MAX3969ETP+T [MAXIM]

Support Circuit, 1-Func, Bipolar, 4 X 4 MM, 0.80 MM HEIGHT, MO-220WGGD-1, TQFN-20;
MAX3969ETP+T
型号: MAX3969ETP+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Support Circuit, 1-Func, Bipolar, 4 X 4 MM, 0.80 MM HEIGHT, MO-220WGGD-1, TQFN-20

放大器
文件: 总11页 (文件大小:723K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3251; Rev 0; 4/04  
200Mbps SFP Limiting Amplifier  
General Description  
Features  
The MAX3969 limiting amplifier with PECL data outputs is  
ideal for low-cost ATM, Fast Ethernet, FDDI and ESCON  
fiber optic receivers.  
1mV  
Input Sensitivity  
P-P  
Loss-of-Signal Detector with Programmable  
Threshold  
The MAX3969 features 1mV  
input sensitivity and an  
P-P  
TTL LOS and PECL Signal Detect  
Analog Received-Signal-Strength Indicator  
Output Squelch Function  
integrated power detector that senses the input signal  
power. It provides a received-signal-strength indicator  
(RSSI), which is an analog indication of the power level.  
Signal strength is also indicated by the complementary  
TTL loss-of-signal (LOS) outputs and the PECL signal-  
detect (SD) output, both of which indicate the power  
level relative to a programmable threshold.  
Compatible with 4B/5B Data Coding  
The threshold can be adjusted to detect signal ampli-  
tudes as low as 2.7mV . An optional squelch function  
P-P  
disables switching of the data outputs by holding them  
at a known state when the signal is below the pro-  
grammed threshold.  
Ordering Information  
PIN-  
The MAX3969 is available in die form and a 4mm x  
4mm, 20-pin thin QFN package.  
PART  
TEMP RANGE  
PKG CODE  
PACKAGE  
-40°C to +85°C 20 Thin QFN  
Dice*  
MAX3969ETP  
T2044-2  
Applications  
MAX3969E/D**  
SFP/SFF Transceivers  
*Dice are designed to operate over a -40°C to +100°C junction  
temperature (T ) range, but are tested and guaranteed only at  
Fast Ethernet/FDDI Transceivers  
155Mbps LAN ATM Transceivers  
ESCON Receivers  
J
T
A
= +25°C.  
**Future product—contact factory for availability.  
FTTx Transceivers  
Typical Application Circuits  
SFP OPTICAL RECEIVER WITH DIAGNOSTICS  
HOST BOARD  
V
CC  
C
AZ  
0.027µF  
+2.97V TO +3.63V  
C
FILTER  
0.01µF  
DIAGNOSTIC  
MONITOR  
0.01µF  
R
LOS  
4.7kΩ  
CZP  
RSSI  
CZN FILTER  
V
V
CC  
CCO  
TO  
LOS  
10kΩ  
V
V
CC  
LOS  
SD  
SQUELCH  
IN-  
C
IN  
0.01µF  
CC  
MAX3969  
0.1µF  
0.1µF  
FILT  
IN  
OUT-  
OUT+  
OUT-  
OUT+  
MAX3657  
IN+  
INV  
C
IN  
0.01µF  
V
GND  
TH  
GND  
150Ω  
150Ω  
R1  
100kΩ  
R2  
Typical Application Circuits continued at end of data sheet.  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
200Mbps SFP Limiting Amplifier  
ABSOLUTE MAXIMUM RATINGS  
Power-Supply Voltage Range (V , V  
) ..........-0.5V to +7.0V  
Continuous Power Dissipation (T = +85°C)  
A
CC CCO  
Voltage at FILTER, RSSI, IN+, IN-, CZP, CZN, SQUELCH,  
INV, V ..................................................-0.5V to (V + 0.5V)  
TTL Output Current (LOS, LOS) ......................................... 9mA  
PECL Output Current (OUT+, OUT-, SD) ......................... 50mA  
Differential Voltage Between CZP and CZN..........-1.5V to +1.5V  
Differential Voltage Between IN+ and IN- .............-1.5V to +1.5V  
20-Pin Thin QFN (derate 16.9mW/°C above +85°C) ....1099mW  
Operating Junction Temperature Range (die).....-40°C to +150°C  
Die Attach Temperature...................................................+400°C  
Storage Temperature Range.............................-50°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
TH  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +2.97V to +5.5V, PECL outputs terminated with 50to V  
- 2V, R1 = 100k, T = -40°C to +85°C, unless otherwise noted.  
CC A  
CC  
Typical values are at V  
= +3.3V, T = +25°C.) (Note 1)  
A
CC  
PARAMETER  
CONDITIONS  
PECL outputs open  
MIN  
TYP  
22  
5
MAX  
45  
UNITS  
mA  
dB  
Supply Current  
LOS Hysteresis  
Input = 4.0mV  
(Note 2)  
3.0  
8.0  
P-P  
Squelch Input Current  
27  
100  
µA  
PECL Output-Voltage High  
PECL Output-Voltage Low  
(Note 3)  
(Note 3)  
-1085  
-1830  
-3.0  
-880  
-1550  
+3.0  
+3.6  
2.7  
mV  
mV  
dB  
Input = 7mV  
Input = 7mV  
or 90mV , 0°C to +85°C  
P-P  
P-P  
LOS Assert Accuracy  
or 90mV , -40°C to +85°C  
-3.6  
dB  
P-P  
P-P  
Minimum LOS Assert Input  
Maximum LOS Deassert Input  
Input Sensitivity  
mV  
mV  
mV  
mV  
P-P  
P-P  
P-P  
P-P  
143  
(Note 4)  
(Note 4)  
1
4
Input Overload  
1500  
2.4  
TTL Output High  
R
LOS  
= 4.7kto 10kΩ  
3.0  
1
V
TTL Output Leakage  
TTL Output Low  
(Note 5)  
= 800µA  
20  
0.5  
µA  
V
I
0.2  
0.8  
50  
10  
OL  
Data Output Transition Time  
Pulse-Width Distortion  
LOS, SD Assert/Deassert Time  
20% to 80%, Input > 4mV  
(Note 4)  
0.35  
1.20  
250  
ns  
ps  
µs  
P-P  
Input > 4mV  
(Notes 4, 6)  
P-P  
C
= 0.01µF  
FILTER  
Note 1: Dice are tested and guaranteed only at T = +25°C.  
A
Note 2: LOS hysteresis = 20log(V  
/ V  
).  
LOS-DEASSERT  
LOS-ASSERT  
Note 3: Relative to supply voltage (V  
).  
CCO  
Note 4: AC characteristics are guaranteed by design and characterization.  
Note 5: Input < LOS threshold (LOS = HIGH), V = 2.4V.  
LOS  
Note 6: Pulse-width distortion = [(width of wider pulse) - (width of narrower pulse)] / 2, measured with 100Mbps 1-0 pattern.  
2
_______________________________________________________________________________________  
200Mbps SFP Limiting Amplifier  
Typical Operating Characteristics  
(V  
= +3.3V, PECL outputs terminated with 50to V  
- 2V, R1 = 100k, T = +25°C, unless otherwise noted.)  
CC A  
CC  
OUTPUT EYE DIAGRAM  
23  
OUTPUT EYE DIAGRAM  
SUPPLY CURRENT vs. TEMPERATURE  
(PECL OUTPUTS OPEN)  
23  
(V = 2mV , 155Mbps, 2 - 1 PRBS)  
(V = 1500mV , 155Mbps, 2 - 1 PRBS)  
IN  
P-P  
IN  
P-P  
MAX3969 toc02  
MAX3969 toc03  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
200mV/div  
200mV/div  
0
1ns/div  
1ns/div  
-40  
-15  
10  
35  
60  
85  
AMBIENT TEMPERATURE (°C)  
BIT ERROR RATIO vs. DIFFERENTIAL  
INPUT VOLTAGE  
RSSI VOLTAGE vs. DIFFERENTIAL  
INPUT VOLTAGE  
TRANSFER FUNCTION  
10-03  
1800  
1600  
1400  
1200  
1000  
800  
3.00  
2.80  
2.60  
2.40  
2.20  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
RSSI LOAD > 10kΩ  
155Mbps  
23  
155Mbps  
- 1 PRBS  
23  
10-04  
10-05  
10-06  
10-07  
10-08  
10-09  
10-10  
2
- 1 PRBS  
2
LOS LOW  
LOS HIGH  
10-11  
10-12  
600  
0.1 0.2 0.3 0.4  
DIFFERENTIAL INPUT VOLTAGE (mV  
0.8  
0
0.6 0.7  
0.5  
0.01  
0.1  
1
10  
100 1000 10,000  
1
10  
100  
1000  
)
DIFFERENTIAL INPUT VOLTAGE (mV  
)
P-P  
DIFFERENTIAL INPUT VOLTAGE (mV  
)
P-P  
P-P  
LOSS-OF-SIGNAL HYSTERESIS  
vs. TEMPERATURE  
POWER-DETECT THRESHOLD vs. R2  
RSSI VOLTAGE vs. TEMPERATURE  
(LOS LOW, RSSI LOAD > 10k)  
(R1 = 100k)  
10  
9
8
7
6
5
4
3
2
1
0
1000  
100  
10  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
155Mbps  
23  
2
-1 PRBS  
INPUT = 100mV  
P-P  
SD HIGH/  
LOS LOW  
R2 = 50kΩ  
INPUT = 50mV  
P-P  
SD LOW/  
LOS HIGH  
R2 = 10kΩ  
INPUT = 10mV  
P-P  
P-P  
155Mbps  
23  
INPUT = 5mV  
2
- 1 PRBS  
1
-40  
-15  
10  
35  
60  
85  
10 20 30 40 50 60 70 80 90 100 110 120  
-40 -20  
0
20  
40  
60  
80 100  
AMBIENT TEMPERATURE (°C)  
R2 (k)  
AMBIENT TEMPERATURE (°C)  
_______________________________________________________________________________________  
3
200Mbps SFP Limiting Amplifier  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, PECL outputs terminated with 50to V  
- 2V, R1 = 100k, T = +25°C, unless otherwise noted.)  
CC A  
CC  
POWER-DETECT TIMING WITH SQUELCH  
(INPUT = 12mV , C  
DATA OUTPUT TRANSITION TIME  
vs. TEMPERATURE  
PULSE-WIDTH DISTORTION  
vs. DIFFERENTIAL INPUT VOLTAGE  
= 0.01µF,  
P-P FILTER  
23  
R2 = 15k, 155Mbps, 2 - 1 PRBS)  
MAX3969 toc10  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100Mbps  
1-0 PATTERN  
IN  
OUT  
INPUT DATA THROUGH  
117MHz FILTER  
LOS  
SD  
UNFILTERED  
INPUT DATA  
-40  
-15  
10  
35  
60  
85  
1
10  
100  
1000  
10,000  
10µs/div  
AMBIENT TEMPERATURE (°C)  
DIFFERENTIAL INPUT VOLTAGE (mV  
)
P-P  
Pin Description  
PIN  
NAME  
FUNCTION  
Inverting Input of Internal Op Amp that Sets Power-Detect Threshold Voltage (Figure 1). Connect a  
1
INV  
resistor from V to INV (R2), and from INV to ground (R1 = 100k), to program the desired threshold  
TH  
voltage.  
Filter Output of Logarithmic Full-Wave Detectors (FWDs). The FWD outputs are summed together at  
2
3
FILTER  
RSSI  
FILTER to generate the RSSI output. Connect a capacitor from FILTER to V  
for proper operation.  
CC  
Received-Signal-Strength Indicator Output. The voltage at RSSI indicates the input-signal power. The  
RSSI output is reduced approximately 120mV when LOS is asserted.  
4
5
IN-  
IN+  
Inverting Data Input  
Noninverting Data Input  
6 , 7, 8  
9
GND  
CZP  
CZN  
Ground  
Autozero Capacitor Input. Connect a 0.027µF capacitor between CZP and CZN.  
Autozero Capacitor Input. Connect a 0.027µF capacitor between CZP and CZN.  
10  
11  
V
Output-Buffer Supply Voltage. Connect to the same potential as V  
.
CC  
CCO  
12  
OUT+  
OUT-  
Noninverting PECL Data Output. Terminate with 50to (V  
- 2V).  
CC  
13  
Inverting PECL Data Output. Terminate with 50to (V  
- 2V).  
CC  
Signal Detect, PECL Output. The SD output is high when input power is above the power-detect  
threshold, and low when input power is below the power-detect threshold. This pin is PECL-  
14  
15  
16  
SD  
compatible and should be terminated with 50to (V  
- 2V) or equivalent.  
CC  
Loss-of-Signal Output, TTL Open Collector (with ESD Protection). The LOS output is high when input  
power is below the power-detect threshold, and low when input power is above the power-detect  
threshold.  
LOS  
LOS  
Inverted Loss-of-Signal Output, TTL Open Collector (with ESD Protection). The LOS output is low  
when input power is below the power-detect threshold, and high when input power is above the  
power-detect threshold.  
4
_______________________________________________________________________________________  
200Mbps SFP Limiting Amplifier  
Pin Description  
PIN  
NAME  
FUNCTION  
17, 18  
V
Supply Voltage  
Squelch Input. The squelch function disables the data outputs by forcing OUT- low and OUT+ high  
SQUELCH when the signal is below the power-detect threshold. Connect to GND or leave unconnected to  
disable squelch. Connect to V to enable squelch.  
CC  
19  
CC  
Output of Internal Op Amp that Sets Power-Detect Threshold Voltage (Figure 1). Connect a resistor  
20  
EP  
V
TH  
from V to INV (R2) and from INV to ground (R1 = 100k), to program the desired threshold voltage.  
TH  
Exposed  
Pad  
Ground. The exposed pad must be soldered to the circuit board ground for proper thermal and  
electrical performance.  
C
AZ  
V
V
CCO  
CC  
CZP  
CZN  
OFFSET  
CORRECTION  
MAX3969  
1
1
OUT-  
C
C
IN  
IN  
PECL  
IN-  
IN+  
O
OUT+  
SQUELCH  
FWD  
FWD  
FWD  
RSSI  
LOS  
FILTER  
V
CC  
TTL  
C
FILTER  
LOS  
1.2V  
REFERENCE  
SD  
PECL  
INV  
V
TH  
R1  
GND  
100kΩ  
R2  
Figure 1. Functional Diagram  
circuit. By correcting the DC offsets, the limiting amplifi-  
er sensitivity and power-detector accuracy are  
improved.  
Detailed Description  
The MAX3969 contains a series of limiting amplifiers  
and power detectors, offset correction, data-squelch  
circuitry, TTL buffers for LOS outputs, and PECL output  
buffers for signal detect (SD) and data outputs. See  
Figure 1 for the functional diagram.  
The offset correction is optimized for data streams with  
a 50% duty cycle. A different average duty cycle results  
in increased pulse-width distortion and loss of sensitivi-  
ty. The offset-correction circuitry is less sensitive to vari-  
ations of input duty cycle (for example, the 40% to 60%  
duty cycle encountered in 4B/5B coding) when the  
Gain Stages and Offset Correction  
A cascade of limiting amplifiers provides approximately  
65dB of combined small-signal gain. The large gain  
makes the amplifier susceptible to small DC offsets in  
the signal path. To correct DC offsets, the amplifier has  
an internal feedback loop that acts as a DC autozero  
input is less than 30mV  
.
P-P  
The data inputs must be AC-coupled for the offset cor-  
rection loop to function properly. Differential input  
impedance is >5k.  
_______________________________________________________________________________________  
5
200Mbps SFP Limiting Amplifier  
Power Detector  
PECL Outputs  
Each amplifier stage contains a logarithmic FWD, which  
indicates the RMS input signal power. The FWD outputs  
are summed together at the FILTER pin where the sig-  
The data outputs (OUT+, OUT-) and signal-detect out-  
put (SD) are supply-referenced PECL outputs. See  
Figure 2 for the equivalent output circuit.  
nal is filtered by an external capacitor (C  
) con-  
FILTER  
Both data outputs must be terminated for proper opera-  
tion, but the SD output can be left open if not required  
in the application. The proper termination for a PECL  
nected between FILTER and V . The FILTER signal  
CC  
generates the RSSI output voltage (V  
), which is  
RSSI  
proportional to the input power in decibels. When LOS  
is low, V is approximated by the following equation:  
output is 50to (V  
- 2V), but other standard termina-  
CC  
RSSI  
tion techniques can be used. For more information on  
PECL terminations and how to interface with other logic  
families, refer to Maxim Application Note HFAN-01.0:  
Introduction to LVDS, PECL, and CML.  
V
(V) = 1.2V + 0.5log (V )  
IN  
RSSI  
where, V is the data input voltage measured in mV  
.
IN  
P-P  
This relation translates to a 25mV increase in V  
for  
RSSI  
every 1dB increase in V . The RSSI output is reduced  
TTL Outputs  
The LOS outputs (LOS, LOS) are implemented with  
open-collector, Schottky-clamped, ESD-protected, TTL-  
compatible outputs. See Figure 3 for the equivalent out-  
put circuit. The LOS outputs require external pullup  
resistors for proper operation. Resistor values between  
4.7kand 10kare recommended.  
IN  
approximately 120mV when LOS is high.  
Typically the RSSI output is connected to an A/D con-  
verter for diagnostic monitoring. This output can be left  
open if not required in the application. The RSSI output  
is designed to drive a minimum load resistance of 10kΩ  
to ground, and a maximum capacitance of 10pF. A  
10kseries resistor is required to buffer loads greater  
than 10pF.  
If the LOS outputs are not required for the application,  
they can be left open.  
Signal-Strength Comparator  
A comparator is used to indicate the input signal  
strength relative to a user-programmable threshold.  
One of the comparator inputs is connected to the RSSI  
output signal, and the other is connected to the thresh-  
Design Procedure  
Program the Power-Detect Threshold  
The suggested procedure for setting the power-detect  
threshold is given below and is illustrated in Figure 4.  
old voltage (V ), which is set externally and provides  
TH  
1) Determine the maximum receiver sensitivity  
(RX_MAX) in dBm and the PIN-TIA responsivity (G)  
in V/W.  
a trip point for signal-strength indication. When the sig-  
nal strength is above the threshold, the SD output  
asserts high and the LOS output deasserts low.  
Likewise, when the signal strength falls below the  
threshold, SD deasserts low and LOS asserts high. To  
ensure chatter-free operation, the comparator is  
designed with approximately 5dB of hysteresis.  
2) Calculate the differential voltage swing (VIN_SEN) at  
the MAX3969 inputs while operating at sensitivity.  
(RX_MAX / 10)  
V
= 10  
x 2 x G  
IN_SEN  
3) Calculate the threshold voltage (V  
) at which  
IN_TH  
LOS must be low (SD must be high) by allowing  
3.6dB (1.8dB optical) margin for power-detector  
accuracy.  
Squelch  
The squelch function disables the data outputs by forc-  
ing OUT- low and OUT+ high when the input signal is  
below the programmed threshold. This function  
ensures that when there is a loss of signal, the limiting  
amplifier and all downstream devices do not respond to  
input noise. Connect SQUELCH to GND or leave it  
unconnected to disable squelch. Connect SQUELCH to  
V
= V  
x 0.66  
IN_TH  
IN_SEN  
4) Use V  
and the line labeled (SD HIGH / LOS  
IN_TH  
LOW) in the Power-Detect Threshold vs. R2 graph  
in the Typical Operating Characteristics to deter-  
mine the value of R2. Select R1=100k.  
V
to enable squelch.  
CC  
6
_______________________________________________________________________________________  
200Mbps SFP Limiting Amplifier  
10 log(OPTICAL POWER)  
V
CCO  
PIN-TIA RESPONSIVITY = G  
RX_MAX (SENSITIVITY)  
1.8dB  
SD HIGH / LOS LOW  
2.5dB  
SD LOW / LOS HIGH  
OUT-  
5dB  
3.6dB  
OUT+  
20 log(V  
)
IN  
ESD  
STRUCTURES  
V
IN_TH  
V
IN_SEN  
Figure 4. Signal Levels for Power-Detect Threshold  
Select C  
FILTER  
For SFP/SFF, FDDI, 155Mbps ATM LAN, Fast Ethernet,  
and ESCON receivers, Maxim recommends C  
=
FILTER  
0.01µF. This capacitor value ensures chatter-free  
LOS/SD and provides a typical assert/deassert time of  
Figure 2. Equivalent PECL Output Circuit  
10µs. For other applications, the value of C  
be calculated using the following equation:  
can  
FILTER  
C
FILTER  
= τ / 825Ω  
where τ is the desired time constant of the power detector.  
V
CCO  
Select C  
and C  
IN  
AZ  
External-coupling capacitors (C ) are required on the  
IN  
data inputs for the offset correction loop to function  
properly. The offset correction loop bandwidth is deter-  
mined by the external capacitor (C ) connected  
AZ  
between CZP and CZN. The poles associated with C  
IN  
LOS/LOS  
and C must work together to provide a flat response  
AZ  
at the lower -3dB corner frequency. For SFP/SFF, FDDI,  
155Mbps ATM LAN, Fast Ethernet, and ESCON  
receivers, Maxim recommends the following:  
ESD  
STRUCTURES  
C
= 0.01µF  
IN  
C
= 0.027µF  
AZ  
Figure 3. Equivalent TTL Output Circuit  
_______________________________________________________________________________________  
7
200Mbps SFP Limiting Amplifier  
Applications Information  
Table 1. Bond Pad Coordinates  
Wire Bonding  
For high-current density and reliable operation, the  
MAX3969 uses gold metalization. For best results, use  
gold-wire ball-bonding techniques. Use caution if  
attempting wedge bonding. Die pad size is 4 mils x 4  
mils. Die thickness is 16 mils.  
COORDINATES (µm)  
PAD  
NAME  
X
Y
1
2
INV  
FILTER  
RSSI  
IN-  
46.6  
659.5  
505.6  
351.7  
197.8  
46.6  
46.6  
3
46.6  
4
46.6  
Table 1 lists the bond pad coordinates for the MAX3969.  
The origin for pad coordinates is defined as the bottom  
left corner of the bottom left pad. All pad locations are  
referenced from the origin and indicate the center of the  
pad where the bond wire should be connected. Refer to  
Maxim Application Note HFAN-08.0.1: Understanding  
Bonding-Coordinates and Physical Die Size for detailed  
information.  
5
IN+  
46.6  
6
GND  
GND  
GND  
CZP  
195.1  
432.7  
589.3  
743.2  
945.7  
1204.9  
1204.9  
1204.9  
1204.9  
1204.9  
1053.7  
808.0  
586.6  
432.7  
195.1  
-99.1  
-99.1  
-99.1  
-99.1  
-99.1  
-96.4  
81.7  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
CZN  
V
CCO  
OUT+  
OUT-  
SD  
262.6  
492.1  
697.3  
818.8  
818.8  
818.8  
818.8  
818.8  
Pin Configuration  
LOS  
LOS  
TOP VIEW  
V
V
CC  
CC  
20 19 18 17 16  
SQUELCH  
INV  
FILTER  
RSSI  
IN-  
1
2
3
4
5
15 LOS  
14 SD  
V
TH  
13 OUT-  
12 OUT+  
MAX3969  
Chip Information  
11  
V
CCO  
IN+  
TRANSISTOR COUNT: 915  
6
7
8
9
10  
SUBSTRATE CONNECTED TO GND  
PROCESS: Silicon Bipolar  
DIE THICKNESS: 16 mils  
THIN QFN  
8
_______________________________________________________________________________________  
200Mbps SFP Limiting Amplifier  
Chip Topography  
V
V
SQUELCH  
19  
V
LOS  
16  
CC  
TH  
CC  
18  
17  
20  
LOS  
SD  
15  
14  
INV  
1
2
FILTER  
47mil  
(1.19mm)  
RSSI  
IN-  
3
4
5
13  
12  
11  
OUT-  
OUT+  
IN+  
ORIGIN  
9
8
10  
7
6
V
CCO  
GND  
GND  
CZP  
CZN  
GND  
57mil  
(1.45mm)  
_______________________________________________________________________________________  
9
200Mbps SFP Limiting Amplifier  
Typical Application Circuits (continued)  
C
AZ  
V
CC  
CC  
0.027µF  
C
FILTER  
0.01µF  
SFF OR 1 x 9 MSA RECEIVER  
0.01µF  
CZP  
RSSI  
CZN FILTER  
V
V
CCO  
LOS  
V
V
CC  
LOS  
SD  
SQUELCH  
IN-  
C
IN  
CC  
0.01µF  
MAX3969  
FILT  
IN  
OUT-  
OUT+  
OUT-  
OUT+  
MAX3657  
IN+  
INV  
C
IN  
V
GND  
TH  
GND  
0.01µF  
50Ω  
50Ω  
50Ω  
R1  
100kΩ  
R2  
V
CC  
- 2V  
10 ______________________________________________________________________________________  
200Mbps SFP Limiting Amplifier  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
12, 16, 20, 24L THIN QFN, 4x4x0.8mm  
1
C
21-0139  
2
PACKAGE OUTLINE  
12, 16, 20, 24L THIN QFN, 4x4x0.8mm  
2
C
21-0139  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 11  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3969ETP-T

Support Circuit, 1-Func, Bipolar, 4 X 4 MM, 0.80 MM HEIGHT, MO-220WGGD-1, TQFN-20
MAXIM

MAX396C/D

Precision, 16-Channel/Dual 8-Channel, Low-Voltage, CMOS Analog Multiplexers
MAXIM

MAX396CAI

Precision, 16-Channel/Dual 8-Channel, Low-Voltage, CMOS Analog Multiplexers
MAXIM

MAX396CAI+

Single-Ended Multiplexer, 1 Func, 16 Channel, CMOS, PDSO28, SSOP-28
MAXIM

MAX396CAI+T

Single-Ended Multiplexer, 1 Func, 16 Channel, CMOS, PDSO28, SSOP-28
MAXIM

MAX396CPI

Precision, 16-Channel/Dual 8-Channel, Low-Voltage, CMOS Analog Multiplexers
MAXIM

MAX396CPI

16-CHANNEL, SGL ENDED MULTIPLEXER, PDIP28, PLASTIC, DIP-28
ROCHESTER

MAX396CPI+

Single-Ended Multiplexer, 1 Func, 16 Channel, CMOS, PDIP28, PLASTIC, DIP-28
MAXIM

MAX396CQI

Precision, 16-Channel/Dual 8-Channel, Low-Voltage, CMOS Analog Multiplexers
MAXIM

MAX396CQI

16-CHANNEL, SGL ENDED MULTIPLEXER, PQCC28, PLASTIC, LCC-28
ROCHESTER

MAX396CWI

Precision, 16-Channel/Dual 8-Channel, Low-Voltage, CMOS Analog Multiplexers
MAXIM

MAX396CWI+

暂无描述
MAXIM