MAX3863ETJ+T [MAXIM]

Interface Circuit, BIPolar, ROHS COMPLIANT, TQFN-32;
MAX3863ETJ+T
型号: MAX3863ETJ+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Interface Circuit, BIPolar, ROHS COMPLIANT, TQFN-32

接口集成电路
文件: 总15页 (文件大小:400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2281; Rev 4; 11/08  
2.7Gbps Laser Driver with Modulation  
Compensation  
MAX863  
General Description  
Features  
Single +3.3V Power Supply  
58mA Power-Supply Current  
Up to 2.7Gbps (NRZ) Operation  
On-Chip Termination Resistors  
Automatic Power Control (APC)  
The MAX3863 is designed for direct modulation of laser  
diodes at data rates up to 2.7Gbps. An automatic  
power-control (APC) loop is incorporated to maintain a  
constant average optical power. Modulation compensa-  
tion is available to increase the modulation current in  
proportion to the bias current. The optical extinction  
ratio is then maintained over temperature and lifetime.  
Compensation for Constant Extinction Ratio  
Programmable Modulation Current Up to 80mA  
Programmable Bias Current Up to 100mA  
50ps Typical Rise/Fall Time  
Pulse-Width Adjustment Circuit  
Selectable Data-Retiming Latch  
Failure Detector  
The laser driver can modulate laser diodes at ampli-  
tudes up to 80mA. Typical (20% to 80%) edge speeds  
are 50ps. The MAX3863 can supply a bias current up  
to 100mA. External resistors can set the laser output  
levels.  
The MAX3863 includes adjustable pulse-width control  
to minimize laser pulse-width distortion. The device  
offers a failure monitor output to indicate when the APC  
loop is unable to maintain the average optical power.  
Mark-Density Monitor  
Current Monitors  
ESD Protection  
The MAX3863 accepts differential CML clock and data  
input signals with on-chip 50Ω termination resistors. If a  
clock signal is available, an input data-retiming latch  
can be used to reject input pattern-dependent jitter.  
The laser driver is fabricated with Maxim’s in-house  
second-generation SiGe process.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
32 TQFN-EP*  
32 QFN-EP*  
MAX3863ETJ+  
MAX3863EGJ  
+Denotes a lead-free/RoHS-compliant package.  
*EP = Exposed pad.  
Pin Configuration  
Applications  
SONET and SDH Transmission Systems  
WDM Transmission Systems  
3.2Gbps Data Communications  
Add/Drop Multiplexers  
TOP VIEW  
V
1
2
3
4
5
6
7
8
24 MDMON  
23 MD  
CC  
Digital Cross-Connects  
DATA+  
DATA-  
Section Regenerators  
22  
V
CC  
Long-Reach Optical Transmitters  
V
V
21 MODN  
20 MOD  
CC  
CC  
MAX3863  
CLK+  
CLK-  
19  
V
CC  
18 BIAS  
V
FAIL  
17  
CC  
*EP  
TQFN-EP  
QFN-EP  
*THE EXPOSED PAD MUST BE SOLDERED TO GND ON THE CIRCUIT BOARD.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
2.7Gbps Laser Driver with Modulation  
Compensation  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage V ...............................................-0.5V to +5.0V  
BIAS Current ...................................................-20mA to +150mA  
MD Current............................................................-5mA to +5mA  
Operating Junction Temperature Range...........-55°C to +150°C  
Storage Temperature Range.............................-55°C to +150°C  
CC  
DATA+, DATA- and CLK+, CLK- ....(V  
- 1.5V) to (V + 0.5V)  
CC  
CC  
RTEN, EN, BIAS, MK+, MK-, PWC+, PWC-  
MODMON, BIASMON, MDMON, MODCOMP,  
APCFILT1, APCFILT2, BIASMAX, MODSET,  
APCSET Voltage ......................................-0.5V to (V  
MOD, MODN Voltage .......................................0 to (V  
Continuous Power Dissipation (T = +85°C)  
A
+ 0.5V)  
+ 1.5V)  
32-Pin QFN, TQFN (derate 21.2mW/°C above +85°C)....1.3W  
Processing Temperature (die) .........................................+400°C  
Lead Temperature (soldering, 10s) ................................ +300°C  
CC  
CC  
MOD, MODN Current......................................-20mA to +150mA  
MAX863  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
CC  
= +3.15V to +3.6V, T = -40°C to +85°C. Typical values are at V  
= +3.3V, I  
= 50mA, I = 40mA, T = +25°C, unless  
MOD A  
A
CC  
BIAS  
otherwise noted.) (Notes 1, 9)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
58  
MAX  
UNITS  
mA  
dB  
Power-Supply Current  
I
(Note 2)  
85  
CC  
Power-Supply Noise Rejection  
Power-Supply Threshold  
Single-Ended Input Resistance  
Bias-Current Setting Range  
PSNR  
f = 100kHz, 100mV  
Output enabled  
(Note 10)  
40  
P-P  
2.8  
50  
V
Input to V  
40  
4
60  
100  
+15  
+20  
0.1  
Ω
CC  
mA  
APC open loop, I  
APC open loop, I  
EN high  
= 100mA, T = +25°C  
-15  
-20  
BIAS  
A
Bias-Current Setting Error  
%
= 4mA, T = +25°C  
BIAS  
A
Bias Off-Current  
mA  
I
to I  
Ratio  
BIASMON  
34  
40  
46  
mA/mA  
BIAS  
APC open loop, 10mA I  
100mA (Note 3) -480  
+480  
BIAS  
Bias-Current Temperature Stability  
ppm/°C  
APC open loop, 4mA I  
100mA (Note 3)  
390  
BIAS  
Modulation-Current Setting Range  
Modulation-Current Setting Error  
Modulation Off-Current  
7
80  
+15  
0.1  
mA  
%
APC open loop, 25Ω load, T = +25°C  
-15  
A
EN high  
mA  
Modulation-Current Temperature  
Stability  
APC open loop (Note 3)  
-480  
+480 ppm/°C  
I
to I  
Ratio  
MODMON  
38  
0
46  
53  
1.5  
mA/mA  
mA/mA  
V
MOD  
Modulation Compensation Range  
MD Pin Voltage  
K
K = ΔI  
/ΔI  
MODC BIAS  
1.75  
Monitor Photodiode Current  
Range  
I
30  
1
2000  
1000  
µA  
MD  
APC Loop Time Constant  
APC Open Loop  
t
(Notes 3, 4)  
4mA I  
4
µs  
APC  
10mA (Note 3)  
390  
1.0  
mA  
BIAS  
V
to I  
Ratio  
R = 4kΩ  
MDMON  
0.8  
2.0  
1.2  
0.8  
0.4  
mV/µA  
MDMON  
MD  
EN and RTEN Input High  
EN and RTEN Input Low  
FAIL Output High  
V
V
V
V
V
IH  
V
IL  
V
Source 150µA  
Sink 2mA  
2.4  
OH  
FAIL Output Low  
V
OL  
2
_______________________________________________________________________________________  
2.7Gbps Laser Driver with Modulation  
Compensation  
MAX863  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
CC  
= +3.15V to +3.6V, T = -40°C to +85°C. Typical values are at V  
= +3.3V, I  
= 50mA, I = 40mA, T = +25°C, unless  
MOD A  
A
CC  
BIAS  
otherwise noted.) (Notes 1, 9)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
At high  
At low  
V
CC  
Single-Ended Input (DC-Coupled)  
Single-Ended Input (AC-Coupled)  
V
V
IS  
IS  
ID  
V
- 1.0  
V
- 0.1  
CC  
CC  
V
+
V
+
-
CC  
CC  
0.4  
At high  
At low  
0.05  
V
V
V
-
V
CC  
CC  
0.4  
0.05  
DC-coupled  
AC-coupled  
NRZ (Note 3)  
0.2  
0.2  
2.0  
1.6  
Differential Input Swing  
Input Data Rate  
V
V
P-P  
3.2  
17  
14  
Gbps  
dB  
f 2.7GHz  
2.7GHz < f 4GHz  
Input Return Loss  
RL  
(Notes 3, 5)  
IN  
Turn-Off Delay from EN  
Setup Time  
EN = high (Note 3)  
Figure 2 (Note 3)  
Figure 2 (Note 3)  
1.0  
µs  
ps  
ps  
ps  
ps  
t
90  
SU  
Hold Time  
t
90  
HD  
Pulse-Width Adjustment Range  
Pulse-Width Stability  
Z = 25Ω (Notes 3, 6)  
L
185  
220  
PWC+ and PWC- open (Notes 3, 6)  
18.5  
1.0  
Differential Pulse-Width Control  
Input Range  
For PWC+ and PWC- (Notes 3, 7), V = 0.5V  
-1.0  
V
V
CM  
Differential Mark Density  
0% to 100%, V + - V  
-
MK  
0.85  
MK  
Differential Mark-Density Voltage  
to Mark-Density Ratio  
15.5  
V/%  
Output Edge Speed  
Output Overshoot  
Random Jitter  
t , t  
R
Z = 25Ω (20% to 80%) (Notes 3, 6)  
50  
7
85  
ps  
%
F
L
δ
Z = 25Ω (Note 3)  
L
(Notes 3, 6)  
0.8  
8
1.3  
40  
40  
ps  
RMS  
Data Rate = 2.7Gbps (Notes 3, 8)  
Data Rate = 3.2Gbps (Notes 3, 8)  
Deterministic Jitter  
ps  
P-P  
10  
Note 1: Specifications at -40°C are guaranteed by design and characterization.  
Note 2: Excluding I , I , I , I , I , and I . Input clock and data are AC-coupled.  
BIAS MOD BIASMON MODMON FAIL  
PWC  
Note 3: Guaranteed by design and characterization.  
Note 4: An external capacitor at APCFILT1 and APCFILT2 is used to set the time constant.  
Note 5: For both data inputs DATA+, DATA- and clock inputs CLK+, CLK-.  
Note 6: Measured using a 2.7Gbps repeating 0000 0000 1111 1111 pattern.  
Note 7: For pulse width, PW = 100%: Rp = Rn = 500Ω (or open) or PWC+ = PWC- +0.5V. For PW > 100%: Rp > Rn or PWC+ >  
PWC-. For PW < 100%: Rp < Rn or PWC+ < PWC-.  
Note 8: Measured using a 213 - 1 PRBS with 80 zeros + 80 ones input data pattern or equivalent.  
Note 9: AC characterization performed using the circuit in Figure 1.  
Note 10: Power-Supply Noise Rejection (PSNR) = 20log (V  
/ΔV  
). V  
is the voltage across the 25Ω load when no  
10 NOISE (on VCC)  
OUT  
OUT  
input is applied.  
_______________________________________________________________________________________  
3
2.7Gbps Laser Driver with Modulation  
Compensation  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted. See Typical Operating Circuit.)  
A
ELECTRICAL EYE DIAGRAM  
ELECTRICAL EYE DIAGRAM  
ELECTRICAL EYE DIAGRAM  
(I  
MOD  
= 80mA, DATA RATE = 2.7Gbps,  
(I  
MOD  
= 80mA, DATA RATE = 3.2Gbps,  
(I  
= 7mA, DATA RATE = 2.7Gbps,  
MOD  
13  
13  
13  
PATTERN 2 - 1 + 80CID)  
PATTERN 2 - 1 + 80CID)  
PATTERN 2 - 1 + 80CID)  
MAX863  
52ps/div  
52ps/div  
52ps/div  
ELECTRICAL EYE DIAGRAM  
OPTICAL EYE DIAGRAM  
OPTICAL EYE DIAGRAM  
(I  
= 7mA, DATA RATE = 3.2Gbps,  
(I  
= 40mA, DATA RATE = 2.5Gbps,  
(I  
= 40mA, DATA RATE = 3.2Gbps,  
MOD  
MOD  
MOD  
13  
13  
13  
PATTERN 2 - 1 + 80CID)  
PATTERN 2 - 1 + 80CID)  
PATTERN 2 - 1 + 80CID)  
52ps/div  
58ps/div  
58ps/div  
SUPPLY CURRENT (I ) vs.TEMPERATURE  
CC  
(EXCLUDES BIAS AND  
MODULATION CURRENTS)  
PULSE-WIDTH ADJUST  
DETERMINISTIC JITTER vs. I  
MOD  
vs. DIFFERENTIAL V  
PWC  
16  
14  
12  
10  
8
80  
75  
70  
65  
60  
55  
50  
45  
40  
300  
200  
100  
0
3.2Gbps  
2.7Gbps  
6
-100  
-200  
-300  
4
2
0
5
15 25 35 45 55 65 75 85  
-40  
-20  
0
20  
40  
60  
80  
-0.8 -0.6 -0.4 -0.2  
V
0
0.2 0.4 0.6 0.8  
(V)  
PWC-  
I
(mA)  
TEMPERATURE (°C)  
- V  
MOD  
PWC+  
4
_______________________________________________________________________________________  
2.7Gbps Laser Driver with Modulation  
Compensation  
MAX863  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted. See Typical Operating Circuit.)  
A
MODULATION CURRENT vs.  
MODULATION SET RESISTOR  
BIAS CURRENT  
vs. BIASMAX SET RESISTOR  
MODULATION MONITOR VOLTAGE  
vs. MODULATION CURRENT  
100  
10  
1
1000  
200  
180  
160  
140  
120  
100  
80  
100  
10  
60  
40  
20  
0
1
0.1  
1
10  
100  
0.1  
1
10  
(kΩ)  
100  
5
20  
35  
I
50  
(mA)  
65  
80  
R
(kΩ)  
R
BIASMAX  
MODSET  
MOD  
BIAS MONITOR VOLTAGE  
vs. BIAS CURRENT  
MONITOR DIODE CURRENT  
vs. APCSET RESISTOR  
DIODE-CURRENT MONITOR VOLTAGE  
vs. MONITOR DIODE CURRENT  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
300  
250  
200  
150  
100  
50  
1
0.1  
0.01  
0
0.1  
10  
100  
1000  
0
0.5  
1.0  
I
1.5  
(mA)  
2.0  
2.5  
0
10 20 30 40 50 60 70 80 90 100  
(mA)  
1
R
(kΩ)  
I
APCSET  
MD  
BIAS  
COMPENSATION (K)  
POWER-SUPPLY NOISE REJECTION  
vs. FREQUENCY  
vs. R  
MODCOMP  
SINGLE-ENDED S11 vs. FREQUENCY  
10  
1
120  
100  
80  
60  
40  
20  
0
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0.1  
0.01  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
1000 10,000  
0
1
2
3
4
5
R
(kΩ)  
FREQUENCY (kHz)  
FREQUENCY (GHz)  
MODCOMP  
_______________________________________________________________________________________  
5
2.7Gbps Laser Driver with Modulation  
Compensation  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 4, 5, 8,  
14, 19, 22, 27  
V
CC  
Positive Supply Voltage  
2
3
6
7
9
DATA+  
DATA-  
CLK+  
Data Input, with On-Chip Termination  
Complementary Data Input, with On-Chip Termination  
Clock Input for Data Retiming, with On-Chip Termination  
MAX863  
CLK-  
Complementary Clock Input for Data Retiming, with On-Chip Termination  
Monitor Diode Current Set Point  
APCSET  
APC Loop Filter Capacitor. Short to ground to disable the correction loop through the monitor  
diode.  
10  
APCFILT1  
11  
12  
APCFILT2  
PWC+  
APC Loop Filter Capacitor  
Input for Modulation Pulse-Width Adjustment. Connected to GND through R  
.
PWC  
Complementary Input for Modulation Pulse-Width Adjustment. Connected to GND through  
13  
PWC-  
R
.
PWC  
15  
16  
17  
MK+  
MK-  
Voltage Proportional to the Mark Density. MK+ = MK- for 50% duty cycle.  
Voltage Inversely Proportional to the Mark Density  
FAIL  
Alarm for Shorts on Current Set Pins and APC Loop Failure Conditions, Active Low  
Laser Diode Bias Current Source (Sink Type) to Bias the Laser Diode. Connect to the laser  
with an inductor.  
18  
BIAS  
20  
21  
23  
MOD  
MODN  
MD  
Driver Output. AC-coupled to the laser diode.  
Complementary Driver Output. Connect to dummy load off-chip.  
Monitor Diode Connection  
Monitor for MD Current. Voltage developed across an external resistor from mirrored MD  
current.  
24  
MDMON  
Monitor for Modulation Current. Voltage developed from I  
resistor.  
mirrored through an external  
MOD  
25  
26  
28  
MODMON  
BIASMON  
MODCOMP  
Monitor for Bias Current. Voltage developed from I  
mirrored through an external resistor.  
BIAS  
Couples the Bias Current to the Modulation Current. Mirrors I  
Open for zero coupling.  
through an external resistor.  
BIAS  
29  
30  
31  
32  
MODSET  
BIASMAX  
EN  
External Resistor to Program I  
(I  
= I  
+ I  
)
MODC MOD  
MODS  
MODC  
External Resistor to Program the Maximum I  
BIAS  
Modulation and Bias Current Enable, Active Low. Current disabled when floating or high.  
Data Retiming Enable Input, Active Low. Retiming disabled when floating or high.  
RTEN  
Exposed Pad. The exposed pad must be soldered to circuit-board ground for proper thermal  
and electrical operation.  
EP  
6
_______________________________________________________________________________________  
2.7Gbps Laser Driver with Modulation  
Compensation  
MAX863  
V
CC  
A - TOKO FSLB2520-330K  
B - MURATA BLM11HA601SPT  
A
B
A
B
V
V
CC  
CC  
50Ω  
50Ω  
DATA+  
DATA-  
DATA+  
DATA-  
25Ω  
MODN  
0.1μF  
V
OSCILLOSCOPE  
CC  
MAX3863  
V
CC  
50Ω  
MOD  
0.1μF  
APCFILT1  
50Ω  
50Ω  
CLK+  
CLK-  
CLK+  
CLK-  
50Ω  
50Ω  
V
CC  
BIAS  
EN  
RTEN  
15Ω  
Figure 1. AC Characterization  
Mark-Density Outputs  
Detailed Description  
The MK+ and MK- outputs monitor the input signal  
mark density. With a 50% mark density, both outputs  
are the same voltage. More ones cause the MK+ volt-  
age to increase and the MK- voltage to decrease.  
Fewer ones than zeros cause MK- to be at a higher  
voltage than MK+.  
The MAX3863 laser driver has two main components: a  
high-speed modulation driver and a biasing block with  
APC. The clock and data inputs to the modulation driver  
use CML logic levels. The optional clock signal synchro-  
nizes data transitions for minimum pattern-dependent jit-  
ter. Outputs to the laser diode consist of a switched  
modulation current and a steady bias current. The APC  
loop adjusts the laser diode bias current to maintain con-  
stant average optical power. Compensation of the modu-  
lation current can be programmed to keep a constant  
extinction ratio over time and temperature. The modula-  
tion output stage uses a programmable current source  
with a maximum current of 80mA. A high-speed differen-  
tial pair switches the source to the laser diode. The rise  
and fall times are typically 50ps.  
Pulse-Width Control  
A pulse-width adjustment range of 50% to 150%  
( 185ps) is available at 2.7Gbps. This feature compen-  
sates pulse-width distortion elsewhere in the system.  
Resistors at the PWC+ and PWC- pins program the  
pulse width. The sum of the resistors is 1kΩ. The pins  
can be left open for a 100% pulse width. A voltage also  
can control these pins. A differential voltage of 600mV  
(typ) gives 185ps of pulse-width distortion.  
Optional Input Data Retiming  
To eliminate pattern-dependent jitter in the input data, a  
synchronous differential clock signal should be con-  
nected to the CLK+ and CLK- inputs, and the RTEN  
control input should be connected low. The input data  
is retimed on the rising edge of CLK+. If RTEN is tied  
high or is left floating, the retiming function is disabled,  
and the input data is directly connected to the output  
stage. Leave CLK+ and CLK- open when retiming is  
disabled.  
Output Enable  
The MAX3863 incorporates an input to enable current  
to the laser diode. When EN is low, the modulation and  
bias outputs at the MOD pin are enabled. When EN is  
high or floating, the output is disabled. In the disabled  
condition, bias and modulation currents are off.  
Power-Supply Threshold  
To prevent data errors caused by low supply, the  
MAX3863 disables the laser diode current for supply  
voltage less than 2.7V. The power-supply threshold and  
_______________________________________________________________________________________  
7
2.7Gbps Laser Driver with Modulation  
Compensation  
the output-enable must be true to enable bias and  
modulation currents.  
voltage to monitor diode current, use an external 4kΩ  
resistor at the MDMON output. Resistors for BIASMON  
and MODMON are 100Ω. The minimum voltage at the  
BIASMON and MODMON must be 2.1V for compliance.  
APC Loop Enable  
The APC loop is enabled when an external capacitor is  
placed between the APCFILT1 and APCFILT2 pins.  
This capacitor sets the time constant of the APC loop.  
To open the APC loop, the APCFILT1 pin is shorted to  
ground. This shorts the feedback from the monitor  
diode and causes the bias current to rise to the maxi-  
mum value set by the BIASMAX pin.  
I
BIAS  
40  
V
= V  
×100Ω  
×100Ω  
BIASMON  
CC  
I
MAX863  
MOD  
45  
V
= V  
CC  
MODMON  
APC Filter  
The APC loop keeps the average optical power from the  
laser constant. An external filter capacitor is used to stabi-  
lize the APC loop. The typical capacitor value is 0.01µF.  
I
MD  
4
V
=
× 4kΩ  
MDMON  
Design Procedure  
APC Failure Monitor  
The MAX3863 provides an APC failure monitor  
(TTL/CMOS) to indicate an APC loop tracking failure.  
FAIL is set low when the APC loop cannot adjust the  
bias current to maintain the desired monitor current.  
When designing a laser transmitter, the optical output is  
usually expressed in terms of average power and  
extinction ratio. Table 1 shows relationships helpful in  
converting between the optical average power and the  
modulation current. These relationships are valid only if  
the mark density and duty cycle of the optical wave-  
form are 50%.  
Short-Circuit Protection  
The MAX3863 provides short-circuit protection for mod-  
ulation, bias, and monitor current sources. If BIASMAX,  
MODSET, or APCSET is shorted to ground, the bias  
and modulation output are turned off and FAIL is active.  
For a desired laser average optical power (P  
) and  
AVG  
optical extinction ratio (r ), the required modulation cur-  
e
rent can be calculated based on the laser slope effi-  
ciency (η) using the equations in Table 1.  
Current Monitors  
The MAX3863 features monitor outputs for bias current  
(BIASMON), modulation current (MODMON), and moni-  
tor diode current (MDMON). The monitors are realized  
by mirroring a fraction of the current and developing a  
voltage across an external resistor. For the specified  
Laser Current Compensation  
Requirements  
Determine static bias and modulation current require-  
ments from the laser threshold current and slope efficien-  
cy. To use the APC loop with modulation compensation,  
CLK+  
CLK-  
V
= 0.1V TO 0.8V  
= 0.1V TO 0.8V  
IS  
IS  
t
t
HD  
SU  
DATA-  
DATA+  
V
(DATA+) - (DATA-)  
V
ID  
= 0.2V TO 1.6V  
P-P P-P  
I
7mA TO 80mA  
MOD  
Figure 2. Required Input Signal, Setup/Hold-Time Definition and Output Polarity  
_______________________________________________________________________________________  
8
2.7Gbps Laser Driver with Modulation  
Compensation  
MAX863  
the current from the inductor flows to the bias input.  
Table 1. Optical Power Relations  
This reduces the current through the laser diode from  
PARAMETER  
Average Power  
SYMBOL  
RELATION  
the average of I  
by half of I  
. The resulting  
MOD  
BIAS  
P
P
= (P + P )/2  
peak-to-peak current through the laser diode is then  
. See the Typical Operating Circuit. The require-  
AVG  
AVG  
0
1
Extinction Ratio  
r
r = P /P  
e 1 0  
I
e
MOD  
ment for compliance in the AC-coupled circuit:  
Optical Power of a 1  
Optical Power of a Zero  
P
P
P = 2P  
r /(r + 1)  
1
0
1
AVG e e  
V —Diode bias point voltage (1.2V typ)  
D
P = 2P  
/(r + 1)  
e
0
AVG  
R —Diode bias point resistance (5Ω typ)  
Optical Amplitude  
Laser Slope Efficiency  
Modulation Current  
Threshold Current  
Bias Current  
P
P
= P - P  
P-P 1 0  
L
P-P  
L—Diode lead inductance (1nH typ)  
η
η = P /I  
P-P MOD  
I
I
= P /η  
R —Series matching resistor (20Ω typ)  
D
MOD  
MOD  
P-P  
I
TH  
P
I
at I I  
0 TH  
I
MOD  
2
I
I + I  
/2  
V
× (R + R ) 1.8V  
D L  
BIAS  
BIAS TH  
MOD  
CC  
Laser to Monitor  
Transfer  
ρ
I
/P  
MD AVG  
MON  
The time constant associated with the output pullup  
inductor and the AC-coupling capacitor, impacts the  
pattern-dependent jitter. For this second-order network  
use information about the effects of temperature and  
aging. The laser driver automatically adjusts the bias to  
maintain the constant average power. The new bias con-  
dition requires proper compensation of the modulation  
current. The designer must predict the slope efficiency of  
the laser after its bias threshold current has changed.  
The modulation and bias currents under a single operat-  
ing condition:  
L usually limits the low-frequency cutoff. The capacitor  
P
C is selected so:  
D
L
P
C
× (R +R ) >  
D L  
D
(R +R )  
D
L
Keep the peak voltage droop less than 3% of the peak-  
to-peak amplitude during the maximum CID period t.  
The required time constant:  
P
re 1  
re +1  
AVG  
η
I
= 2 ×  
×
MOD  
For AC-coupled diodes:  
=I  
t  
τ
2.8% = 1e  
I
MOD  
2
τ = 35 × t  
I
+
BIAS TH  
If τ = L /25Ω, and t = 100UI = 40ns, then L = 35µH.  
P
P
The required compensation factor is then:  
Place a good high-frequency inductor of 2µH on the  
transmission line to the laser. Then you can place a  
low-frequency inductor of 33µH at a convenient dis-  
tance from the driver output.  
I
I
I  
MOD1  
MOD2  
K =  
I  
BIAS2  
BIAS1  
Programming the Bias Current  
When the APC loop is enabled, the actual bias current is  
reduced from the maximum value to maintain constant  
current from the monitor diode. With closed-loop control,  
the bias current will be set by the transfer function of the  
monitor diode to laser diode current. For example, if the  
transfer function to the monitor diode is 10.0µA/mA, then  
Once the value of the compensation factor is known, the  
fixed portion of the modulation current is calculated from:  
I
= I  
K × I  
MOD BIAS  
MODS  
setting I  
for 500µA results in I  
equal to 50mA.  
BIAS  
MD  
Current Limits  
The bias current must be limited in case the APC loop  
becomes open. The bias current also needs a set point  
in case the APC control is not used. The BIASMAX pin  
sets the maximum bias current. The BIASMAX current is  
established by an internal current regulator, which main-  
tains the bandgap voltage of 1.2V across the external  
To allow larger modulation current, the laser is AC-  
coupled to the MAX3863. In this configuration, a con-  
stant current is supplied from the inductor L . When the  
P
MOD pin is conducting, half of I  
P
is supplied from  
and half is from the laser diode. When MOD is off,  
MOD  
L
_______________________________________________________________________________________  
9
2.7Gbps Laser Driver with Modulation  
Compensation  
V
CC  
V
CC  
RTEN  
25Ω  
V
CC  
MODN  
MOD  
1
0
I
C
D
MUX  
MOD  
R
D
DATA  
DATA  
D
D
Q
MAX863  
CLK  
CLK  
V
CC  
BIAS  
I
V
CC  
BIAS  
APCFILT1  
5Ω  
x200  
C
APC  
APCFILT2  
MD  
x5  
BIASMON  
x200  
I
CURRENT  
MONITOR  
MODMON  
MDMON  
I
MD  
500pF  
+
MODS  
V
V
bg  
V
bg  
bg  
I
MODC  
-
R
R
R
R
APCSET  
MODSET  
MODCOMP  
BIASMAX  
EN  
Figure 3. Functional Diagram  
programming resistor. See the I  
vs. R  
BIASMAX  
Programming the Modulation Current  
BIASMAX  
graph in the Typical Operating Characteristics, and  
Two current sources combine to make up the modula-  
tion current of the MAX3863 as seen in Figure 3. A con-  
stant modulation current programmed at the MODSET  
select the value of R  
that corresponds to the  
BIASMAX  
required current at +25°C.  
pin and a current, proportional to I  
, that varies  
BIAS  
1.2V  
under control by the APC loop. See the Laser Current  
Compensation Requirements section for the desired  
I
= 200 ×  
BIASMAX  
R
BIASMAX  
values for I  
and K. The portion of I  
set by  
MOD  
MODS  
MODSET is established by an internal current regulator,  
which maintains the bandgap voltage of 1.2V  
across the external programming resistor. See the I  
Programming the Monitor Diode Current  
Set Point  
The APCSET pin controls the set point for the monitor  
diode current. An internal current regulator establishes the  
APCSET current in the same manner as the BIASMAX pin.  
vs. R  
graph in the Typical Operating  
MODSET  
MOD  
Characteristics and select the value of R  
that  
MODSET  
corresponds to the required current at +25°C. The cur-  
rent proportional to I is set by an external resistor at  
See the I  
vs. R  
graph in the Typical Operating  
MD  
APCSET  
BIAS  
Characteristics, and select the value of R  
that cor-  
APCSET  
the MODCOMP pin. Open circuiting the MODCOMP  
pin can turn off the interaction between I and I  
responds to the required current at +25°C.  
.
MOD  
BIAS  
1.2V  
I
= 5 ×  
MD  
R
APCSET  
10 ______________________________________________________________________________________  
2.7Gbps Laser Driver with Modulation  
Compensation  
MAX863  
V
CC  
I
LASER  
POWER  
MOD1  
I
MOD2  
P1  
T1  
T2  
50Ω  
50Ω  
DATA+  
DATA-  
P
AVG  
P0  
LASER CURRENT  
I
I
BIAS2  
BIAS1  
GND  
Figure 4. Laser Power vs. Current for a Change in Temperature  
Figure 5. Equivalent Input Circuit  
I
I
= I  
+ K × I  
MOD MODS BIAS  
V
CC  
MOD MODN  
GND  
1.2V  
= 200 ×  
MODS  
R
MODSET  
5
K = 200 ×  
500+R  
MODCOMP  
Applications Information  
Layout Considerations  
To minimize loss and crosstalk, keep connections  
between the MAX3863 output and the laser diode as  
short as possible. Use good high-frequency layout  
techniques and multilayer boards with uninterrupted  
ground plane to minimize EMI and crosstalk. Circuit  
boards should be made using low-loss dielectrics. Use  
controlled-impedance lines for the clock and data  
inputs, as well as the module output.  
I
MOD  
GND  
Figure 6. Equivalent Output Circuit  
Exposed Pad Package  
The exposed pad on the 32-pin QFN provides a very  
low thermal resistive path for heat removal from the IC.  
The pad is also electrical ground on the MAX3863 and  
must be soldered to the circuit board ground for proper  
thermal and electrical performance. Refer to Application  
Note 862: HFAN-08.1: Thermal Considerations of QFN  
and Other Exposed-Paddle Packages for additional  
information.  
Laser Safety and IEC 825  
Using the MAX3863 laser driver alone does not ensure  
that a transmitter design is compliant with IEC825. The  
entire transmitter circuit and component selections  
must be considered. Determine the level of fault toler-  
ance required by each application and recognize that  
Maxim products are not designed or authorized for use  
as components in systems intended for surgical im-  
plant into the body, for applications intended to support  
or sustain life, or for any other application where the  
failure of a Maxim product could create a situation  
where personal injury or death may occur.  
______________________________________________________________________________________ 11  
2.7Gbps Laser Driver with Modulation  
Compensation  
Typical Operating Circuit  
V
CC  
V
CC  
R
R
R
BIASMON  
100Ω  
MODMON  
100Ω  
MDMON  
4kΩ  
L
P
L
P
25Ω  
MAX863  
50Ω  
50Ω  
DATA+  
DATA-  
DATA+  
DATA-  
25Ω  
25Ω  
MODN  
MOD  
0.1μF  
0.1μF  
V
CC  
MAX3892  
10Gbps  
V
CC  
MAX3863  
20Ω  
SERIALIZER  
50Ω  
50Ω  
CLK+  
CLK+  
CLK-  
BIAS  
MD  
CLK-  
1kΩ  
R
PWC  
C
APC  
0.01μF  
REPRESENTS A CONTROLLED-IMPEDANCE TRANSMISSION LINE  
Chip Information  
Package Information  
For the latest package outline information and land patterns, go  
TRANSISTOR COUNT: 1786  
PROCESS: Bipolar  
to www.maxim-ic.com/packages.  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
32 TQFN-EP  
T3255-3  
21-0140  
21-0091  
32 QFN-EP  
G3255-1  
12 ______________________________________________________________________________________  
2.7Gbps Laser Driver with Modulation  
Compensation  
MAX863  
Chip Topography  
V
BP34  
CC  
BP22 MDMON  
BP21 MD  
DATA+ BP35  
DATA- BP36  
V
V
BP37  
BP38  
CC  
CC  
BP20 GND  
BP19 V  
CC  
BP18 MODN  
BP17 MODN  
GND BP39  
81mil  
BP16 MOD  
BP15 MOD  
V
V
BP40  
BP41  
CC  
CC  
BP14 V  
CC  
CLK+ BP42  
CLK- BP43  
BP13 BIAS  
BP12 FAIL  
V
BP44  
CC  
81mil  
______________________________________________________________________________________ 13  
2.7Gbps Laser Driver with Modulation  
Compensation  
Pad Coordinates  
COORDINATES  
COORDINATES  
NAME  
PAD  
NAME  
PAD  
(μM)  
(μM)  
GND  
APCSET  
APCFILT1  
APCFILT2  
PWC+  
BP1  
BP2  
169, -122  
327, -122  
465, -122  
591, -122  
717, -122  
913, -122  
1109, -120  
1235, -120  
1361, -120  
1500, -120  
1660, -120  
1797, 50  
GND  
BP23  
BP24  
BP25  
BP26  
BP27  
BP28  
BP29  
BP30  
BP31  
BP32  
BP33  
BP34  
BP35  
BP36  
BP37  
BP38  
BP39  
BP40  
BP41  
BP42  
BP43  
BP44  
1675, 1630  
1515, 1630  
1374, 1630  
1248, 1630  
1077, 1630  
906, 1630  
780, 1630  
654, 1630  
528, 1630  
390, 1630  
205, 1630  
45, 1501  
45, 1375  
45, 1249  
45, 1123  
45, 997  
MODMON  
BIASMON  
BP3  
BP4  
V
CC  
MAX863  
BP5  
GND  
MODCOMP  
MODSET  
BIASMAX  
EN  
PWC-  
BP6  
GND  
BP7  
V
BP8  
CC  
MK+  
MK-  
BP9  
BP10  
BP11  
BP12  
BP13  
BP14  
BP15  
BP16  
BP17  
BP18  
BP19  
BP20  
BP21  
BP22  
RTEN  
GND  
FAIL  
BIAS  
GND  
V
CC  
1795, 225  
1795, 351  
1795, 477  
1795, 603  
1795, 729  
1795, 855  
1795, 981  
1795, 1107  
1797, 1328  
1797, 1454  
DATA+  
DATA-  
V
CC  
MOD  
MOD  
V
V
CC  
CC  
MODN  
MODN  
GND  
47, 776  
V
V
47, 551  
CC  
CC  
V
47, 425  
CC  
GND  
MD  
CLK+  
CLK-  
47, 299  
47, 173  
MDMON  
V
47, 47  
CC  
Coordinates are for the center of the pad.  
Coordinate 0, 0 is the lower left corner of the passivation opening for pad 1.  
14 ______________________________________________________________________________________  
2.7Gbps Laser Driver with Modulation  
Compensation  
MAX863  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1
1/02  
Initial release.  
13  
1
10/02  
Corrected bond pad 24 to MODMON in the Chip Topography.  
Added the PKG CODE column to the Ordering Information table.  
Updated the package outline drawing in the Package Information section.  
2
3
5/03  
15  
Added the TQFN package to the Ordering Information table and Absolute  
Maximum Ratings.  
1, 2  
Added the EP description to the Pin Description table.  
Changed the formulas in the Current Monitors section.  
Added the Exposed Pad Package section.  
6
8
1/06  
11  
Changed the R  
100, respectively, in the Typical Operating Circuit.  
and R  
values from 100and 4kto 4kand  
MDMON  
BIASMON  
12  
Removed the dice package from the Ordering Information table and Chip  
Information section.  
1, 12  
12  
4
11/08  
Removed the package outline drawings and replaced with the table.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2008 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX3863EVKIT

Evaluation Kit for the MAX3863
MAXIM

MAX3864

2.5Gbps, +3V to +5.5V, Wide Dynamic Range Transimpedance Preamplifier
MAXIM

MAX38640AELT+

Switching Regulator,
MAXIM

MAX38640AENT+

Switching Regulator,
MAXIM

MAX38640BENT+

Switching Regulator,
MAXIM

MAX38641AELT+

Switching Regulator,
MAXIM

MAX38641AENT+

Switching Regulator,
MAXIM

MAX38641BELT+

Switching Regulator,
MAXIM

MAX38641BENT+

Switching Regulator,
MAXIM

MAX38642AENT+

Switching Regulator,
MAXIM

MAX38642BELT+

Switching Regulator,
MAXIM

MAX3864E/D

2.5Gbps, +3V to +5.5V, Wide Dynamic Range Transimpedance Preamplifier
MAXIM