0.85pF  
C
IN  
= 1.5pF  
C
= 0.5pF  
IN  
C
IN  
= 0.85pF  
C
IN  
= 0.5pF  
50  
10M  
100M  
1G  
10G  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
EYE DIAGRAM  
DETERMINISTIC JITTER  
vs. INPUT AMPLITUDE  
SMALL-SIGNAL TRANSIMPEDANCE  
vs. TEMPERATURE  
INPUT = 20µA , DATA RATE = 2.1Gbps  
P-P  
MAX3744 toc06  
75  
50  
40  
30  
20  
10  
0
K28-5 PATTERN  
70  
65  
2.7Gbp SONET  
5mV/div  
2.1Gbps FIBRE CHANNEL  
60  
60ps/div  
0.01  
0.1  
1
10  
-40 -20  
0
20  
40  
60  
80 100  
INPUT AMPLITUDE (mA  
)
P-P  
TEMPERATURE (°C)  
EYE DIAGRAM  
EYE DIAGRAM  
EYE DIAGRAM  
INPUT = 20µA , DATA RATE = 2.7Gbps  
INPUT = 2mA , DATA RATE = 2.7Gbps  
INPUT = 2mA , DATA RATE = 2.1Gbps  
P-P  
P-P  
P-P  
MAX3744 toc07  
23  
MAX3744 toc09  
23  
MAX3744 toc08  
2
-1 PATTERN  
2
-1 PATTERN  
K28-5 PATTERN  
6mV/div  
30mV/div  
30mV/div  
60ps/div  
60ps/div  
60ps/div  
4
_______________________________________________________________________________________  
2.7Gbps SFP Transimpedance  
Amplifiers with RSSI  
Typical Operating Characteristics (continued)  
(V = +3.3V, C = 0.85pF, T = +25°C, unless otherwise noted.)  
CC  
IN  
A
SUPPLY CURRENT  
vs. TEMPERATURE  
DC TRANSFER FUNCTION  
(V = 0V)  
DIFFERENTIAL S22 vs. FREQUENCY  
FILT  
0
-5  
70  
60  
50  
40  
30  
20  
10  
0
200  
150  
100  
50  
MAX3744  
-10  
-15  
-20  
-25  
-30  
0
-50  
-100  
-150  
-200  
MAX3745  
0
500 1000 1500 2000 2500 3000 3500 4000  
FREQUENCY (MHz)  
-40 -20  
0
20  
40  
60  
80 100  
-100  
-50  
0
50  
100  
TEMPERATURE (°C)  
INPUT CURRENT (mA  
)
P-P  
EYE DIAGRAM  
TEMPERATURE = +100°C INPUT = 20µA  
RSSI  
P-P  
DATA RATE = 2.7Gbps  
BANDWIDTH vs. TEMPERATURE  
MAX3744, MAX3748A  
MAX3744 toc15  
4.0  
550  
500  
450  
400  
350  
300  
250  
200  
150  
23  
2
-1 PRBS  
T
A
= -40°C  
3.5  
3.0  
T
= +85°C  
A
2.5  
2.0  
1.5  
1.0  
0.5  
0
C
IN  
= 0.6pF  
6mV/div  
60ps/div  
-40 -20  
0
20  
40  
60  
80 100  
0
500  
1000  
1500  
2000  
TEMPERATURE (°C)  
AVERAGE INPUT CURRENT (µA)  
_______________________________________________________________________________________  
5
2.7Gbps SFP Transimpedance  
Amplifiers with RSSI  
Pin Description  
MAX3744/  
MAX3745  
NAME  
FUNCTION  
BOND PAD  
1, 3  
2, 7  
4
V
Supply Voltage  
No Connection  
CC  
N.C.  
IN  
TIA Input. Signal current from photodiode flows into this pin.  
Provides bias voltage for the photodiode through a 580resistor to V . When grounded, this  
CC  
pin disables the DC cancellation amplifier to allow a DC path from IN to OUT+ and OUT- for  
testing.  
5
6, 10  
8
FILTER  
GND  
Supply Ground  
Inverting Data Output. Current flowing into IN causes the voltage at OUT- to decrease. For the  
MAX3744, the common mode between OUT+ and OUT- is proportional to the average input  
current.  
OUT-  
Noninverting Data Output. Current flowing into IN causes the voltage at OUT+ to increase. For  
the MAX3744, the common mode between OUT+ and OUT- is proportional to the average input  
current.  
9
OUT+  
V
CC  
MAX3744  
R
F
R
F
TRANSIMPEDANCE  
AMPLIFIER  
TRANSIMPEDANCE  
AMPLIFIER  
50  
50Ω  
OUT+  
OUT-  
OUT+  
OUT-  
IN  
IN  
50Ω  
50Ω  
V
V
CC  
CC  
DC CANCELLATION  
CIRCUIT  
DC CANCELLATION  
CIRCUIT  
RSSI  
FILTER  
MAX3745  
FILTER  
Figure 1. Functional Diagram  
a standard 4-pin TO header, the RSSI level is added to  
the common mode of the differential data output pins.  
Detailed Description  
The MAX3744/MAX3745 are transimpedance amplifiers  
designed for up to 2.7Gbps SFF/SFP transceiver mod-  
ules. A functional diagram of the MAX3744/MAX3745 is  
shown in Figure 1. The MAX3744/MAX3745 comprise a  
transimpedance amplifier stage, a voltage amplifier  
stage, an output buffer, and a direct-current (DC) feed-  
back cancellation circuit. The MAX3744 also includes a  
signal strength indicator (RSSI). To provide this signal in  
Transimpedance Amplifier Stage  
The signal current at the input flows into the summing  
node of a high-gain amplifier. Shunt feedback through  
the resistor R converts this current to a voltage. In par-  
F
allel with the feedback resistor are two back-to-back  
Schottky diodes that clamp the output signal for large  
input currents, as shown in Figure 2.  
6
_______________________________________________________________________________________  
2.7Gbps SFP Transimpedance  
Amplifiers with RSSI  
AMPLITUDE  
AMPLITUDE  
INPUT FROM PHOTODIODE  
TIME  
TIME  
OUTPUT (SMALL SIGNALS)  
OUTPUT (LARGE SIGNALS)  
INPUT AFTER DC CANCELLATION  
Figure 2. MAX3744/MAX3745 Limited Output  
Figure 3. DC Cancellation Effect on Input  
Voltage Amplifier Stage  
The voltage amplifier stage provides gain and converts  
the single-ended input to differential outputs.  
V
CC  
100  
DC Cancellation Circuit  
The DC cancellation circuit uses low-frequency feed-  
back to remove the DC component of the input signal  
(Figure 3). This feature centers the input signal within  
the transimpedance amplifiers linear range, thereby  
reducing pulse-width distortion caused by large input  
signals. The DC cancellation circuit is internally com-  
pensated and therefore does not require external  
capacitors.  
OUT+  
OUT-  
Output Buffer  
The output buffer provides a reverse-terminated voltage  
output. The buffer is designed to drive a 100differential  
load between OUT+ and OUT-. The MAX3744 must be  
DC-coupled to the MAX3748A. See Figures 4 and 5.  
Figure 4. Equivalent Output MAX3744  
For optimum supply-noise rejection, the MAX3745  
should be terminated with a matched load. If a single-  
ended output is required, the unused output should be  
V
CC  
terminated to a 50resistor to V . The MAX3745  
CC  
does not drive a DC-coupled, 50grounded load;  
however, it does drive a compatible 50CML input.  
50Ω  
50Ω  
Signal-Strength Indicator  
The MAX3744 produces a signal proportional to the  
average photodiode current. This is added to the com-  
mon mode of the data outputs OUT+ and OUT-. This  
signal is intended for use with the MAX3748A to pro-  
vide a ground-referenced RSSI voltage.  
OUT+  
OUT-  
Applications Information  
Signal-Strength Indicator  
The SFF-8472 digital diagnostic specification requires  
monitoring of input receive power. The MAX3748A and  
MAX3744 receiver chipset allows for the monitoring of  
the average receive power by measuring the average  
DC current of the photodiode.  
Figure 5. Equivalent Output MAX3745  
_______________________________________________________________________________________  
7
2.7Gbps SFP Transimpedance  
Amplifiers with RSSI  
The MAX3744 preamp measures the average photodi-  
Optical Sensitivity Calculation  
ode current and provides the information to the output  
common mode. The MAX3748A RSSI detect block  
senses the common-mode DC level of input signals IN+  
and IN- and provides a ground-level-referenced output  
signal of the photodiode current. The advantage of this  
implementation is that it allows the TIA to be packaged  
in a low-cost conventional 4-pin TO-46 header.  
The input-referred RMS noise current (I ) of the  
N
MAX3744/MAX3745 generally determines the receiver  
sensitivity. To obtain a system bit-error rate (BER) of  
1E-12, the signal-to-noise ratio must always exceed  
14.1. The input sensitivity, expressed in average power,  
can be estimated as:  
The MAX3748A RSSI output is connected to an analog  
input channel of the DS1858/DS1859 SFP controller to  
convert the analog information into a 16-bit word. The  
DS1858/DS1859 provide the received power informa-  
tion to the host board of the optical receiver through a  
2-wire interface. The DS1859 allows for internal calibra-  
tion of the receive power monitor.  
14.1 × I (r + 1)  
N e  
Sensitivity = 10log  
1000 dBm  
2ρ(r 1)  
e
where ρ is the photodiode responsivity in A/W and I is  
N
RMS current in amps.  
Input Optical Overload  
The overload is the largest input that the MAX3744/  
MAX3745 can accept while meeting deterministic jitter  
specifications. The optical overload can be estimated  
in terms of average power with the following equation:  
The MAX3744 and the MAX3748A have been optimized  
to achieve RSSI stability of better than 2.5dB within the  
6µA to 500µA range of average input photodiode cur-  
rent. To achieve the best accuracy, Maxim recom-  
mends receive power calibration at the low end (6µA)  
and the high end (500µA) of the required range.  
2mA  
(r + 1)  
RMS e  
Overload = 10log  
1000 dBm  
2ρ(r 1)  
e
Optical Power Relations  
Many of the MAX3744/MAX3745 specifications relate to  
the input signal amplitude. When working with optical  
receivers, the input is sometimes expressed in terms of  
average optical power and extinction ratio. Figure 6  
and Table 1 show relations that are helpful for convert-  
ing optical power to input signal when designing with  
the MAX3744/MAX3745. (Refer to Application Note  
HFAN3.0.0: Accurately Estimating Optical Receiver  
Sensitivity.)  
Optical Linear Range  
The MAX3744/MAX3745 have high gain, which limits  
the output when the input signal exceeds 50µA . The  
P-P  
MAX3744/MAX3745 operate in a linear range (10% lin-  
earity) for inputs not exceeding:  
50µA  
(r + 1)  
RMS e  
Linear Range = 10log  
1000 dBm  
2ρ(r 1)  
e
Table 1. Optical Power Relations  
PARAMETER  
Average power  
SYMBOL  
RELATION  
P
P
= (P + P ) / 2  
AVG  
AVG  
0
1
Extinction ratio  
r
r = P / P  
e 1  
e
0
Optical power of a 1  
Optical power of a zero  
Signal amplitude  
P
P
P = 2P  
(r ) / (r + 1)  
e e  
1
0
1
AVG  
P = 2P  
/ (r + 1)  
e
0
AVG  
P
P
= P - P ; P = 2P  
(r - 1) / (r + 1)  
IN  
IN  
1
0
IN  
AVG e e  
Note: Assuming 50% average duty cycle and mark density.  
8
_______________________________________________________________________________________  
2.7Gbps SFP Transimpedance  
Amplifiers with RSSI  
Current generated by supply noise voltage is divided  
between C and C . The input noise current due  
to supply noise is (assuming the filter capacitor is much  
larger than the photodiode capacitance):  
Layout Considerations  
Noise performance and bandwidth are adversely affect-  
ed by capacitance at the IN pad. Minimize capacitance  
on this pad and select a low-capacitance photodiode.  
Assembling the MAX3744/MAX3745 in die form using  
chip and wire technology provides the best possible  
performance. Figure 7 shows a suggested layout for a  
TO header for the MAX3744/MAX3745. The placement  
of the filter cap to minimize the ground loop of the pho-  
todiode is required to achieve the specified bandwidth.  
The OUT+ and OUT- bond wire lengths should also be  
minimized to meet the bandwidth specification. Special  
care should be taken to ensure that ESD at IN does not  
exceed 500V.  
FILTER  
PD  
I
= (V  
)(C ) / (R  
)(C  
FILTER  
)
FILTER  
NOISE  
NOISE  
PD  
If the amount of tolerable noise is known, the filter  
capacitor can be easily selected:  
C
FILTER  
= (V  
)(C ) / (R  
)(I  
)
NOISE  
PD  
FILTER NOISE  
For example, with maximum noise voltage = 100mV  
,
P-P  
selected to  
C
= 0.85pF, R  
= 600, and I  
PD  
FILTER  
NOISE  
be 350nA:  
C
FILTER  
= (100mV)(0.85pF) / (600)(350nA) = 405pF  
Wire Bonding  
Photodiode Filter  
For high-current density and reliable operation, the  
MAX3744/MAX3745 use gold metalization. Connections  
to the die should be made with gold wire only, using ball-  
bonding techniques. Die thickness is typically 14 mils  
(0.4mm).  
Supply voltage noise at the cathode of the photodiode  
produces a current I = C  
V/t, which reduces the  
is the photodiode capaci-  
tance.) The filter resistor of the MAX3744/MAX3745,  
combined with an external capacitor, can be used to  
reduce this noise (see the Typical Application Circuit).  
PD  
receiver sensitivity (C  
PD  
TOP VIEW OF TO-46 HEADER  
CASE  
GROUND  
400pF TO  
1000pF  
PI  
400pF TO  
1000pF  
V
CC  
PHOTODIODE  
OUT-  
P
AVG  
PO  
OUT+  
TIME  
MAX3744  
MAX3745  
Figure 7. Suggested Layout for TO-46 Header  
Figure 6. Optical Power Relations  
_______________________________________________________________________________________  
9
2.7Gbps SFP Transimpedance  
Amplifiers with RSSI  
Chip Topography  
GND  
MAX3744  
MAX3745  
10  
V
1
9
OUT+  
CC  
N.C.  
2
3
0.03in  
(0.76mm)  
V
CC  
IN  
4
5
FILTER  
7
6
8
OUT-  
GND  
N.C.  
0.05in  
(1.26mm)  
Pad Coordinates  
Chip Information  
TRANSISTOR COUNT: 301  
PROCESS: SiGe Bipolar  
SUBSTRATE: ISOLATED  
COORDINATES (µm)  
COORDINATES (µm)  
PAD  
X
Y
1
2
1.4  
0
495.6  
336  
224  
112  
0
DIE THICKNESS: 0.014in 0.001in  
3
0
4
0
5
0
6
494.2  
865.2  
1005.2  
1005.2  
490  
-1.4  
-1.4  
-1.4  
495.6  
495.6  
7
8
9
10  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
10 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3744EVKIT

Evaluation Kit
MAXIM

MAX3744EVKIT|MAX3745EVKIT

Evaluation Kit for the MAX3744/MAX3745
MAXIM

MAX3744_1

Evaluation Kit
MAXIM

MAX3744|MAX3745

2.7Gbps SFP Transimpedance Amplifiers with RSSI
MAXIM

MAX3745

2.7Gbps SFP Transimpedance Amplifiers with RSSI
MAXIM

MAX3745D

2.7Gbps SFP Transimpedance Amplifiers with RSSI
MAXIM

MAX3745E

2.7Gbps SFP Transimpedance Amplifiers with RSSI
MAXIM

MAX3745E/D

Telecom Circuit, 1-Func, Bipolar, 0.030 X 0.050 INCH, DIE-10
MAXIM

MAX3745EVKIT

Evaluation Kit
MAXIM

MAX3746

Low-Power, 622Mbps to 3.2Gbps
MAXIM

MAX3746ETE

Low-Power, 622Mbps to 3.2Gbps
MAXIM

MAX3746HETE

Low-Power, 622Mbps to 3.2Gbps Limiting Amplifier
MAXIM