MAX3782 [MAXIM]

Dual 1.25Gbps Transceiver ; 双1.25Gbps的收发器
MAX3782
型号: MAX3782
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual 1.25Gbps Transceiver
双1.25Gbps的收发器

文件: 总18页 (文件大小:447K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2268; Rev 2; 1/03  
Dual 1.25Gbps Transceiver  
General Description  
Features  
1000Base-SX/LX, GBIC, or SFP Serial Data  
The MAX3782 is a dual 1.25Gbps data retiming and  
clock recovery transceiver. It interfaces 1.25Gbps LVDS  
data and clock to a 1.25Gbps serial interface compati-  
ble with 1000Base-SX/LX (IEEE 802.3z-2000) standards,  
GBIC, and small form-factor pluggable (SFP) module  
interface recommendations. The serial differential trans-  
mitter and receiver are PECL compatible using an AC-  
coupled CML interface with on-chip termination/bias  
resistors for superior forward and back terminations. The  
transmit path converts the LVDS signaling to CML and  
retimes the serial data to a low-jitter reference clock. The  
transmitter section contains LVDS buffers, FIFO, clock  
multiplier, and CML output buffers. The transmitter  
accepts a single 1.25Gbps serial-data channel and a  
625MHz double-data-rate (DDR) clock that are compati-  
ble with IEEE Std 1596-1996 DC specifications. Serial  
LVDS data is clocked into the FIFO on both edges of the  
625MHz source-synchronous TCLK. Data is clocked out  
of the FIFO using an internal 1.25GHz clock derived  
from a low-jitter 125MHz reference. Serial data is then  
clocked out as differential CML.  
Conversion to/from 1.25Gbps LVDS Serial Data  
and DDR Clock  
CML Interface Exceeds all PECL AC  
Specifications for 1000Base-SX/LX, GBIC, or SFP  
Serial Data  
Tx Data Retiming with <0.1UI Total Output Jitter  
as per IEEE802.3z  
Rx Data and Clock Recovery with 0.75UI Jitter  
Tolerance as per IEEE802.3z  
On-Chip Forward and Back Termination Using  
CML I/O and Integrated Termination/Bias  
Resistors  
PLL Lock Status Indicator  
System Loopback  
JTAG I/O Scan for Board-Level Testing  
Ordering Information  
The receive path converts the CML signaling to LVDS  
and locks on to the data stream to recover the source-  
synchronous clock (RCLK). The receive section con-  
tains a CML input buffer, clock recovery circuit, and  
LVDS output buffers. The receiver accepts a CML serial  
data stream. The clock recovery phase-locked loop  
(PLL) locks on to the incoming serial data stream and  
generates a 625MHz LVDS DDR clock. RCLK edges  
are at the center of the “eye” of RDAT data.  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
PKG CODE  
MAX3782UGK -5°C to +85°C 68 QFN-EP*  
*EP = exposed pad.  
G6800-4  
Pin Configuration  
TOP VIEW  
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52  
Applications  
1000Base-SX/LX Optical Links  
GND  
TCLK2+  
TCLK2-  
TDAT2+  
TDAT2-  
GND  
1
2
3
4
5
6
7
8
9
51 GND  
50 VCC1  
49 TXFIL  
48 GND  
47 VCC4  
46 TX2+  
45 TX2-  
44 VCC4  
43 GND  
42 VCC4  
41 TX1+  
40 TX1-  
39 VCC4  
38 VCC6  
37 RXFIL1  
36 VCC2  
35 GND  
GBIC Modules  
SFP Fiber Transceiver Modules  
TRST-JTAG  
VCC5  
RCLK2+  
MAX3782  
RCLK2- 10  
RDAT2+ 11  
RDAT2- 12  
GND 13  
LOCK 14  
VCC3 15  
RXFIL2 16  
GND 17  
Typical Application Circuit appears at end of data sheet.  
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
QFN*  
*
THE EXPOSED PAD OF THE QFN PACKAGE MUST BE SOLDERED TO GROUND  
FOR PROPER THERMAL AND ELECTRICAL OPERATION OF THE MAX3782.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual 1.25Gbps Transceiver  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (VCC1, VCC2, VCC3,  
ꢁEMPSENS, RXFIL1, RXFIL2,  
ꢁXFIL Voltage .........................................-0.5V to (V  
VCC4, VCC5, VCC6, VCCꢁEMP) ......................-0.5V to +4.0V  
+ 0.5V)  
CC  
LVDS Input and Output Voltage.................-0.5V to (V  
LVꢁꢁL Input or Output Voltage...................-0.5V to (V  
CML Input Voltage......................................-0.5V to (V  
Continuous CML Output Current ......................-10mA to +25mA  
Momentary CML Output Voltage  
+ 0.5V)  
+ 0.5V)  
+ 0.5V)  
Continuous Power Dissipation (ꢁ = +85°C)  
A
CC  
CC  
CC  
68-Pin QFN (derate 38.5mW/°C above +85°C) ...............2.5W  
Operating Ambient ꢁemperature Range...............-5°C to +85°C  
Operating Junction ꢁemperature Range.............-5°C to +150°C  
Storage Ambient ꢁemperature Range...............-55°C to +150°C  
ESD Human Body Model (any pin) ....................................2000V  
(duration <1min, +25°C)...............................0 to (V  
+ 0.5V)  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= 3.0V to 3.6V, LVDS differential load = 1001ꢀ, CML differential load = 1001ꢀ, ꢁ = -5°C to +85°C, unless otherwise  
CC  
A
noted. ꢁypical values are at V  
= 3.3V and ꢁ = +25°C.)  
CC  
A
PARAMETER  
Supply Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
440  
1.45  
50  
MAX  
620  
UNITS  
mA  
Power Dissipation  
2.23  
W
Supply Noise ꢁolerance  
DC-500kHz, single-ended REFCLK (Note 1)  
mV  
P-P  
LVTTL INPUTS AND OUTPUTS (except REFCLK )  
Input High Voltage  
2.0  
V
Input Low Voltage  
0.8  
V
µA  
µA  
V
Input High Current  
-250  
-500  
Input Low Current  
Output High Voltage  
Output Low Voltage  
(Note 2)  
2.4  
(Note 2)  
0.4  
+100  
400  
V
ꢁhree-state enabled, 0.4V V  
V  
-100  
OUꢁ  
CC  
Output ꢁhree-State Current  
µA  
ꢁhree-state enabled, GND V  
< 0.4V  
OUꢁ  
REFCLK INPUTS  
Differential Input Amplitude  
Single-Ended Input High Voltage  
Single-Ended Input Low Voltage  
REFCLK Input High Current  
REFCLK Input Low Current  
CML INPUTS (Note 3)  
REFCLK AC-coupled  
200  
2.0  
2000  
mV  
P-P  
REFCLK- connected through 0.01µF to GND  
REFCLK- connected through 0.01µF to GND  
V
0.8  
440  
-227  
V
2.0V V V  
µA  
µA  
IN  
CC  
GND V 0.8V  
IN  
Differential Input Voltage Range  
Common-Mode Voltage  
Input Impedance  
802.3z and GBIC compatible  
Inputs open or AC-coupled  
(Note 4)  
370  
85  
2000  
115  
mV  
P-P  
V
V
- 0.3  
V
CC  
100  
CML OUTPUTS (Note 3)  
Differential Output Voltage  
1100  
85  
2000  
115  
mV  
P-P  
Output Common-Mode Voltage  
Differential Output Impedance  
- 0.4  
V
CC  
(Note 4)  
100  
2
_______________________________________________________________________________________  
Dual 1.25Gbps Transceiver  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.0V to 3.6V, LVDS differential load = 1001ꢀ, CML differential load = 1001ꢀ, ꢁ = -5°C to +85°C, unless otherwise  
CC  
A
noted. ꢁypical values are at V  
= 3.3V and ꢁ = +25°C.)  
CC  
A
PARAMETER  
LVDS INPUTS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage Range  
Differential Input Voltage  
Differential Input Impedance  
V
|V  
|V  
| < 925mV  
0
2000  
500  
115  
400  
mV  
mV  
I
GPD  
| < 925mV  
|V  
ID  
IN  
|
150  
85  
GPD  
R
100  
270  
Input Common-Mode Current  
LVDS OUTPUTS  
V
= 1.2V, inputs tied together  
µA  
OS  
Differential Output Voltage  
Output High Voltage  
|V  
V
|
250  
400  
mV  
V
OD  
1.475  
OH  
Output Low Voltage  
V
0.925  
V
OL  
Change in Magnitude of  
Differential Output Voltage for  
Complementary States  
|V  
|
25  
1.275  
25  
mV  
V
OD  
Output Offset Voltage  
V
1.125  
80  
OS  
Change in Magnitude of Output  
Offset Voltage for  
Complementary States  
|V  
|
mV  
OS  
OD  
Differential Output Impedance  
Short-Circuit Current  
R
100  
120  
40  
Short to supply or ground  
mA  
Note 1: Supply noise tolerance is the amount of noise allowable on the power supply. ꢁhe intent of this is to specify the conditions  
whereby the CML I/O jitter performance remains compliant with IEEE802.3z jitter specifications.  
Note 2: ꢁhe LOCK output is open collector and requires a 10kpullup to V . ꢁDO output load 11kto V  
or to GND.  
CC  
CC  
Note 3: CML differential signal amplitudes are specified as the total signal across the load (V+ - V-). CML inputs and outputs are  
designed to be AC-coupled.  
Note 4: 100is standard for SFP, nonstandard for IEEE802.3z and GBIC.  
AC ELECTRICAL CHARACTERISTICS  
(V  
= 3.0V to 3.6V, LVDS differential load = 1001ꢀ, CML differential load = 1001ꢀ, REFCLK = 125MHz, ꢁ = -5°C to  
CC  
A
+85°C, unless otherwise noted. ꢁypical values are at V  
= 3.3V and ꢁ = +25°C.) (Note 5)  
CC  
A
PARAMETER  
JTAG PARAMETERS  
Clock Frequency  
Setup ꢁime  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
15  
MHz  
ns  
Data input to clock positive edge  
Clock positive edge to data input  
15  
13  
7
5
Hold ꢁime  
ns  
Clock negative edge to data output  
(C 20pF)  
Propagation Delay  
2
30  
ns  
ꢁDO Output Rise ꢁime  
ꢁDO Output Fall ꢁime  
C 20pF, measured 20ꢀ to 80ꢀ  
C 20pF, measured 20ꢀ to 80ꢀ  
2
1
20  
20  
ns  
ns  
ꢁDO Output ꢁhree-State to  
Active ꢁime  
C 20pF, measured as rise or fall time  
1
30  
ns  
_______________________________________________________________________________________  
3
Dual 1.25Gbps Transceiver  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.0V to 3.6V, LVDS differential load = 1001ꢀ, CML differential load = 1001ꢀ, REFCLK = 125MHz, ꢁ = -5°C to  
CC  
A
+85°C, unless otherwise noted. ꢁypical values are at V  
= 3.3V and ꢁ = +25°C.) (Note 5)  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LOCK DETECT PARAMETERS  
ꢁo assert, the ꢁx and Rx PLL internal lock  
indicators must be high (lock achieved) for  
this period.  
Assert ꢁime  
394  
µs  
µs  
ꢁo deassert, the ꢁx or Rx PLL internal lock  
indicators must be low for this period  
Deassert ꢁime  
1053  
TRANSMITTER PARAMETERS  
ꢁCLK Frequency  
625  
5
MHz  
ns  
REFCLK Input Rise/Fall ꢁime  
ꢁransmitter Latency  
Single ended, 20ꢀ to 80ꢀ  
From ꢁDAꢁ to ꢁx  
2
ns  
LVDS INPUTS  
Accumulated Phase Error at  
ꢁCLK1 or ꢁCLK2  
Relative to REFCLK  
1
ns  
Setup ꢁime  
t
Figure 1  
Figure 1  
100  
100  
42  
42  
ps  
ps  
SU  
Hold ꢁime  
t
H
CML OUTPUTS  
Differential Skew  
25  
73  
20  
53  
ps  
ꢁx Output Jitter, ꢁotal  
ꢁx Output Jitter, Deterministic  
ꢁx Output Jitter, Random  
(Notes 6, 8)  
(Notes 6, 8)  
(Notes 6, 8)  
32  
9
ps  
P-P  
ps  
P-P  
ps  
P-P  
23  
RECEIVER PARAMETERS (Notes 7, 8)  
Input Data Rate  
1.25  
1
Gbps  
ms  
K28.5 pattern applied to Rx inputs, REFCLK  
must be applied and stable  
PLL Lock ꢁime  
Pattern = 27 - 1, differential skew = 0,  
0.938  
0.885  
0.838  
0.694  
0.45UI  
of data-dependent jitter  
P-P  
Pattern = CRPAꢁ, differential skew = 0ps,  
0.45UI of data-dependent jitter  
P-P  
Input Jitter ꢁolerance  
(Note 9)  
UI  
P-P  
Pattern = CRPAꢁ, differential skew = 218ps,  
0.45UI of data-dependent jitter  
0.776  
P-P  
Pattern = CJꢁPAꢁ, differential skew = 218ps,  
0.248UI of pulse-width distortion (Note 10)  
0.595  
205  
P-P  
Differential Skew ꢁolerance  
Jitter Generation  
802.3z and GBIC compliant  
ps  
ps  
20  
5
100  
P-P  
Receiver Latency  
From Rx to RDAꢁ  
ns  
4
_______________________________________________________________________________________  
Dual 1.25Gbps Transceiver  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.0V to 3.6V, LVDS differential load = 1001ꢀ, CML differential load = 1001ꢀ, REFCLK = 125MHz, ꢁ = -5°C to  
CC  
A
+85°C, unless otherwise noted. ꢁypical values are at V = 3.3V and ꢁ = +25°C.) (Note 5)  
CC  
A
PARAMETER  
LVDS OUTPUTS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Clock Duty-Cycle Distortion  
Variation of 50ꢀ crossing from ideal time  
-32  
+32  
50  
ps  
Measured with K28.5 pattern at RDAꢁ_  
outputs  
Deterministic Jitter  
8
ps  
P-P  
Edge Speed  
t , t  
20ꢀ to 80ꢀ  
Figure 2  
200  
400  
250  
532  
ps  
r
f
Clock-to-Data Delay  
τ
268  
ps  
CLK-Q  
REFERENCE CLOCK REQUIREMENTS  
REFCLK Frequency  
125  
MHz  
ppm  
REFCLK Frequency ꢁolerance  
REFCLK Duty Cycle  
-100  
40  
+100  
60  
210  
15  
ps  
P-P  
f < 5kHz, jitter assumed Gaussian  
ps  
RMS  
REFCLK Jitter  
f > 5kHz, jitter is assumed deterministic,  
caused by power-supply noise and buffer  
jitter  
20  
ps  
P-P  
Note 5: AC characteristics are guaranteed by design and characterization.  
Note 6: ꢁx output jitter, total, is the sum of both deterministic (20ps max) and random (53ps max at BER = 10-12), as per  
P-P  
P-P  
IEEE802.3z. Measured with K28.5 pattern and one-pole 637kHz highpass filter weighting.  
Note 7: JIꢁꢁER ꢁESꢁ MEꢁHODS: ꢁhese are described in the draft technical report by ANSI ꢁ11.2/Project 1230, document FC-MJS,  
Fibre Channel - Methodologies for Jitter Specification.ꢁhe maximum BER used to specify both Fibre Channel links, as  
well as IEEE802.3z links is 10-12  
.
Note 8: JIꢁꢁER ꢁESꢁ CONDIꢁIONS: ꢁhe difference between the MAX3782 jitter specifications and the IEEE802.3z standards (see  
ꢁable 1) represents the margin that must absorb all impairments such as jitter transfer from REFCLK, power-supply noise,  
and oscillator pulling (due to different ꢁx and Rx frequencies).  
Note 9: Input jitter tolerance is the total amount of high-frequency jitter at the inputs. ꢁotal jitter = deterministic jitter (DJ) + random  
jitter (RJ) + 5MHz sinusoidal jitter (SJ). Random jitter = 2ps  
(35mUI  
).  
RMS  
RMS  
Note 10: CJꢁPAꢁ is a unique pattern, which toggles between high transition-density sections to low transition-density sections at a  
rate within the loop bandwidth of a CDR. Passing this signal through a band-limited channel results in data-dependent jitter  
(DDJ) that has instantaneous phase jumps occurring at the rate of transition-density change. ꢁhe phase vs. time looks like  
a low-frequency square wave. A 0.5UI low-frequency square wave of jitter is the maximum that can be tolerated by an  
P-P  
ideal CDR. In other words, 0.5UI low-frequency square-wave jitter produces an equivalent stress as 1.0UI high-fre-  
P-P  
P-P  
quency square-wave jitter.  
_______________________________________________________________________________________  
5
Dual 1.25Gbps Transceiver  
t
H
= 100ps  
1000mV  
P-P  
MAXIMUM  
300mV  
P-P  
MINIMUM INPUT  
τ
τ
CLK-Q  
CLK-Q  
INPUT  
t
SU  
= 100ps  
CENTER OF RISING OR FALLING CLOCK EDGE  
Figure 1. LVDS Receiver Input Eye Mask  
Figure 2. Definition of Clock-to-Data Delay  
Typical Operating Characteristics  
(V  
= 3.3V, ꢁ = +25°C, unless otherwise noted.)  
CC  
A
TRANSMITTER JITTER TRANSFER  
(REFLCK TO TX_)  
RECEIVER JITTER TRANSFER  
(RX_ TO RCLK)  
SUPPLY CURRENT vs. TEMPERATURE  
800  
2
0
2
0
750  
700  
650  
600  
550  
500  
450  
400  
-2  
-2  
-4  
-4  
-6  
-6  
-8  
-8  
-10  
-10  
0
10 20 30 40 50 60 70 80  
0.1  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
AMBIENT TEMPERATURE (°C)  
JITTER FREQUENCY (Hz)  
JITTER FREQUENCY (Hz)  
TRANSMIT CLOCK SYNTHESIZER  
POWER-SUPPLY REJECTION RATIO  
TEMPSENS VOLTAGE  
vs. TEMPERATURE  
RECEIVER POWER-SUPPLY  
REJECTION RATIO  
1
450  
430  
410  
390  
370  
350  
330  
310  
290  
270  
250  
1
WITHOUT HIGHPASS WEIGHTING  
0.1  
0.01  
0.1  
637kHz HIGHPASS WEIGHTING  
AS PER IEEE802.3z METHOD  
0.001  
0.0001  
0.01  
100 120  
140  
100  
1k  
10k  
100k  
0
20 40 60 80  
0.1  
1
10  
100  
1000  
FREQUENCY (Hz)  
JUNCTION TEMPERATURE (°C)  
NOISE FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
Dual 1.25Gbps Transceiver  
Typical Operating Characteristics (continued)  
(ꢁ = +25°C, unless otherwise noted.)  
A
VCO AND VCO  
PULLING TO VCO  
VCO AND VCO  
PULLING TO VCO  
VCO  
PULLING TO VCO  
AND VCO  
RX1 RX2  
TX  
RX2  
RX1  
TX  
RX1  
RX2  
TX  
16  
14  
12  
10  
8
14  
12  
10  
8
30  
25  
20  
15  
10  
WITHOUT HIGHPASS WEIGHTING  
6
6
4
2
0
4
5
0
2
637kHz HIGHPASS WEIGHTING  
AS PER IEEE802.3z METHOD  
0
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
FREQUENCY DIFFERENCE (ppm)  
FREQUENCY DIFFERENCE (ppm)  
FREQUENCY DIFFERENCE (ppm)  
INPUT EYE  
SINUSOIDAL JITTER TOLERANCE  
vs. FREQUENCY  
(DJ = 0.4UI , SJ = 0.5UI AT 5MHz,  
P-P  
P-P  
RECOVERED EYE  
7
2 -1 PRBS)  
100  
10  
1
WITH 0.4 UI OF DATA-DEPENDENT  
P-P  
7
JITTER PRESENT, PATTERN = 2 - 1 PRBS  
100mV/  
div  
100mV/  
div  
0.1  
200ps/div  
200ps/div  
10k  
100k  
1M  
10M  
JITTER FREQUENCY (Hz)  
5MHz JITTER TOLERANCE  
vs. INPUT AMPLITUDE  
REFCLK TO TCLK ACCUMULATED  
PHASE-ERROR TOLERANCE  
1
2000  
1500  
1000  
500  
WITH 0.4UI OF DATA-DEPENDENT  
P-P  
7
JITTER PRESENT, PATTERN = 2 - 1 PRBS  
ERROR-FREE OPERATION  
REFCLK ALIGNED TO TCLK  
0
-500  
-1000  
-1500  
-2000  
-2500  
0.1  
1
10  
100  
1000  
10,000  
0
100 200 300 400 500 600 700 800  
PHASE AT RESET (ps)  
INPUT AMPLITUDE (mV  
)
P-P  
_______________________________________________________________________________________  
7
Dual 1.25Gbps Transceiver  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 6, 13,  
17, 21, 26,  
31, 35, 43,  
48, 51, 58,  
62  
GND  
Supply Ground  
ꢁransmitter Positive Clock Input 2, LVDS. Input data is clocked on both the rising and falling edges of  
the 625MHz clock.  
2
3
ꢁCLK2+  
ꢁCLK2-  
ꢁransmitter Negative Clock Input 2, LVDS. Input data is clocked on both the rising and falling edges of  
the 625MHz clock.  
4
5
ꢁDAꢁ2+  
ꢁDAꢁ2-  
ꢁransmitter Positive Data Input 2, LVDS  
ꢁransmitter Negative Data Input 2, LVDS  
JꢁAG ꢁest Reset Input, LVꢁꢁL. Momentarily connect TRST to GND to reset JꢁAG test circuitry.  
Internally pulled high through 15kresistor.  
7
TRST-JTAG  
VCC5  
8, 22, 25,  
27, 30, 67  
3.3V Supply for Receiver Digital Functions and JꢁAG Circuitry  
Receiver Positive Clock Output 2, LVDS. Output data is clocked on both the rising and falling edges of  
the 625MHz clock.  
9
RCLK2+  
RCLK2-  
Receiver Negative Clock Output 2, LVDS. Output data is clocked on both the rising and falling edges  
of the 625MHz clock.  
10  
11  
12  
RDAꢁ2+  
RDAꢁ2-  
Receiver Positive Data Output 2, LVDS  
Receiver Negative Data Output 2, LVDS  
Lock Status Indicator Output, LVꢁꢁL. ꢁhis output goes high when the transmit PLL and receiver PLLs  
are in lock. Because this output is open-collector ꢁꢁL, the LOCK pins from multiple MAX3782s can be  
connected in parallel to form a single LOCK signal.  
14  
LOCK  
15  
16  
18  
19  
20  
23  
24  
28  
29  
32  
VCC3  
RXFIL2  
3.3V Supply for RX2 Receiver VCO, Analog Receiver Functions, and External Loop-Filter Connection  
RX2 Receiver Loop-Filter Connection. Connect a 0.1µF capacitor between RXFIL2 and VCC3.  
JꢁAG ꢁest Data Input, LVꢁꢁL. Internally pulled high through 15kresistor.  
ꢁDI-JꢁAG  
ꢁMS-JꢁAG JꢁAG ꢁest Mode Select Input, LVꢁꢁL. Internally pulled high through 15kresistor.  
ꢁCLK-JꢁAG JꢁAG ꢁest Clock Input, LVꢁꢁL. Internally pulled high through 15kresistor.  
RX1+  
RX1-  
Receiver Positive Input 1, CML  
Receiver Negative Input 1, CML  
RX2+  
Receiver Positive Input 2, CML  
RX2-  
Receiver Negative Input 2, CML  
VCCꢁEMP  
3.3V Supply for ꢁEMPSENS. Connect to ground to disable the temperature-sensing function.  
Junction ꢁemperature Sensor Output, Analog. ꢁEMPSENS corresponds to the junction temperature of  
the die. Leave open for normal use.  
33  
34  
ꢁEMPSENS  
Loopback Enable Input, LVꢁꢁL. Force low to enable system loopback. Internally pulled high through  
15k.  
LOOPEN  
36  
37  
VCC2  
RXFIL1  
VCC6  
3.3V Supply for RX1 Receiver VCO, Analog Receiver Functions, and External Loop-Filter Connection  
RX1 Receiver Loop-Filter Connection. Connect a 0.1µF capacitor between RXFIL1 and VCC2.  
3.3V Supply for ꢁransmitter Digital Functions  
38, 53, 61  
39, 42, 44,  
47  
VCC4  
3.3V Supply for CML Outputs  
8
_______________________________________________________________________________________  
Dual 1.25Gbps Transceiver  
Pin Description (continued)  
PIN  
40  
41  
45  
46  
49  
50  
NAME  
ꢁX1-  
FUNCTION  
ꢁransmitter Negative Output 1, CML  
ꢁX1+  
ꢁX2-  
ꢁransmitter Positive Output 1, CML  
ꢁransmitter Negative Output 2, CML  
ꢁX2+  
ꢁXFIL  
VCC1  
ꢁransmitter Positive Output 2, CML  
ꢁransmitter Loop-Filter Connection. Connect a 0.1µF capacitor between ꢁXFIL and VCC1.  
3.3V Supply for ꢁransmitter VCO, Analog ꢁransmitter Functions, and External Loop-Filter Connection  
Reset Input, LVꢁꢁL. Connect low for >80ns to reset FIFO and receiver components. Internally pulled  
high through 15k.  
52  
54  
55  
RESET  
ꢁCLK1+  
ꢁCLK1-  
ꢁransmitter Positive Clock Input 1, LVDS. Input data is clocked on both the rising and falling edges of  
the 625MHz clock.  
ꢁransmitter Negative Clock Input 1, LVDS. Input data is clocked on both the rising and falling edges of  
the 625MHz clock.  
56  
57  
59  
60  
ꢁDAꢁ1+  
ꢁDAꢁ1-  
ꢁransmitter Positive Data Input 1, LVDS  
ꢁransmitter Negative Data Input 1, LVDS  
REFCLK+ Reference Clock Positive Input. See specification table for differential or single-ended use.  
REFCLK-  
Reference Clock Negative Input. See specification table for differential or single-ended use.  
Receiver Positive Clock Output 1, LVDS. Output data is clocked on both the rising and falling edges of  
the 625MHz clock.  
63  
64  
RCLK1+  
Receiver Negative Clock Output 1, LVDS. Output data is clocked on both the rising and falling edges of  
the 625MHz clock.  
RCLK1-  
65  
66  
68  
RDAꢁ1+  
RDAꢁ1-  
Receiver Positive Data Input 1, LVDS  
Receiver Negative Data Input 1, LVDS  
ꢁDO-JꢁAG JꢁAG ꢁest Data Output, ꢁhree-State LVꢁꢁL  
Supply Ground. ꢁhe exposed pad must be soldered to the circuit board ground for proper thermal and  
electrical performance. See Exposed-Pad Package. ꢁhe MAX3782 uses exposed pad variation G6800-4 in  
the package outline drawing.  
Exposed  
Pad  
EP  
_______________________________________________________________________________________  
9
Dual 1.25Gbps Transceiver  
TMS-  
JTAG  
TDI-  
JTAG  
TRST-  
JTAG  
TCLK-  
JTAG  
V
CC  
GND  
TXFIL  
TTL  
TTL  
TTL  
TTL  
+
1.25GHz  
PLL CLOCK  
MULTIPLIER  
REFCLK  
TDAT1  
TTL  
TDO-TJAG  
TTL  
-
JTAG CONTROL CIRCUITRY  
TX_LOCK (INTERNAL)  
REFCLK (INTERNAL)  
Q
+
D
D
Q
LVDS  
-
FIFO  
CML  
TX1  
+
TCLK1  
RESET  
LVDS  
625MHz  
DDR  
-
RESET  
(INTERNAL)  
TTL  
+
TDAT2  
TCLK2  
LVDS  
D
D
Q
Q
-
FIFO  
TX2  
CML  
+
LVDS  
625MHz  
DDR  
-
0
1
Q
D
+
LVDS  
RDAT1  
RCLK1  
CML  
RX1  
-
PLL CLOCK  
RECOVERY  
625MHz  
DDR  
DIVIDE BY 2  
LVDS  
RXFIL1  
REFCLK  
(INTERNAL)  
LOOPEN  
LOCK  
TTL  
MAX3782  
RESET  
(INTERNAL)  
TX_LOCK (INTERNAL)  
D
0
1
Q
+
RDAT2  
RCLK2  
LVDS  
LVDS  
CML  
RX2  
-
PLL CLOCK  
RECOVERY  
625MHz  
DDR  
DIVIDE BY 2  
RXFIL2  
REFCLK  
(INTERNAL)  
Figure 3. Functional Diagram  
10 ______________________________________________________________________________________  
Dual 1.25Gbps Transceiver  
tion. ꢁhe LVDS outputs are designed to drive 100dif-  
Detailed Description  
ferential loads and are not designed to drive 50to  
ꢁhe MAX3782 dual 1.25Gbps transceiver is a data  
retimer and clock recovery device for 1000Base-SX/LX,  
GBIC, and SFP applications. In the transmitter, an inte-  
grated clock synthesizer generates a clean 1.25GHz  
clock. ꢁhis clock is used with a FIFO to retime the data  
before transmission. CML output buffers provide excel-  
lent performance with minimal external components.  
ground.  
PLL Clock Multiplier  
ꢁhe PLL clock multiplier uses the 125MHz reference  
clock to synthesize the 1.25GHz clock that synchro-  
nizes the transmitter functions. ꢁhe reference clock also  
aids frequency acquisition in the receiver. ꢁo achieve  
proper jitter performance and BER benchmarks, using  
a high-quality, low-jitter reference clock is critical.  
REFCLK inputs can be driven differentially or single  
ended. Differential operation is recommended for its  
superior jitter performance and noise immunity.  
ꢁhe receiver has two separate PLL clock recovery cir-  
cuits, allowing independent recovery of each received  
data signal. ꢁhe receiver has CML inputs, easing sys-  
tem design and decreasing component count.  
JꢁAG functionality is included to help with board-level  
testing. A LOCK pin indicates the status of the internal  
PLLs. System loopback may be asserted with the  
LOOPEN input.  
PLL Clock Recovery  
Both receive channels (RX1 and RX2) use PLLs to  
recover synchronous clocks from the incoming serial  
data. ꢁhe recovered clocks are then used to retime the  
serial data. ꢁhe typical loop bandwidth of the PLL clock  
recovery circuits is 1.5MHz.  
LVDS Inputs and Outputs  
ꢁhe MAX3782 LVDS interface includes two differential  
data inputs at 1.25Gbps, two half-rate differential clock  
inputs at 625MHz, two differential data outputs at  
1.25Gbps, and two half-rate differential clock outputs at  
625MHz. ꢁhe MAX3782 LVDS-compatible interface is  
designed to work with the users ASICs, minimize  
power dissipation, speed transition time, and improve  
noise immunity. ꢁhe LVDS outputs also have short-  
circuit protection in case of shorts to VCC or GND. ꢁhe  
LVDS inputs must be DC-coupled for proper biasing.  
AC-coupling these inputs results in unreliable opera-  
CML Inputs and Outputs  
ꢁhe CML inputs and outputs of the MAX3782 offer low  
power dissipation, excellent performance, and integrat-  
ed termination resistors. AC-coupling capacitors should  
be used for PECL and IEEE802.3z compatibility.  
Figure 4 shows interface examples. ꢁhe CML output  
structure is shown in Figure 5, and the CML input struc-  
ture is shown in Figure 6. For more information, refer to  
0.01µF  
OPTIONAL  
CML  
ECL OR  
PECL  
W/ 100Ω  
BACK TERM  
Z
0
= 100Ω  
0.01µF  
0.01µF  
CML TO PECL  
50Ω  
50Ω  
BIAS  
OPTIONAL  
CML  
ECL OR  
OPTIONAL  
PECL  
W/ 100Ω  
Z
0
= 100Ω  
END TERM  
0.01µF  
PECL TO CML  
CURRENT  
SET  
CURRENT  
SET  
0.01µF  
0.01µF  
OPTIONAL  
CML  
CML  
W/ 100Ω  
END TERM  
W/ 100Ω  
Z
= 100Ω  
0
BACK TERM  
CML TO CML  
Figure 4. CML I/O Interconnect Examples  
______________________________________________________________________________________ 11  
Dual 1.25Gbps Transceiver  
MAX3782  
V
CC  
VCC  
2k  
50Ω  
50Ω  
MAX3782  
OUT+  
OUT-  
50Ω  
50Ω  
IN+  
IN-  
32mA  
Figure 5. CML Output Structure  
the applications note HFAN-01.0, Introduction to LVDS,  
PECL, and CML.  
GND  
Lock Detection  
ꢁhe LOCK output indicates the state of the transmitter  
and receiver PLLs. For lock detect to be asserted high,  
the transmitter and receiver internal lock indicators  
must be high for 394µs. ꢁhe internal lock signals go  
high once frequency lock has been achieved. For lock  
detect to be asserted low, either the transmitter or  
receiver internal lock indicators must be low for a mini-  
mum of 1053µs. Lock detect also is asserted low when  
the external reset pin is forced low. LOCK stays low for  
a minimum of 394µs. For the lock detector to function  
properly, there must be data transitions at the RX1 and  
RX2 inputs and a valid reference clock input. Note: ꢁhe  
LOCK output is not an accurate indicator of signal  
presence at the receiver inputs. With no data input, the  
LOCK output can be high, low, or toggling. ꢁhe output  
structure of the LOCK pin is shown in Figure 7.  
Figure 6. CML Input Structure  
portional to the die junction temperature (1mV per  
Kelvin). ꢁhe temperature of the die can be calculated  
as:  
1°C  
mV  
ꢁ(°C) V  
(mV) ×  
273°C  
ꢁEMPSENS  
V
CC  
MAX3782  
R
=
LOAD  
RESET Input  
RESET must be held low for a minimum of four reference  
clock cycles for it to be properly asserted. Approximately  
10ms or longer after power up, the RESET input should  
be asserted low. RESET resets the LOCK state and FIFO  
clock logic.  
10kΩ  
100Ω  
LOCK  
Temperature Sensor  
ꢁo help evaluate thermal performance, a temperature  
sensor is incorporated into the MAX3782. ꢁhe tempera-  
ture sensor may be powered on or off regardless of the  
state of the rest of the chip. ꢁhe VCCꢁEMP pin provides  
supply voltage for the temperature sensor circuit. ꢁhe  
ꢁEMPSENS output is designed to output a voltage pro-  
Figure 7. LOCK Output Structure  
12 ______________________________________________________________________________________  
Dual 1.25Gbps Transceiver  
Layout Techniques  
Applications Information  
For best performance, use good high-frequency layout  
techniques. Filter voltage supplies, keep ground connec-  
tions short, and use multiple vias where possible. Use  
controlled-impedance 50transmission lines to interface  
with the MAX3782 high-speed inputs and outputs.  
Jitter Budget Example  
for Optical Link  
ꢁhe MAX3782 outperforms IEEE802.3z jitter specifica-  
tions. See Figure 8 and ꢁable 1.  
Place power-supply decoupling capacitors as close to  
CC  
input signals from the output signals.  
JTAG  
JꢁAG functionality is compliant with IEEE1149.1 specifi-  
cations. ꢁhe BSDL file is available on request. ꢁable 2  
provides JꢁAG pin assignments.  
V
as possible. ꢁo reduce feedthrough, isolate the  
TP1  
TP2  
E/O  
O/E  
MAX3782  
MAX3782  
Figure 8. Optical Link  
Table 1. Comparison of IEEE802.3z and MAX3782 Jitter Budget  
TOTAL JITTER (ps  
)
DETERMINISTIC JITTER (ps  
)
P-P  
P-P  
COMPLIANCE POINT  
IEEE802.3z  
MAX3782  
IEEE802.3z  
MAX3782  
SPECIFICATION  
SPECIFICATION  
SPECIFICATION  
SPECIFICATION  
73 (max)  
32 (typ)  
20 (max)  
9 (typ)  
ꢁP1  
COMPLIANCE POINT  
ꢁP2  
192  
100  
TOTAL JITTER TOLERANCE (ps  
)
P-P  
IEEE802.3z  
SPECIFICATION  
MAX3782  
SPECIFICATION  
620 (min, CRPAꢁ)  
670 (typ, CRPAꢁ)  
600  
______________________________________________________________________________________ 13  
Dual 1.25Gbps Transceiver  
Table 2. JTAG Pin Assignments  
ROUTING  
MAX3782  
PIN NAME  
BOUNDARY SCAN  
PORT NAME  
I/O TYPE  
CELL TYPE  
IN  
OUT  
LOCK  
RX2+  
lock  
rx2p  
Open Collector Output Observe and Control  
1
CML Input  
CML Input  
Observe  
2
2
3
3
4
5
5
6
6
7
7
8
8
RX2-  
rx2n  
Observe  
RX1+  
rx1p  
CML Input  
Observe  
RX1-  
rx1n  
CML Input  
Observe  
LOOPEN  
ꢁDAꢁ2+  
ꢁDAꢁ2-  
loopen_bar  
tdat2p  
tdat2n  
tck2p  
tck2n  
tdat1p  
tdat1n  
tck1p  
tck1n  
tx1p  
LVꢁꢁL Input  
LVDS Input  
LVDS Input  
LVDS Input  
LVDS Input  
LVDS Input  
LVDS Input  
LVDS Input  
LVDS Input  
CML Output  
CML Output  
CML Output  
CML Output  
LVꢁꢁL Input  
LVꢁꢁL Input  
LVꢁꢁL Input  
LVDS Output  
LVDS Output  
LVDS Output  
LVDS Output  
LVDS Output  
LVDS Output  
LVDS Output  
LVDS Output  
Observe  
Observe  
Observe  
ꢁCLK2+  
ꢁCLK2-  
Observe  
Observe  
ꢁDAꢁ1+  
ꢁDAꢁ1-  
Observe  
Observe  
ꢁCLK1+  
ꢁCLK1-  
Observe  
Observe  
ꢁX1+  
Observe and Control  
Observe and Control  
Observe and Control  
Observe and Control  
Observe  
9
9
ꢁX1-  
tx1n  
ꢁX2+  
tx2p  
10  
10  
ꢁX2-  
tx2n  
RESET  
reset_bar  
refckp  
refckn  
rck1p  
rck1n  
rdat1p  
rdat1n  
rck2p  
rck2n  
rdat2p  
rdat2n  
11  
12  
12  
REFCLK+  
REFCLK-  
RCLK1+  
RCLK1-  
RDAꢁ1+  
RDAꢁ1-  
RCLK2+  
RCLK2-  
RDAꢁ2+  
RDAꢁ2-  
JTAG CONTROL PINS  
ꢁCLK-JꢁAG  
ꢁDI-JꢁAG  
ꢁDO-JꢁAG  
ꢁMS-JꢁAG  
TRST-JTAG  
Observe  
Observe  
Observe and Control  
Observe and Control  
Observe and Control  
Observe and Control  
Observe and Control  
Observe and Control  
Observe and Control  
Observe and Control  
13  
13  
14  
14  
15  
15  
16  
16  
tck  
tdi  
LVꢁꢁL Input  
LVꢁꢁL Input  
LVꢁꢁL Output  
LVꢁꢁL Input  
LVꢁꢁL Input  
tdo  
tms  
trst_bar  
14 ______________________________________________________________________________________  
Dual 1.25Gbps Transceiver  
Table 3. JTAG Instructions  
JTAG  
INSTRUCTION  
ACTION  
OPCODE  
EXꢁESꢁ  
000 b  
001 b  
111 b  
010 b  
External boundary test mode  
SAMPLE/PRELOAD  
BYPASS  
Initialization for boundary test mode  
Connects bypass register between ꢁDI and ꢁDO  
32-bit device ID register selected (see ꢁable 4)  
IDCODE  
Table 4. Device Identification Code  
CODE  
VERSION  
PART NO.  
MANUFACTURER = MAXIM  
LSB  
0000 1110 1100 0110 b  
00011001011 b  
[ ref: JEDEC JEP106-I ]  
Binary  
0001 b  
1 b  
[ = 3782  
]
base10  
Exposed-Pad Package  
Chip Information  
ꢁhe exposed-pad, 68-pin QFN-EP incorporates features  
that provide a very low thermal-resistance path for heat  
removal from the IC. ꢁhe EP and EP ring are electrical  
ground on the MAX3782 and must be soldered to the cir-  
cuit board for proper thermal and electrical performance.  
Refer to HFAN 08.10, Thermal Considerations of QFN  
and Other Exposed-Pad Packages, for more information.  
ꢁRANSISꢁOR COUNꢁ: 14329  
PROCESS: Silicon bipolar  
______________________________________________________________________________________ 15  
Dual 1.25Gbps Transceiver  
Typical Application Circuit  
1.25Gbps  
1.25Gbps  
LVDS  
GBIC AND  
IEEE802.3z  
1000BASE-SX/LX  
COMPATIBLE  
TCLK1  
TDAT1  
TX1  
GBIC OR SFP  
OPTICAL MODULE  
TCLK2  
TDAT2  
RX1  
CMOS  
ASIC  
TX2  
RX2  
GBIC OR SFP  
OPTICAL MODULE  
RCLK1  
RDAT1  
RCLK2  
RDAT2  
MAX3782  
VCC2 VCC3  
VCC1  
LOOPEN  
0.1µF  
0.1µF  
0.1µF  
RESET  
RXFIL1  
RXFIL2  
LOCK  
TXFIL  
REFCLK  
125MHz  
REFERENCE  
CLOCK  
TMS-JTAG  
TDI-TJAG  
TRST-JTAG  
TDO-JTAG  
TCLK-JTAG  
16 ______________________________________________________________________________________  
Dual 1.25Gbps Transceiver  
Package Information  
(ꢁhe package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 17  
Dual 1.25Gbps Transceiver  
Package Information (continued)  
(ꢁhe package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3782EVKIT

Evaluation Kit for the MAX3782
MAXIM

MAX3782UGK

Interface Circuit, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, QFN-68
MAXIM

MAX3782UGK-T

Interface Circuit, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, QFN-68
MAXIM

MAX3783

2.7Gbps Dual Mux/Buffer with Loopback
MAXIM

MAX3783EVKIT

Evaluation Kit for the MAX3783
MAXIM

MAX3783UCM

FIBER-OPTIC PORT BYPASS|BIPOLAR|TQFP|48PIN|PLASTIC
MAXIM

MAX3783UCM+

2.7Gbps Dual Mux/Buffer with Loopback
MAXIM

MAX3783UCM+D

Interface Circuit, BIPolar, PQFP48, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026ABC-HD, TQFP-48
MAXIM

MAX3783UCM+TD

Interface Circuit, BIPolar, PQFP48, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026ABC-HD, TQFP-48
MAXIM

MAX3783UCM-TD

暂无描述
MAXIM

MAX3784

5Gbps PC Board Equalizer
MAXIM

MAX3784A

5Gbps PCB Equalizer
MAXIM