MAX3865 [MAXIM]

2.5Gbps Laser Driver with Automatic Modulation Control; 带有自动调制控制的2.5Gbps激光驱动器
MAX3865
型号: MAX3865
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2.5Gbps Laser Driver with Automatic Modulation Control
带有自动调制控制的2.5Gbps激光驱动器

驱动器
文件: 总16页 (文件大小:633K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2247; Rev 1; 4/02  
2.5Gbps Laser Driver with Automatic  
Modulation Control  
General Description  
Features  
The MAX3865 is designed for direct modulation of laser  
diodes at data rates up to 2.5Gbps. It incorporates two  
feedback loops, the automatic power-control (APC)  
loop and the automatic modulation-control (AMC) loop,  
to maintain constant average optical output and extinc-  
tion ratio over temperature and laser lifetime. External  
resistors or current output DACs may set the laser out-  
put levels. The driver can deliver up to100mA of laser  
bias current and up to 60mA laser modulation current  
with a typical (20% to 80%) edge speed of 84ps.  
Single +3.3V or +5V Power Supply  
68mA Supply Current  
Up to 2.5Gbps (NRZ) Operation  
Feedback Control for Constant Average Power  
Feedback Control for Constant Extinction Ratio  
Programmable Bias Current Up to 100mA  
Programmable Modulation Current Up to 60mA  
84ps Rise/Fall Time  
The MAX3865 accepts differential clock and data input  
signals with on-chip 50termination resistors. The inputs  
can be configured for CML or other high-speed logic. An  
input data-retiming latch can be enabled to reject input  
pattern-dependent jitter when a clock signal is available.  
The MAX3865 provides laser bias current and modulation  
current monitors, as well as a failure detector, to indicate  
the laser operating status. These features are all imple-  
mented on an 81mil 103mil die; the MAX3865 is also  
available as a 32-pin QFN package.  
Selectable Data Retiming Latch  
Bias and Modulation Current Monitors  
Failure Detector  
ESD Protection  
Ordering Information  
PART  
MAX3865EGJ  
MAX3865E/D  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
32 QFN  
Applications  
SONET/SDH Transmission Systems  
Dice*  
Add/Drop Multiplexers  
*Dice are designed to operate from -40°C to +85°C , but are tested  
and guaranteed at T = +25°C only. Contact factory for availability.  
Digital Cross-Connects  
A
Section Regenerators  
Pin Configuration appears at end of data sheet.  
2.5Gbps Optical Transmitters  
Typical Applications Circuit  
+3.3V  
+3.3V  
LED  
+3.3V  
200  
200Ω  
20Ω  
LASER  
L
P
L
P
0.056µF  
MODN  
20Ω  
20Ω  
50Ω  
50Ω  
DATA-  
DATA+  
DATA-  
DATA+  
15Ω  
0.056µF  
MODQ  
V
V
DR  
+3.3V  
MAX3865  
MAX3892  
2.5Gbps SERIALIZER  
CLK+  
BIAS  
BIAS_X  
CR  
50Ω  
50Ω  
CLK+  
MD  
MD_X  
CLK-  
CLK-  
REPRESENTS A CONTROLLED-IMPEDANCE  
TRANSMISSION LINE  
R
R
R
R
AMCSET  
MODMAX  
BIASMAX  
APCSET  
Covered by U.S. Patent numbers 5,883,910, 5,850,409, and other patent pending.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2.5Gbps Laser Driver with Automatic  
Modulation Control  
ABSOLUTE MAXIMUM RATINGS  
Voltage at Any Pin...............................................................+7.0V  
Current into BIAS Pin ......................................-20mA to +150mA  
Supply Voltage (V ) ............................................-0.5V to +7.0V  
Current into MODQ and MODN Pins ..............-20mA to +100mA  
Current into MD Pin...........................................-10mA to +10mA  
Operating Junction Temperature .....................-55°C to +150°C  
Storage Temperature Range.............................-55°C to +150°C  
CC  
Voltage at V , V , DATA+, DATA-,  
CR DR  
CLOCK+, and CLOCK- Pins ..................-0.5V to (V  
Voltage at DATA+ and  
+ 0.5V)  
CC  
DATA- Pins ..................................(V - 1.2V) to (V + 1.2V)  
Continuous Power Dissipation (T = +85°C)  
DR  
DR  
A
Voltage at CLK+ and CLK- Pins......(V - 1.2V) to (V + 1.2V)  
32-Pin QFN (derate 21.2mW/°C above +85°C) ................1.3W  
Lead Temperature (soldering, 10s) .................................+300°C  
Processing Temperature (die) .........................................+400°C  
CR  
CR  
CC  
Voltage at MODQ and MODN Pins ................0V to (V  
+ 1.5V)  
Voltage at Any Other Pins (RTEN, EN0, EN1, FAIL,  
MODMAX, BIASMAX, AMCSET, APCSET, MD_X, BIAS,  
BIAS_X, BIASMON, MODMON) ............-0.5V to (V + 0.5V)  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +3.14V to +3.6V or +4.5V to +5.5V, T = -40°C to +85°C. Typical values are at V  
= +3.3V, I  
= 50mA, I  
MOD  
= 30mA,  
UNITS  
mA  
CC  
A
CC  
BIAS  
T
= +25°C, unless otherwise noted.) (Notes 1, 2, 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= +3.14V to +3.6V (Note 4)  
= +4.5V to +5.5V,  
MIN  
TYP  
MAX  
V
V
68  
85  
CC  
CC  
Power-Supply Current  
I
CC  
69  
90  
typical current at V  
= +5.0V (Note 4)  
CC  
Differential Input Voltage  
V
Data and clock inputs (Figure 2)  
0.2  
1.3  
40  
1.6  
CC  
0.4V  
Vp-p  
V
ID  
V
+
Instantaneous Input Voltage  
Single-Ended Input Resistance  
Data and clock inputs (Figure 2) (Note 5)  
Input to V , V  
50  
20  
17  
60  
DR CR  
f
2.7GHz  
Input Return Loss, for Data+,  
Data-, Clock+, and Clock-  
RL  
dB  
IN  
2.7GHz < f < 4GHz  
Bias-Current Setting Range  
Bias Off Current  
1
100  
0.1  
15  
mA  
mA  
%
EN0, EN1 = low  
APC off  
I
I
= 100mA  
= 1mA  
BIAS  
BIAS  
Bias-Current Setting Accuracy  
0.1  
48  
mA  
Compliance Voltage for BIAS  
and BIAS_X  
V
+
CC  
(Note 5)  
1
5
V
0.4  
I
to I  
Ratio  
BIASMON  
mA/mA  
mA  
BIAS  
Modulation-Current Setting  
Range  
I
60  
MOD  
Modulation Off Current  
EN0, EN1 = low  
AMC off  
0.1  
15  
mA  
%
I
I
= 60mA  
= 5mA  
MOD  
MOD  
Modulation-Current Setting  
Accuracy  
0.25  
mA  
V
V
+
CC  
1.2  
5.5  
+3.14V  
+4.5V  
V
+3.6V  
+5.5V  
1.8  
1.8  
Compliance Voltage for MODQ  
and MODN  
CC  
(Note 5)  
(Note 5)  
V
V
CC  
I
to I  
Ratio  
MODMON  
32  
mA/mA  
MOD  
Compliance Voltage for  
BIASMON and MODMON  
+
CC  
0.4  
1.8  
V
V
Voltage at MD Pin  
V
1.0  
MD  
2
_______________________________________________________________________________________  
2.5Gbps Laser Driver with Automatic  
Modulation Control  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.14V to +3.6V or +4.5V to +5.5V, T = -40°C to +85°C. Typical values are at V  
= +3.3V, I  
= 50mA, I = 30mA,  
MOD  
CC  
A
CC  
BIAS  
T
A
= +25°C, unless otherwise noted.) (Notes 1, 2, 3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
%
I
I
= 1mA  
= 36µA  
15  
10  
15  
10  
MD  
MD  
Bias-Setting Accuracy at  
MD Pin  
µA  
%
I
I
= 1mA  
= 36µA  
MD  
Modulation-Setting  
Accuracy at MD Pin  
(Note 6)  
µA  
V
MD  
EN0, EN1, and RTEN Input High  
EN0, EN1, and RTEN Input Low  
FAIL Output High  
2.0  
2.4  
0.8  
V
Source 50µA  
Sink 100µA  
V
FAIL Output Low  
0.4  
5.0  
V
FAIL Current  
Low state, V forced to V  
OL  
mA  
ps  
ps  
%
CC  
Setup/Hold Time  
t
, t  
SU HD  
(Figure 2) (Note 5)  
100  
80  
Output Edge Speed  
Output Overshoot  
Enable/Startup  
t , t  
R
Load = 20 , 20% to 80% (Notes 5, 7)  
(Notes 5, 7)  
84  
130  
F
9
APC and AMC off  
(Notes 2, 5)  
150  
ns  
Maximum CID  
bit  
psp-p  
Deterministic Jitter  
Random Jitter  
(Notes 2, 5)  
22  
1.6  
1
50  
(Notes 5, 7)  
ps  
RMS  
AMC Pilot Tone Frequency  
f
MHz  
AMC  
Note 1: AC characterization performed using the circuit in Figure 1.  
Note 2: Measured using a 2.5Gbps 213 - 1 PRBS with 80 0s and 80 1s input data pattern.  
Note 3: Specifications at -40°C are guaranteed by design and characterization.  
Note 4: V  
current excludes the current into MODQ, MODN, BIAS, BIAS_X, MODMON, and BIASMON pins.  
CC  
Note 5: Guaranteed by design and characterization.  
Note 6: Measured with low-frequency data. Instantaneous current into MD pin range is 36µA to 1000µA.  
Note 7: Measured using a 2.5Gbps repeating 0000 0000 1111 1111 pattern.  
_______________________________________________________________________________________  
3
2.5Gbps Laser Driver with Automatic  
Modulation Control  
V
CC  
V
CC  
RTEN  
DATA-  
V
CC  
33  
33Ω  
50Ω  
50Ω  
OSCILLOSCOPE  
DATA-  
0.1µF  
MODN  
MODQ  
DATA+  
PATTERN GENERATOR  
CLK+-  
DATA+  
50Ω  
V
V
DR  
CC  
0.1µF  
50Ω  
V
CR  
50Ω  
50Ω  
CLK+  
CLK-  
MAX3865  
V
BIAS  
CC  
CLK-  
BIAS_X  
V
CC  
GND EN1 EN0  
Figure 1. Test Circuit  
V
+ 0.4V  
CC  
CLK+  
CLK-  
0.1V–0.8V  
1.3V  
V
CC  
+ 0.4V  
t
t
HD  
SU  
DATA+  
DATA-  
0.1V–0.8V  
1.3V  
(DATA+) - (DATA-)  
V
= 0.2Vp-p–1.6Vp-p  
ID  
I
MODQ  
5mA–60mA  
Figure 2. Required Input Signal, Setup/Hold-Time Definition, and Output Polarity  
_______________________________________________________________________________________  
4
2.5Gbps Laser Driver with Automatic  
Modulation Control  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
OPTICAL EYE DIAGRAM  
(EXTINCTION RATIO = 8.25dB,  
-1 PRBS AT 2.5Gbps, 1.87GHz FILTER)  
ELECTRICAL EYE DIAGRAM  
ELECTRICAL EYE DIAGRAM  
13  
(I  
= 60mA)  
(I  
= 30mA)  
2
MODQ  
MODQ  
13  
13  
PATTERN 2 - 1 PRBS  
DATA RATE = 2.5Gbps  
PATTERN 2 - 1 PRBS  
DATA RATE = 2.5Gbps  
58ps/div  
58ps/div  
58ps/div  
SUPPLY CURRENT (I ) vs. TEMPERATURE  
CC  
(EXCLUDES BIAS AND MODULATION CURRENTS)  
DETERMINISTIC JITTER  
TYPICAL DISTRIBUTION OF RISE TIME  
(WORST-CASE CONDITIONS)  
vs. TEMPERATURE (I  
= 60mA)  
MODQ  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
ELECTRICAL  
MEASUREMENT  
75  
I
= 60mA  
MODQ  
V
= +3.14V  
CC  
V
= +5.0V  
T
= +85°C  
CC  
A
70  
65  
60  
55  
50  
V
= +3.3V  
CC  
0
-40  
-15  
10  
35  
60  
85  
-40  
-20  
0
20  
40  
60  
80  
100 102 104 106 108 110 112 114 116 118 120  
RISE TIME (ps)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TYPICAL DISTRIBUTION OF FALL TIME  
(WORST-CASE CONDITIONS)  
DIFFERENTIAL |S11| vs. FREQUENCY  
-15  
30  
25  
20  
15  
10  
5
ELECTRICAL  
MEASUREMENT  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
I
= 60mA  
MODQ  
V
= +3.14V  
CC  
T
= +85°C  
A
0
100 102 104 106 108 110 112 114 116 118 120  
FALL TIME (ps)  
0
500 1000 1500 2000 2500 3000 3500 4000  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
5
2.5Gbps Laser Driver with Automatic  
Modulation Control  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 8, 19,  
22, 28  
V
Positive Supply Voltage  
CC  
2
3
4
5
6
7
DATA-  
Complementary Data Input, with On-Chip Termination  
Data Input, with On-Chip Termination  
DATA+  
V
V
Termination Reference Voltage for Data Inputs  
DR  
CR  
Termination Reference Voltage for Clock Inputs  
CLK+  
CLK-  
Clock Input for Data Retiming, with On-Chip Termination  
Complementary Clock Input for Data Retiming, with On-Chip Termination  
9, 16, 23,  
24, 25  
GND  
No Internal Connection. Tie to ground.  
10  
11  
12  
13  
14  
15  
17  
18  
20  
21  
26  
RTEN  
EN0  
Data Retiming Enable Input, TTL Compatible, Active-High  
Operating Mode Input, TTL Compatible  
EN1  
Operating Mode Input, TTL Compatible  
FAIL  
Fault Warning, TTL Compatible. Low for fault condition.  
BIASMON  
MODMON  
BIAS_X  
BIAS  
Bias-Current Monitor. Open-collector type, tie to V if not used.  
CC  
Modulation-Current Monitor. Open-collector type, tie to V if not used.  
CC  
Bias Shunt. Always tie to the BIAS pin.  
Laser Bias-Current Output. Connect to the laser via an inductor.  
Modulation-Current Output to Dummy Load  
Modulation-Current Output to Laser  
MODN  
MODQ  
MD  
Feedback Input from Monitor Diode  
Monitor Diode Shunt. Connect to GND when laser diode to monitor current gain 0.005. Connect to  
the MD pin for gain 0.02. For 0.005 < gain < 0.02 connect to either GND or the MD pin.  
27  
MD_X  
29  
30  
AMCSET  
APCSET  
Monitor Diode Modulation-Current (Peak-to-Peak) Set Point  
Monitor Diode Bias-Current (Average) Set Point  
Connect an external resistor to ground to program I  
in the MANUAL and APC modes. The  
MOD  
resistor sets the maximum I  
but cannot add to it.  
in AMC mode. The AMC loop may reduce I  
from its maximum  
31  
MODMAX  
BIASMAX  
MOD  
MOD  
Connect an external resistor to ground to program I  
in the MANUAL mode. The resistor sets the  
BIAS  
32  
EP  
maximum I  
in the APC and AMC modes. The APC loop may reduce I  
from its maximum but  
BIAS  
BIAS  
cannot add to it.  
Exposed  
Paddle  
The exposed paddle and corner pins must be soldered to ground.  
6
_______________________________________________________________________________________  
2.5Gbps Laser Driver with Automatic  
Modulation Control  
Table 1. Mode Selection  
EN0  
EN1  
OPERATING MODE  
Shutdown  
Manual  
DESCRIPTION  
Bias and modulation currents off  
0
0
1
1
0
1
0
1
BIASMAX programs laser bias, MODMAX programs modulation  
APCSET programs laser bias, MODMAX programs modulation  
AMCSET programs modulation current and APCSET programs bias  
APC  
AMC  
Operating Mode  
The MAX3865 can be set in four operating modes,  
depending on applications requirements. Mode selec-  
tion is by two TTL-compatible inputs (see Table 1).  
Detailed Description  
The MAX3865 laser driver consists of two main parts: a  
high-speed modulation driver and biasing block as  
shown in Figure 4. Outputs to the laser diode are a  
switched modulation current and a steady bias current.  
Two servo loops may be enabled to control bias and  
modulation currents for constant optical power and  
extinction ratio.  
APC Loop  
In APC mode, a servo loop maintains the average  
current from the monitor diode at a level set by the  
APCSET input. Laser bias current is varied in this mode  
to maintain the monitor diode current. The BIASMAX  
input must be set to a value larger than the maximum  
expected bias current. In this mode, BIASMAX limits the  
maximum bias current to the laser if the control loop  
The MAX3865 requires a laser with a built-in monitor  
diode to provide feedback about the optical output.  
The average laser power, as sensed by the monitor  
diode, is controlled by the APC servo loop. Peak-to-  
peak modulation current is controlled by the AMC servo  
loop. The modulation output stage uses a programma-  
ble current source with a maximum current of 60mA. A  
high-speed differential pair switches this source to the  
laser diode. The clock and data inputs to the modula-  
tion driver may use CML, PECL, and other logic levels.  
The optional clock signal can be used to synchronize  
data transitions for minimum pattern-dependent jitter.  
fails. The FAIL pin will go low if average I  
I  
.
MD  
APCSET  
Mark-Density Compensation  
Average power control assumes 50% mark density for  
times greater than about 100ns. For long patterns or sit-  
uations where 50% mark density does not apply, the  
MAX3865 provides mark-density compensation. The  
APCSET reference is increased by an amount propor-  
tional to the mark density multiplied by the modulation  
amplitude. The AMCSET input is used as an estimate of  
the peak-to-peak modulation current when the mark  
density is not 50%. Mark-density compensation is  
active in both APC and AMC control modes.  
Clock/Data Input Logic Levels  
The MAX3865 is directly compatible with V -refer-  
CC  
enced CML. Other logic interfaces are possible. For  
V
V
-referenced CML or AC-coupled logic, tie V  
and  
CC  
CR  
float V  
DR  
to V . For other DC-coupled differential signals,  
CC  
and V  
AMC Loop  
In AMC mode, a servo loop maintains the peak-to-peak  
current from the monitor diode at a level set by the  
AMCSET input. Laser modulation current is varied in  
this mode to maintain the monitor diode current. The  
MODMAX input must be set to a value larger than the  
maximum expected modulation current. In this mode,  
MODMAX limits the maximum modulation current to the  
laser if the control loop fails. The FAIL pin will go low if  
(Figure 5). To prevent excess power  
CR  
dissipation in the input matching resistors, keep the  
DR  
instantaneous input voltage within 1.2V of V  
as specified in the electrical characteristics.  
or V  
CR  
DR  
Optional Input Data Retiming  
To eliminate pattern-dependent jitter in the input data, a  
synchronous differential clock signal should be con-  
nected to the CLK+ and CLK- inputs, and the RTEN  
control input should be tied high. Input data retiming  
occurs on the rising edge of CLK+. If RTEN is tied low,  
the retiming function is disabled and the input data is  
directly connected to the output stage. When no clock  
peak-to-peak I  
when in the AMC mode. In AMC mode, mark-density  
compensation is automatic.  
I  
. The APC loop is active  
AMCSET  
MD  
is available, tie CLK+ to V , ground CLK- through a  
CC  
1.5kresistor, and leave V open.  
CR  
_______________________________________________________________________________________  
7
2.5Gbps Laser Driver with Automatic  
Modulation Control  
Warning Outputs  
Table 2. Optical Power Relations  
A TTL-compatible, active-low warning flag, FAIL, is set  
PARAMETER  
Average Power  
Extinction Ratio  
SYMBOL  
RELATION  
= (P + P )/2  
when:  
P
P
r
AVG  
AVG  
0
1
One or more of the programmable currents is set at  
greater than 150% of the rated maximum for the  
chip. A shorted programming resistor would cause  
this warning. In this case, the bias and modulation  
outputs are shut down to protect the laser.  
r
= P / P  
1 0  
e
e
Optical Power of a  
1”  
P
P
P = 2P  
r /( r + 1)  
e e  
1
0
1
AVG  
Optical Power of a  
0”  
P = 2P  
/( r + 1)  
e
0
AVG  
Average I  
I  
in the APC or AMC mode. This  
could be caused by too low a setting for maximum  
or by a laser that has exceeded its useful life.  
MD  
APCSET  
Optical Amplitude  
Pp-p  
Pp-p = P - P  
1
0
I
BIAS  
Laser Slope  
Efficiency  
Peak-to-peak I  
I  
in the AMC mode. This  
η
η = Pp-p/I  
MOD  
MD  
AMCSET  
could be caused by too low a setting for I  
or  
MODMAX  
Laser to Monitor  
Diode Transfer  
by a laser which has exceeded its useful life.  
ρ
ρ
= I / P  
MD AVG  
MON  
MON  
The FAIL flag also is set for a few microseconds follow-  
ing power-up, until the servo loops settle. The BIASMON  
and MODMON pins can be used to monitor the laser  
current and predict the end of the useful laser life before  
a failure occurs.  
Note: Assuming a 50% average input duty cycle and mark density.  
modulation current. These relationships are valid if the  
mark density and duty cycle of the optical waveform  
are 50%.  
Design Procedure  
For a desired laser average optical power, P  
, and  
AVG  
optical extinction ratio, r , the required modulation cur-  
When designing a laser transmitter, the optical output is  
usually expressed in terms of average power and  
extinction ratio. Table 2 gives relationships that are  
helpful in converting between the optical power and the  
e
rent can be calculated based on the laser slope effi-  
ciency, η, using the equations in Table 2.  
+5V  
+5V  
20Ω  
MODN  
MODQ  
20Ω  
20Ω  
DATA-  
I
I
MODQ  
15Ω  
DATA+  
BIAS  
MAX3865  
BIAS  
BIAS_X  
CLK+  
CLK-  
I
MD  
MD  
R
R
R
R
AMCSET  
MODMAX  
BIASMAX  
APCSET  
Figure 3. DC-Coupled Laser Circuit  
_______________________________________________________________________________________  
8
2.5Gbps Laser Driver with Automatic  
Modulation Control  
formed by the LC circuit must be low enough to limit  
the droop.  
Laser Current Requirements  
Bias and modulation current requirements can be  
determined from the laser threshold current and slope  
efficiency. The modulation and bias currents under a  
single operating condition are:  
Number_CID  
Droop =  
Data_Rate× L ×C  
P
P
r 1  
If droop = 6.7%, number_CID = 100 and data_rate =  
AVG  
η
e
I
= 2×  
×
MOD  
2.5Gbps, then possible values for L and C may be  
P
r +1  
e
L
= 6µH and C = 0.056µF. Both L and C must be  
P
increased in value to reduce droop without ringing.  
For DC-coupled laser diodes:  
> I  
I
BIAS  
TH  
Programming the Maximum Bias Current  
where I is the laser threshold current.  
TH  
In AMC (or APC) mode, the bias current needs a limit if  
the loop becomes open. R  
sets the maximum  
BIASMAX  
For AC-coupled laser diodes:  
allowed bias current. The bias current is proportional to  
the current through R . An internal current regu-  
I
MOD  
BIASMAX  
I
>I  
+
BIAS TH  
2
lator maintains the band-gap voltage of 1.2V across the  
programming resistors. Select the maximum I  
gramming resistor as follows:  
pro-  
BIAS  
Given the desired parameters for operation of the laser  
diode, the programming of the MAX3865 is explained  
in the following text.  
1.2V  
I
= 480×  
BIASMAX  
Current Limits  
To keep the modulation current in compliance with the  
programmed value, the following constraint on the total  
modulation current must be made:  
R
+2kΩ  
BIASMAX  
Alternatively, a current DAC forcing I  
from the  
DAC  
BIASMAX pin may set the current maximum:  
DC-Coupled Laser Diodes:  
I
= 480 I  
BIASMAX  
DAC  
V
- V  
- I  
(R + R ) - I R 1.8V  
BIAS L  
CC  
DIODE MOD  
D
L
When the AMC or APC loop is enabled, the actual bias  
current is reduced below the maximum value to main-  
tain a constant average current from the monitor diode.  
With closed-loop control, the bias current will be deter-  
mined by the transfer function of the monitor diode to  
laser-diode current. For example, if the transfer function  
For V  
Laser diode bias point voltage  
DIODE  
(1.2V typ)  
RLLaser diode bias-point resistance (5typ)  
RDSeries matching resistor (15typ)  
AC-Coupled Laser Diodes:  
to the monitor diode is 10.0µA/mA, then setting I  
for  
MD  
500µA will result in I  
equal to 50mA.  
BIAS  
To allow larger modulation current, the laser can be  
AC-coupled to the MAX3865 as shown in the Typical  
Application Circuit. In this configuration, a constant cur-  
rent is supplied from the inductor L . The requirement  
P
for compliance in the AC-coupled circuit is as follows:  
In manual mode, the bias current I  
is I  
BIASMAX  
as  
BIAS  
set by R  
.
BIASMAX  
Programming the Average Monitor  
Diode-Current Set Point  
The APCSET pin controls the set point for the average  
monitor diode current when in AMC or APC mode. The  
APCSET current is externally established in the same  
manner as the BIASMAX pin. The average monitor  
I
MOD  
V
× R +R 1.8V  
D L  
(
)
CC  
2
The AC-coupling capacitor and bias inductor form a  
second-order high-pass circuit. Pattern-dependent jitter  
results from the low-frequency cutoff of this high-pass  
circuit. To prevent ringing:  
diode current I  
as follows:  
can be programmed with a resistor  
MD  
1.2V  
+2kΩ  
APCSET  
average_I  
= 5×  
L
P
C
MD  
R
+R 2×  
(
)
R
D
L
Alternatively, a current DAC at the APCSET pin can set  
the monitor diode current by:  
For deviation from 50% duty cycle or for runs of con-  
secutive identical digits (CID), the low-frequency corner  
average I  
= 5 I  
DAC  
MD  
_______________________________________________________________________________________  
9
2.5Gbps Laser Driver with Automatic  
Modulation Control  
Mark-Density Compensation  
Table 3. Connection of the MD_X Pin  
in APC Mode  
When mark density is expected to deviate from 50% for  
periods exceeding 5% of the APC time constant, the  
AMCSET pin should be programmed to compensate  
the APC set point. The time constant is determined by  
the laser to monitor diode gain.  
LASER-TO-MONITOR  
DIODE-CURRENT GAIN  
MD_X SHUNT  
CONNECTION  
<0.005  
0.005 to 0.02  
>0.02  
GND or Open  
(Open or GND) or MD  
MD  
1.5ns  
τ
=
APC  
Programming the Peak-to-Peak Monitor  
Diode-Current Set Point  
G
MD  
The AMCSET pin controls the set point for the peak-to-  
peak monitor diode current in AMC mode. The peak-to-  
peak value of the monitor diode current can be  
programmed with a resistor as follows:  
I  
I  
MONITOR  
G
=
MD  
LASER  
(For example, τ  
Set the estimated peak-to-peak monitor diode current  
by the following equation:  
= 150ns for G  
= 0.01mA/mA.)  
APC  
MD  
1.2V  
I
= 5×  
MD(pp)  
R
+2kΩ  
AMCSET  
Alternatively a current DAC at the AMCSET pin can set the  
monitor diode current by:  
1.2V  
Estimated I  
= 5×  
MD(pp)  
R
+2kΩ  
AMCSET  
I
= 5 I  
DAC  
MD(p-p)  
Alternatively, a current DAC at the AMCSET pin can set  
the monitor diode current by:  
Laser Gain Compensation  
The MAX3865 may be used in closed-loop operation  
with a wide variety of laser-to-monitor diode gains.  
Table 3 shows the connection of the MD_X pin for dif-  
ferent current-gain ranges.  
Estimated I  
= 5 I  
DAC  
MD(p-p)  
Programming the Maximum  
Modulation Current  
In AMC mode, the modulation current needs a limit if  
Current Monitor Outputs  
The MAX3865 provides bias and modulation current  
monitors. The BIASMON output sinks a current propor-  
tional to the bias current:  
the loop becomes open. R  
sets the maximum  
MODMAX  
allowed modulation current. The modulation current is  
proportional to the current through R  
. Select  
MODMAX  
the maximum I  
programming resistor as follows:  
MOD  
I
BIAS  
48  
I
=
BIASMON  
1.2V  
I
= 320×  
MODMAX  
R
+2kΩ  
MODMAX  
The MODMON pin sinks a current proportional to the  
laser modulation current:  
Alternatively, a current DAC forcing I  
from the  
DAC  
MODMAX pin may set the current maximum  
I
MOD  
32  
I
= 320 I  
I
=
MODMAX  
DAC  
MODMON  
When the AMC loop is enabled, the actual modulation  
current is reduced from the maximum value to maintain  
constant peak-to-peak current from the monitor diode.  
With closed-loop control, the modulation current will be  
determined by the transfer function of the monitor diode  
to laser diode current. For example, if the transfer func-  
The BIASMON and MODMON pins should not be  
allowed to drop below 1.8V. They should be tied to V  
when not in use.  
CC  
tion to the monitor diode is 10.0µA/mA, then setting I  
MD  
for 500µA will result in I  
equal to 50mA.  
MOD  
In manual mode, the modulation current I  
MODMAX  
is set by  
MOD  
R
.
10 ______________________________________________________________________________________  
2.5Gbps Laser Driver with Automatic  
Modulation Control  
V
CC  
RTEN  
20Ω  
MODN  
MODQ  
o
1
I
MODO  
MUX  
D
DATA  
CLK  
Q
C
R
D
D
I
BIAS  
BIAS  
MD  
MONITOR DIODE  
FEEDBACK  
I
MD  
CONTROL LOGIC  
SHUTDOWN  
-
MODULATION  
CONTROL  
+
-
EN0  
EN1  
LOOP  
MONITOR  
BIAS  
CONTROL  
+
OVERCURRENT  
x5  
x5  
x320  
x480  
FAIL  
MAX3865  
V
V
V
V
BG  
BG  
BG  
BG  
R
R
R
R
BIASMAX  
AMCSET  
APCSET  
MODMAX  
Figure 4. Functional Diagram  
V
CC  
V
MODQ  
MODN  
GND  
CC  
V
DR  
50  
50Ω  
DATA+  
DATA-  
I
MOD  
DATA AND CLOCK INPUT CIRCUITS ARE EQUIVALENT  
GND  
GND  
Figure 6. Equivalent Modulation Output Circuit  
Figure 5. Equivalent Input Circuit  
______________________________________________________________________________________ 11  
2.5Gbps Laser Driver with Automatic  
Modulation Control  
recognizing that Maxim products are not designed or  
Applications Information  
authorized for use as components in systems intended  
for surgical implant into the body, for applications  
intended to support or sustain life, or for any other appli-  
cation where the failure of a Maxim product could create  
a situation where personal injury or death may occur.  
Layout Considerations  
To minimize loss and crosstalk, keep the connections  
between the MAX3865 output and the laser diode as  
short as possible. Use good high-frequency layout  
techniques and multilayer boards with uninterrupted  
ground plane to minimize EMI and crosstalk. Circuit  
boards should be made using low-loss dielectrics. Use  
controlled-impedance lines for the clock and data  
inputs as well as the modulation output.  
Chip Information  
TRANSISTOR COUNT: 1690  
Substrate Connected To GND  
PROCESS: Bipolar  
References  
For further information, refer to the application notes for  
fiber optic circuits, HFAN-02, on the Maxim web page.  
DIE SIZE: 81mil 103mil  
Laser Safety and IEC 825  
Using the MAX3865 laser driver alone does not ensure  
that a transmitter design is compliant with IEC 825. The  
entire transmitter circuit and component selections must  
be considered. Each customer must determine the  
level of fault tolerance required by their application,  
Pin Configuration  
TOP VIEW  
V
1
2
3
4
5
6
7
8
24 GND  
23 GND  
CC  
DATA-  
DATA+  
22  
V
CC  
V
V
21 MODQ  
20 MODN  
DR  
MAX3865  
CR  
CLK+  
CLK-  
19  
V
CC  
18 BIAS  
V
17 BIAS_X  
CC  
THE EXPOSED PADDLE MUST BE SOLDERED TO  
SUPPLY GROUND ON THE CIRCUIT BOARD  
12 ______________________________________________________________________________________  
2.5Gbps Laser Driver with Automatic  
Modulation Control  
Chip Topography  
BP21  
N.C.  
N.C.  
V
BP8  
BP7  
BP6  
BP5  
CC  
BP22  
BP23  
DATA-  
DATA+  
V
CC  
BP24  
MODQ  
MODN  
V
DR  
CR  
81mil  
2.06mm  
BP25  
BP26  
V
BP4  
BP3  
V
CC  
CLK+  
CLK-  
BP27  
BP28  
BIAS  
BP2  
BP1  
BIAS_X  
V
CC  
103mil  
2.62mm  
Note: N.C. means no external connection permitted. Leave these pads unconnected.  
______________________________________________________________________________________ 13  
2.5Gbps Laser Driver with Automatic  
Modulation Control  
Pad Coordinates  
NAME  
PAD  
BP1  
COORDINATES (µm)  
46, 46  
NAME  
N.C.  
N.C.  
PAD  
BP21  
COORDINATES (µm)  
2382, 1423  
V
CC  
CLK-  
BP2  
46, 241  
BP22  
BP23  
BP24  
BP25  
BP26  
BP27  
BP28  
BP29  
BP30  
BP31  
BP32  
BP33  
BP34  
BP35  
BP36  
BP37  
BP38  
BP39  
BP40  
2382, 1229  
2382, 1034  
2382, 840  
2382, 646  
2382, 451  
2382, 257  
2382, 62  
CLK+  
BP3  
46, 435  
V
CC  
V
V
BP4  
46, 629  
MODQ  
MODN  
CR  
DR  
BP5  
46, 824  
DATA+  
DATA-  
BP6  
46, 1018  
V
CC  
BP7  
46, 1213  
BIAS  
V
BP8  
46, 1407  
BIAS_X  
GND  
CC  
N.C.  
BP9  
151, 1607  
346, 1607  
540, 1607  
735, 1607  
929, 1607  
1123, 1607  
1318, 1609  
1512, 1609  
1707, 1607  
1901, 1607  
2095, 1607  
2290, 1607  
2287, -153  
2093, -153  
1898, -153  
1704, -153  
1510, -153  
1315, -153  
1121, -153  
926, -153  
732, -153  
538, -153  
343, -153  
149, -153  
GND  
BP10  
BP11  
BP12  
BP13  
BP14  
BP15  
BP16  
BP17  
BP18  
BP19  
BP20  
GND  
BIASMAX  
MODMAX  
APCSET  
AMCSET  
MODMON  
BIASMON  
FAIL  
GND  
V
GND  
CC  
MD_X  
MD  
EN1  
EN0  
GND  
N.C.  
N.C.  
RTEN  
GND  
GND  
Coordinates are for the center of the pad.  
Coordinate 0, 0 is the lower left corner of the passivation opening for pad 1.  
14 ______________________________________________________________________________________  
2.5Gbps Laser Driver with Automatic  
Modulation Control  
Package Information  
______________________________________________________________________________________ 15  
2.5Gbps Laser Driver with Automatic  
Modulation Control  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX38650

Tiny 1.8V to 5.5V Input, 390nA IQ, 100mA nanoPower Buck Converter with 100% Duty Cycle Operation
MAXIM

MAX38650AANT+

Tiny 1.8V to 5.5V Input, 390nA IQ, 100mA nanoPower Buck Converter with 100% Duty Cycle Operation
MAXIM

MAX38650BANT+

Tiny 1.8V to 5.5V Input, 390nA IQ, 100mA nanoPower Buck Converter with 100% Duty Cycle Operation
MAXIM

MAX3865E/D

2.5Gbps Laser Driver with Automatic Modulation Control
MAXIM

MAX3865EGJ

2.5Gbps Laser Driver with Automatic Modulation Control
MAXIM

MAX3865EVKIT

Evaluation Kit for the MAX3865
MAXIM

MAX3866

2.5Gbps, +3.3V Combined Transimpedance/Limiting Amplifier
MAXIM

MAX3866E/D

2.5Gbps, +3.3V Combined Transimpedance/Limiting Amplifier
MAXIM

MAX3866EVKIT

Evaluation Kit for the MAX3866
MAXIM

MAX3867

+3.3V, 2.5Gbps SDH/SONET Laser Driver with Automatic Power Control
MAXIM

MAX3867E/D

+3.3V, 2.5Gbps SDH/SONET Laser Driver with Automatic Power Control
MAXIM

MAX3867ECM

+3.3V, 2.5Gbps SDH/SONET Laser Driver with Automatic Power Control
MAXIM