MAX3983UGK [MAXIM]

Quad Copper-Cable Signal Conditioner;
MAX3983UGK
型号: MAX3983UGK
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Quad Copper-Cable Signal Conditioner

文件: 总17页 (文件大小:337K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2928; Rev 1; 2/07  
Quad Copper-Cable Signal Conditioner  
MAX983  
General Description  
Features  
The MAX3983 is a quad copper-cable signal conditioner  
that operates from 2.5Gbps to 3.2Gbps. It provides com-  
pensation for 4x copper InfiniBand and 10Gbase-CX4  
Ethernet links, allowing spans of 20m with 24AWG and  
15m with 28AWG. The cable driver section provides four  
selectable preemphasis levels. The input to the cable  
driver compensates for up to 0.5m of FR4 circuit board  
material. The cable receiver section provides additional  
fixed input equalization while offering selectable preem-  
phasis to drive FR4 circuit boards up to 0.5m.  
Link Features  
Span 20m with 24AWG, 15m with 28AWG  
Span 0.5m of FR4 on Each Host  
1.6W Total Power with 3.3V Supply  
Loopback Function  
Cable Driver Features  
Selectable Output Preemphasis  
FR4 Input Equalization  
Signal Detect for Each Channel  
Output Disable  
The MAX3983 also features signal detection on all eight  
inputs and internal loopback that allows for diagnostic  
testing. It is packaged in a 10mm x 10mm, 68-pin QFN  
and operates from 0°C to +85°C.  
Cable Receiver Features  
Selectable FR4 Output Preemphasis  
Cable Input Equalization  
Signal Detect for Each Channel  
Output Disable  
Applications  
4x InfiniBand (4 x 2.5Gbps)  
Ordering Information  
10Gbase-CX4 Ethernet (4 x 3.125Gbps)  
10G Fibre Channel XAUI (4 x 3.1875Gbps)  
PIN-  
PART  
TEMP RANGE  
PKG CODE  
PACKAGE  
4x Copper-Cable or Backplane Transmission  
(1Gbps to 3.2Gbps)  
MAX3983UGK  
0°C to +85°C 68 QFN  
G6800-4  
G6800-4  
MAX3983UGK+ 0°C to +85°C 68 QFN  
+Denotes lead-free package.  
Pin Configuration appears at end of data sheet.  
Typical Application Circuit  
4x COPPER CABLE ASSEMBLY  
20m (24AWG)  
3.3V  
0.5m  
15m (28AWG)  
0.01μF  
0.01μF  
V
CC  
[1:4]  
TX_IN1  
TX_OUT1  
TX_OUT2  
TX_OUT3  
TX_OUT4  
TX_IN2  
TX  
TX_IN3  
TX_IN4  
SERDES  
TO MAX3983  
RX_OUT1  
RX_IN1  
RX_IN2  
RX_IN3  
RX_IN4  
RX_OUT2  
RX  
RX_OUT3  
RX_OUT4  
TX_PE0  
V
OR  
GND  
CC  
TX_ENABLE  
RX_ENABLE  
TX_PE1  
RX_PE  
3V TO 5.5V  
3V TO 5.5V  
POR  
TO HOST  
LOOPBACK  
C
POR  
4.7kΩ  
4.7kΩ  
MAX3983  
RX_SD1  
RX_SD2  
RX_SD3  
RX_SD4  
TX_SD1  
TX_SD2  
TX_SD3  
TX_SD4  
GND  
TO HOST  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Quad Copper-Cable Signal Conditioner  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V ..............................................-0.5V to +6.0V  
CC  
Continuous Power Dissipation (T = +85°C)  
A
Continuous CML Output Current at  
68-Pin QFN (derate 41.7mW/°C above +85°C)……….2.7W  
TX_OUT[1:4] , RX_OUT[1:4] ..........................………. 25mA  
Voltage at TX_IN[1:4] , RX_IN[1:4] , RX_SD[1:4],  
TX_SD[1:4], RX_ENABLE, TX_ENABLE, RX_PE,  
TX_PE[0:1], LOOPBACK, POR  
Operating Junction Temperature Range (T )....-55°C to +150°C  
J
Storage Ambient Temperature Range (T ) .......-55°C to +150°C  
S
(with series resistor 4.7kΩ)...................-0.5V to (V  
+ 0.5V)  
CC  
MAX983  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, T = 0°C to +85°C. Typical values are at V  
= +3.3V and T = +25°C, unless otherwise noted.)  
CC A  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
360  
365  
495  
MAX  
430  
430  
580  
UNITS  
RX_EN = V , TX_EN = 0V  
CC  
Supply Current  
mA  
RX_EN = 0V, TX_EN = V  
CC  
RX_EN = V , TX_EN = V  
CC  
CC  
OPERATING CONDITIONS  
Supply Voltage  
V
3.0  
3.3  
40  
25  
3.6  
V
CC  
Supply Noise Tolerance  
Operating Ambient Temperature  
Bit Rate  
1MHz f < 2GHz  
mV  
P-P  
T
0
85  
3.2  
10  
°C  
A
NRZ data (Note 1)  
2.5  
Gbps  
Bits  
CID  
Consecutive identical digits (bits)  
STATUS OUTPUTS: RX_SD[1:4], TX_SD[1:4]  
Signal detect asserted  
0
25  
µA  
Signal detect unasserted V 0.4V with 4.7kΩ  
pullup resistor  
OL  
1.0  
1.11  
0.35  
mA  
Signal-Detect Open-Collector  
Current Sink  
V
= 0V, pullup supply = 5.5V, external pullup  
CC  
0
25  
µA  
µs  
resistor 4.7kΩ  
Time from RX_IN[1:4] or TX_IN[1:4] dropping  
Signal-Detect Response Time  
below 85mV  
or rising above 175mV  
to  
P-P  
P-P  
50% point of signal detect  
Signal-Detect Transition Time  
Power-On Reset Delay  
Rise time or fall time (10% to 90%)  
1µF capacitor on POR to GND  
200  
6
ns  
ms  
CONTROL INPUTS: RX_ENABLE, TX_ENABLE, RX_PE, TX_PE0, TX_PE1, LOOPBACK  
Voltage, Logic High  
Voltage, Logic Low  
Current, Logic High  
Current, Logic Low  
V
1.5  
V
IH  
V
0.5  
V
IL  
I
V
V
= V  
CC  
-150  
-150  
+150  
+150  
µA  
µA  
IH  
IH  
IL  
I
= 0V  
IL  
2
_______________________________________________________________________________________  
Quad Copper-Cable Signal Conditioner  
MAX983  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, T = 0°C to +85°C. Typical values are at V  
= +3.3V and T = +25°C, unless otherwise noted.)  
CC A  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TX SECTION (CABLE DRIVER)  
Measured differentially at the signal source  
(Note 1)  
PC Board Input Swing  
800  
1600  
115  
mV  
P-P  
Input Resistance  
Input Return Loss  
TX_IN[1:4]+ to TX_IN[1:4]-, differential  
100MHz to 2GHz (Note 1)  
85  
10  
100  
17  
Ω
dB  
TX_ENABLE = high (Notes 1, 2)  
TX_ENABLE = low  
1300  
1500  
1600  
30  
Output Swing  
mV  
P-P  
TX_OUT[1:4]+ or TX_OUT[1:4]- to V , single  
CC  
ended  
Output Resistance  
42  
10  
50  
13  
58  
Ω
Output Return Loss  
Output Transition Time  
Random Jitter  
100MHz to 2GHz (Note 1)  
20% to 80% (Notes 1, 3)  
(Notes 1, 3)  
dB  
ps  
t , t  
80  
r
f
1.6  
ps  
RMS  
TX_PE1  
TX_PE0  
0
0
1
1
0
1
0
1
3
6
Output Preemphasis  
See Figure 1  
dB  
9
12  
Source to  
TX_IN  
TX_OUT to  
Load  
TX_PE1 TX_PE0  
1m, 28AWG  
5m, 28AWG  
10m, 24AWG  
15m, 24AWG  
0
0
1
1
0
1
0
1
Residual Output Deterministic  
Jitter at 2.5Gbps (Notes 1, 4, 5)  
0.10  
0.15  
0.15  
0.20  
UI  
P-P  
6-mil FR4 ≤  
20in  
Source to  
TX_IN  
TX_OUT to  
Load  
TX_PE1 TX_PE0  
1m, 28AWG  
5m, 28AWG  
10m, 24AWG  
15m, 24AWG  
0
0
1
1
0
1
0
1
Residual Output Deterministic  
Jitter at 3.2Gbps (Notes 1, 4, 5)  
UI  
P-P  
6-mil FR4 ≤  
20in  
Signal-Detect Assert Level  
Signal-Detect Off  
TX_IN for TX_SD = high (Note 6)  
TX_IN for TX_SD = low (Note 6)  
800  
mV  
mV  
P-P  
P-P  
200  
RX SECTION (CABLE RECEIVER)  
Measured differentially at the signal source  
(Note 1)  
Cable Input Swing  
1000  
175  
1600  
mV  
mV  
P-P  
P-P  
Measured differentially at the input of the  
MAX3983 (Note 1)  
Input Vertical Eye Opening  
1600  
115  
Input Resistance  
Input Return Loss  
RX_IN[1:4]+ to RX_IN[1:4]-, differential  
100MHz to 2GHz (Note 1)  
85  
10  
100  
18  
Ω
dB  
_______________________________________________________________________________________  
3
Quad Copper-Cable Signal Conditioner  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, T = 0°C to +85°C. Typical values are at V  
= +3.3V and T = +25°C, unless otherwise noted.)  
CC A  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
RX_ENABLE = high (Notes 1, 7)  
RX_ENABLE = low  
MIN  
TYP  
MAX  
1500  
30  
UNITS  
mV  
1100  
Output Swing  
P-P  
RX_OUT[1:4]+ or RX_OUT[1:4]- to V , single  
CC  
ended  
Output Resistance  
42  
10  
50  
58  
Ω
MAX983  
Output Return Loss  
Output Transition Time  
Random Jitter  
100MHz to 2GHz (Note 1)  
20% to 80% (Notes 1, 8)  
(Notes 1, 8)  
15  
45  
dB  
ps  
t , t  
80  
r
f
1.6  
ps  
RMS  
RX_PE = low  
3
6
Output Preemphasis  
dB  
RX_PE = high  
Source to  
RX_IN  
RX_OUT to  
Load  
RX_PE  
Residual Output Deterministic  
Jitter at 2.5Gbps  
(Notes 1, 5, 9, 10)  
5m, 28AWG  
IB Cable  
Assembly  
without  
0in, 6-mil FR4  
20in, 6-mil FR4  
0
0.10  
0.15  
UI  
P-P  
1
RX_PE  
0
preemphasis  
Source to  
RX_IN  
RX_OUT to  
Load  
Residual Output Deterministic  
Jitter at 3.2Gbps  
(Notes 1, 5, 9, 10)  
5m, 28AWG  
IB cable  
assembly  
without  
0in, 6-mil FR4  
20in, 6-mil FR4  
0.15  
0.20  
85  
UI  
P-P  
1
preemphasis  
Signal-Detect Assert Level  
Signal-Detect Off  
RX_IN for RX_SD = high (Note 11)  
RX_IN for RX_SD = low (Note 11)  
175  
mV  
mV  
P-P  
P-P  
END-TO-END JITTER (TX AND RX COMBINED PERFORMANCE)  
Source to  
TX_IN  
TX_OUT to  
RX_IN  
Residual Output Deterministic  
Jitter at 2.5Gbps  
0.15  
0.2  
0.20  
0.25  
UI  
P-P  
(Notes 1, 12, 13, 14)  
1m, 24AWG  
15m, 24AWG  
20m, 24AWG  
0
1
1
0
1
1
0in  
0
1
1
20in  
20in  
6-mil FR4 ≤  
20in  
4
_______________________________________________________________________________________  
Quad Copper-Cable Signal Conditioner  
MAX983  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, T = 0°C to +85°C. Typical values are at V  
= +3.3V and T = +25°C, unless otherwise noted.)  
CC A  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.20  
0.25  
MAX  
0.25  
0.3  
UNITS  
Source to  
TX_IN  
Residual Output Deterministic  
Jitter at 3.2Gbps  
(Notes 1, 12, 13, 14)  
UI  
P-P  
1m, 24AWG  
15m, 24AWG  
20m, 24AWG  
0
0
1
1
5in  
0
1
1
6-mil FR4 ≤  
20 in  
1
1
20in  
20in  
Note 1: Guaranteed by design and characterization.  
Note 2: Measured with 2in of FR4 through InfiniBand connector with TX_PE1 = TX_PE0 =1.  
Note 3: Measured at the chip using 0000011111 or equivalent pattern. TX_PE1 = TX_PE0 = 0 for minimum preemphasis.  
Note 4: All channels under test are not transmitting during test. Channel tested with XAUI CJPAT, as well as this pattern: 19 zeros,  
1, 10 zeros, 1010101010 (D21.5 character), 1100000101 (K28.5+ character), 19 ones, 0, 10 ones, 0101010101 (D10.2  
character), 0011111010 (K28.5- character).  
Note 5: Cables are unequalized, Amphenol Spectra-Strip 24AWG and 28AWG or equivalent equipped with Fujitsu “MicroGiga”  
connector or equivalent. All other channels are quiet. Residual deterministic jitter is the difference between the source jit-  
ter and the output jitter at the load. The deterministic jitter (DJ) at the output of the transmission line must be from media-  
induced loss and not from clock-source modulation. Depending upon the system environment, better results can be  
achieved by selecting different preemphasis levels.  
Note 6: Tested with a 1GHz sine wave applied at TX_IN under test with less than 5in of FR4.  
Note 7: Measured with 3in of FR4 with RX_PE = 1.  
Note 8: Measured at the chip using 0000011111 or equivalent pattern. RX_PE = low (minimum). Signal source is 1V  
with 5m,  
P-P  
28AWG InfiniBand cable.  
Note 9: All other receive channels are quiet. TX_ENABLE = 0. Channel tested with XAUI CJPAT as well as this pattern: 19 zeros,  
1, 10 zeros, 1010101010 (D21.5 character), 1100000101 (K28.5+ character), 19 ones, 0, 10 ones, 0101010101 (D10.2  
character), 0011111010 (K28.5- character).  
Note 10: FR4 board material: 6-mil-wide, 100Ω, edge-coupled stripline (tanδ = 0.022, 4.0 < ε < 4.4).  
R
Note 11: Tested with a 1GHz sine wave applied at RX_IN under test with less than 5in of FR4.  
Note 12: Channel tested with XAUI CJPAT as well as this pattern: 19 zeros, 1, 10 zeros, 1010101010 (D21.5 character), 1100000101  
(K28.5+ character), 19 ones, 0, 10 ones, 0101010101 (D10.2 character), 0011111010 (K28.5- character).  
Note 13: Cables are unequalized, Amphenol Spectra-Strip 24AWG or equivalent equipped with Fujitsu “MicroGiga” connector or  
equivalent. Residual deterministic jitter is the difference between the source jitter at point A and the load jitter at point B in  
Figure 2. The deterministic jitter (DJ) at the output of the transmission line must be from media-induced loss and not from  
clock-source modulation. Depending upon the system environment, better results can be achieved by selecting different  
preemphasis levels.  
Note 14: Valid with pattern generator deterministic jitter as high as 0.17UI  
.
P-P  
_______________________________________________________________________________________  
5
Quad Copper-Cable Signal Conditioner  
PE = 12dB  
PE = 3dB  
DIFFERENTIAL  
OUTPUT = 1.5V  
V
EYE  
= 0.375V  
V = 1.06V  
EYE P-P  
P-P  
P-P  
MAX983  
Figure 1. Illustration of TX Preemphasis in dB  
END-TO-END TESTING  
PC BOARD (FR4)  
A
SIGNAL  
SOURCE  
InfiniBand CABLE  
ASSEMBLY  
MAX3983  
6 mils  
6 mils  
TX_IN  
TX_OUT  
1in L 20in  
1in L 20in  
1in L 3in  
1in L 3in  
FUJITSU  
MICROGIGA  
CONNECTORS  
SMA CONNECTORS  
MAX3983  
6 mils  
RX_OUT  
RX_IN  
6 mils  
FR4  
OSCILLOSCOPE OR  
ERROR DETECTOR  
4.0 ≤ ε 4.4  
R
B
tanδ = 0.022  
Figure 2. End-to-End Test Setup. The points labeled A and B are referenced for AC parameter test conditions.  
6
_______________________________________________________________________________________  
Quad Copper-Cable Signal Conditioner  
MAX983  
Typical Operating Characteristics  
(V  
= +3.3V, T = +25°C, unless otherwise noted.)  
CC  
A
VERTICAL EYE OPENING  
vs. CABLE LENGTH  
END-TO-END DETERMINISTIC JITTER  
vs. CABLE LENGTH  
TRANSIENT REPSONSE  
MAX3983 toc01  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
350  
300  
250  
200  
150  
100  
50  
2.5Gbps XAUI CJPAT  
ALL CHANNELS TRANSMITTING  
10in FR4 AT TX_IN  
TX_PE[1,0] = 00  
TX_PE[1,0] = 01  
A
10in FR4 AT RX_OUT  
B
C
D
SOURCE DJ = 23ps  
D
V
OUT  
TX_PE[1,0] = 10  
TX_PE[1,0] = 11  
A
D
C
B
A
E
B
C
C
3.125Gbps  
K28.7 PATTERN  
MEASURED DIRECTLY AT PART  
2.5Gbps XAUI CJPAT  
24AWG CABLE  
D
A, B  
0
0
5
10  
15  
20  
A = 3dB, TX_PE = 00  
B = 6dB, TX_PE = 01  
C = 9dB, TX_PE = 10  
D = 12dB, TX_PE = 11  
0
5
10  
15  
20  
CABLE LENGTH (m)  
CABLE LENGTH (m)  
A = 24AWG, TX_PE[1,0] = 00 D = 24AWG, TX_PE[1,0] = 11  
B = 24AWG, TX_PE[1,0] = 01 E = 28AWG, TX_PE[1,0] = 11  
C = 24AWG, TX_PE[1,0] = 10  
10m 24AWG UNEQUALIZED CABLE  
10m 24AWG UNEQUALIZED CABLE ASSEMBLY  
TX_IN INPUT RETURN LOSS  
vs. FREQUENCY  
ASSEMBLY OUTPUT WITHOUT MAX3983  
OUTPUT WITH MAX3983 PREEMPHASIS  
MAX3983 toc04  
MAX3983 toc05  
0
USING AGILENT 8720ES AND ATN MICROWAVE  
ATN-4112A S-PARAMETER TEST SET  
DE-EMBEDDING SMA CONNECTOR,  
3.125Gbps  
PREEMPHASIS,  
1500mV  
3.125Gbps  
P-P  
-5  
XAUI CJPAT TX_PE[1, 0] = 10  
AT TRANSMITTER XAUI CJPAT  
CABLE ONLY  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
COUPLING CAPACITOR, AND 3in TRACE  
320mV  
P-P  
60ps/div  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
FREQUENCY (GHz)  
60ps/div  
_______________________________________________________________________________________  
7
Quad Copper-Cable Signal Conditioner  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, T = +25°C, unless otherwise noted.)  
CC  
A
TX_OUT OUTPUT RETURN LOSS  
vs. FREQUENCY  
RX_IN INPUT RETURN LOSS  
vs. FREQUENCY  
0
-5  
0
-5  
USING AGILENT 8720ES AND ATN MICROWAVE  
ATN-4112A S-PARAMETER TEST SET  
DE-EMBEDDING SMA CONNECTOR,  
USING AGILENT 8720ES AND ATN MICROWAVE  
ATN-4112A S-PARAMETER TEST SET  
DE-EMBEDDING SMA CONNECTOR,  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
COUPLING CAPACITOR, AND 3in TRACE  
COUPLING CAPACITOR, AND 3in TRACE  
MAX983  
-10  
-15  
-20  
-25  
-30  
-35  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
FREQUENCY (GHz)  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
FREQUENCY (GHz)  
RX_OUT OUTPUT RETURN LOSS  
vs. FREQUENCY  
POWER-ON RESET DELAY  
WITH SUPPLY RAMP  
0
-5  
USING AGILENT 8720ES AND ATN MICROWAVE  
ATN-4112A S-PARAMETER TEST SET  
DE-EMBEDDING SMA CONNECTOR,  
COUPLING CAPACITOR, AND 3in TRACE  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
1V/div  
1μF CAPACITOR FROM  
POR PIN TO GROUND  
V
CC  
200mA/div  
I
CC  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
FREQUENCY (GHz)  
2ms/div  
8
_______________________________________________________________________________________  
Quad Copper-Cable Signal Conditioner  
MAX983  
Pin Description  
PIN  
NAME  
FUNCTION  
PC Board Receiver Signal Detect, TTL Output. This output is open-collector TTL, and therefore  
TX_SD1 to  
TX_SD4  
1, 2, 16, 17  
requires an external 4.7kΩ to 10kΩ pullup resistor to V . These outputs sink current when the input  
CC  
signal level is not valid.  
3, 15  
V
1
CC  
Power-Supply Connection for TX Inputs. Connect to +3.3V.  
TX_IN1- to PC Board Receiver Negative Data Inputs, CML. These inputs are internally differentially terminated to  
TX_IN4- the corresponding TX_IN+ with 100Ω.  
4, 7, 10, 13  
TX_IN1+ to PC Board Receiver Positive Data Inputs, CML. These inputs are internally differentially terminated to  
5, 8, 11, 14  
TX_IN4+  
the corresponding TX_IN- with 100Ω.  
6, 9, 12, 40,  
43, 46  
GND  
Circuit Ground  
Cable Transmitter Enable Input, LVTTL with 40kΩ Internal Pullup. This pin enables all four cable  
transmitter outputs TX_OUT[1:4]. When low, differential output is less than 30mV . Set high or open  
for normal operation.  
18  
19  
TX_ENABLE  
N.C.  
P-P  
No Connection. Do not connect this pin.  
20, 23, 26,  
29, 32  
V
2
CC  
Power-Supply Connection for TX Outputs. Connect to +3.3V.  
21, 24, 27, TX_OUT1+ to  
Cable Transmitter Positive Data Outputs, CML. These outputs are terminated with 50Ω to V 2.  
CC  
30  
TX_OUT4+  
22, 25, 28, TX_OUT1- to  
Cable Transmitter Negative Data Outputs, CML. These outputs are terminated with 50Ω to V 2.  
CC  
31  
33  
TX_OUT4-  
TX_PE0  
Cable Transmitter Preemphasis Control Input, LVTTL with 40kΩ Internal Pullup. This pin is the least  
significant bit of the 2-bit preemphasis control. Set high or open to assert this bit.  
Cable Transmitter Preemphasis Control Input, LVTTL with 40kΩ Internal Pullup. This pin is the most  
significant bit of the 2-bit preemphasis control. Set high or open to assert this bit.  
34  
TX_PE1  
Cable Receiver Signal Detect, TTL Output. This output is open-collector TTL, and therefore it requires  
35, 36, 50,  
51  
RX_SD4 to  
RX_SD1  
an external 4.7kΩ to 10kΩ pullup resistor to V . These outputs sink current when the input signal  
CC  
level is not valid.  
37, 49  
V
3
CC  
Power-Supply Connection for RX Inputs. Connect to +3.3V.  
38, 41, 44,  
47  
RX_IN4- to Cable Receiver Negative Data Inputs, CML. These inputs are internally differentially terminated to the  
RX_IN1- corresponding RX_IN+ with 100Ω.  
39, 42, 45,  
48  
RX_IN4+ to Cable Receiver Positive Data Inputs, CML. These inputs are internally differentially terminated to the  
RX_IN1+  
corresponding RX_IN- with 100Ω.  
PC Board Transmitter Enable Input, LVTTL with 40kΩ Internal Pullup. This pin enables all four PC  
52  
RX_ENABLE board transmitter outputs RX_OUT[1:4]. When low, differential output is less than 30mV . Set high  
P-P  
or open for normal operation.  
Power-On Reset Connection. Connect external capacitor 0.1µF C  
Detailed Description.  
10µF to ground. See the  
POR  
53  
POR  
54, 57, 60,  
63, 66  
V
4
CC  
Power-Supply Connection for RX Outputs. Connect to +3.3V.  
_______________________________________________________________________________________  
9
Quad Copper-Cable Signal Conditioner  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
PC Board Transmitter Positive Data Outputs, CML. These outputs are terminated with 50Ω to V 4.  
55, 58, 61, RX_OUT4+ to  
CC  
64  
RX_OUT1+  
56, 59, 62, RX_OUT4- to  
PC Board Transmitter Negative Data Outputs, CML. These outputs are terminated with 50Ω to V 4.  
CC  
65  
67  
RX_OUT1-  
RX_PE  
MAX983  
PC Board Transmitter Preemphasis Control Input, LVTTL with 40kΩ Internal Pullup. Set high or open  
to assert this bit.  
Loopback Enable Input, LVTTL with 40kΩ Internal Pullup. Set low for normal operation. Set high or  
open for internal connection of TX_IN to RX_OUT. TX_OUT continues to transmit when loopback is  
enabled.  
68  
EP  
LOOPBACK  
Exposed Pad. Signal and supply ground. For optimal high-frequency performance and thermal  
conductivity, this pad must be soldered to the circuit board ground.  
Exposed Pad  
V 1  
CC  
40kΩ  
V 2  
CC  
2
LVTTL  
TX_PE[0:1]  
V 2  
CC  
V 1  
CC  
LIMITER  
TX_OUT[1:4]+  
TX_OUT[1:4]-  
TX_IN[1:4]+  
TX_IN[1:4]-  
FIXED  
EQUALIZER  
PRE-  
EMPHASIS  
CML  
CML  
TX_SD[1:4]  
V 1  
CC  
V 2  
CC  
V
V
1
CC  
SIGNAL  
DETECT  
40kΩ  
V
V
2
4
CC  
TX_ENABLE  
LOOPBACK  
LVTTL  
LVTTL  
3
CC  
40kΩ  
POWER  
MANAGEMENT  
CC  
POR  
V 4  
CC  
V 4  
CC  
V 3  
CC  
1
0
RX_OUT[1:4]+  
RX_OUT[1:4]-  
PRE-  
EMPHASIS  
CML  
4
RX_IN[1:4]+  
RX_IN[1:4]-  
FIXED  
EQUALIZER  
V
V
3
CML  
CC  
LIMITER  
40kΩ  
V
V
CC  
RX_ENABLE  
LVTTL  
LVTTL  
3
CC  
40kΩ  
4
CC  
MAX3983  
RX_PE  
RX_SD[1:4]  
V 4  
CC  
V 3  
CC  
SIGNAL  
DETECT  
GND  
Figure 3. Functional Diagram  
10 ______________________________________________________________________________________  
Quad Copper-Cable Signal Conditioner  
MAX983  
Signal-Detect Outputs  
Detailed Description  
Signal detect (SD) is provided on all eight data inputs.  
The MAX3983 comprises a PC board receiver and  
Pullup resistors should be connected from the SD out-  
puts to a supply in the 3.0V to 5.5V range. The signal-  
detect outputs are not valid until power-up is complete.  
Typical signal-detect response time is 0.35µs.  
cable driver section (TX), as well as a cable receiver  
and PC board driver section (RX). Equalization and sig-  
nal detection are provided in each receiver, and pre-  
emphasis is included in each transmitter. The MAX3983  
includes separate enable control for the TX outputs and  
RX outputs. Loopback is provided for diagnostic testing.  
In the RX section, the SD output asserts high when the  
RX_IN signal amplitude is greater than 175mV  
.
P-P  
RX_SD deasserts low when the RX_IN signal amplitude  
drops below 85mV  
PC Board Receiver and Cable Driver  
(TX_IN and TX_OUT)  
.
P-P  
In the TX section, the SD output asserts high when the  
TX_IN signal amplitude is greater than 800mV  
Data is fed into the MAX3983 from the host through a  
CML input stage and fixed equalization stage. The  
fixed equalizer in the PC board receiver corrects for up  
to 20in of PC board loss on FR4 material. The cable dri-  
ver includes four-state preemphasis to compensate for  
up to 20m of 24AWG, 100Ω balanced cable. Table 1 is  
provided for easy translation between preemphasis  
expressions. Residual jitter of the MAX3983 is indepen-  
.
P-P  
TX_SD deasserts low when the TX_IN signal amplitude  
drops below 200mV  
.
P-P  
TX and RX Enable  
The TX_ENABLE and RX_ENABLE pins enable TX and  
RX, respectively. Typical enable time is 15ns, and typi-  
cal disable time is 25ns. The enable inputs may be  
connected to signal-detect outputs to automatically  
detect an incoming signal (see the Autodetect section).  
dent of up to 0.17UI  
source jitter.  
P-P  
Cable Receiver and PC Board Driver  
(RX_IN and RX_OUT)  
The fixed equalizer on each RX input provides approxi-  
mately 6dB equalization to correct for up to 5m of  
28AWG, 100Ω balanced cable. The PC board driver  
includes two-state preemphasis to compensate for up  
to 20in of FR4 material.  
Power-On Reset  
To limit inrush current, the MAX3983 includes internal  
power-on reset circuitry. Connect a capacitor 0.1µF  
C
10µF from POR to ground. With C  
= 1µF,  
POR  
POR  
power-on delay is 6ms (typ).  
Table 1. Preemphasis Translation  
α
RATIO  
10Gbase-CX4  
IN dB  
V
V
V  
V
LOW _PP  
HIGH_PP  
HIGH_PP  
LOW _PP  
V
HIGH_PP  
1 −  
V
HIGH_PP  
20 log  
V
V
+ V  
V
HIGH_PP  
LOW _PP  
HIGH_PP  
LOW _PP  
V
LOW _PP  
V
LOW_PP  
1.41  
2.00  
2.82  
4.00  
0.17  
0.33  
0.48  
0.60  
0.29  
0.50  
0.65  
0.75  
3
6
9
12  
______________________________________________________________________________________ 11  
Quad Copper-Cable Signal Conditioner  
noise amplification can occur and create undesirable  
Applications Information  
Signal-Detect Output Leakage Current  
Considerations  
output signals. Autodetect is recommended to eliminate  
noise amplification or possible oscillation. When using  
autodetect, the link length is determined by the received  
signal strength. It is possible to reach longer distances if  
the autodetect configuration is not used.  
If all four RX or TX signal-detect outputs are to be con-  
nected together to form one signal detect, the leakage  
current of the output stage needs to be considered.  
Each SD output sinks a maximum of 25µA when assert-  
ed, so when four are connected together, a maximum of  
100µA is possible. The value of the pullup resistor con-  
Using Loopback with Autodetect  
If the MAX3983 is configured for autodetection,  
RX_ENABLE is controlled by the RX_SD[1:4] outputs.  
Since loopback requires RX_ENABLE to be high, a sim-  
ple OR gate can be used to enable the RX outputs  
when either RX_SD[1:4] is high or when LOOPBACK is  
high (Figure 5).  
MAX983  
nected to pullup voltage V  
should be selected so  
PULLUP  
the leakage current does not cause the output voltage to  
fall below the threshold of the next stage. For example, if  
the signal-detect outputs are connected together and to  
a stage with a logic-high threshold of 1.5V, the pullup  
InfiniBand and 10Gbase-CX4 Transition  
Time Specification  
resistor needs to be chosen so V  
- I  
PULLUP  
x
PULLUP  
> 1.5V. In this case, if V  
LEAKAGE  
R
R
= 3.0V,  
PULLUP  
PULLUP  
InfiniBand specifies a minimum transition time (20% to  
80%) of 100ps and CX4 specifies a minimum of 60ps.  
Both are specified at the connector interface to the  
cable. The output transition times of the MAX3983 are  
45ps (typ) and therefore require some care to increase  
this time. Approximately 3in of FR4 with 4-mil-wide lines  
is sufficient to lengthen the transition time to 60ps. For  
100ps transition times, additional length can be used or  
an additional 1.5pF capacitor can be placed across the  
outputs of the MAX3983. Do not use high-speed dielec-  
tric material for the circuit board if the application  
requires the use of the InfiniBand or CX4 type connector  
system. With such materials, the fast edges of the  
should be less than 15kΩ.  
Autodetect  
The MAX3983 can automatically detect an incoming sig-  
nal and enable the appropriate outputs. Autodetect of  
the RX side is done by connecting RX_SD[1:4] together  
with a pullup resistor (value 4.7kΩ to 10kΩ to V ) to  
CC  
RX_ENABLE. For the TX side, this is done by connecting  
TX_SD[1:4] together with a pullup resistor (value 4.7kΩ  
to 10kΩ to V ) to TX_ENABLE (Figure 4). If signal is  
CC  
detected on all channels, SD is high and forces the cor-  
responding ENABLE high. Leaving the inputs to the  
MAX3983 open (i.e., floating) is not recommended, as  
3.0V V  
5.5V  
PULLUP  
3.0V V  
5.5V  
PULLUP  
4.7kΩ ≤ R 10kΩ  
4.7kΩ ≤ R 10kΩ  
RX_SD1  
RX_SD2  
RX_SD3  
RX_SD4  
RX OR TX_SD1  
RX OR TX_SD2  
RX OR TX_SD3  
RX OR TX_SD4  
MAX3983  
MAX3983  
RX_ENABLE  
LOOPBACK  
RX OR TX_ENABLE  
TO HOST  
Figure 4. Autodetection Using Corresponding Signal-Detect  
Outputs and Enable Input  
Figure 5. Loopback in Autodetect Mode  
12 ______________________________________________________________________________________  
Quad Copper-Cable Signal Conditioner  
MAX983  
MAX3983 will produce excessive crosstalk in InfiniBand  
and CX4 cable assemblies.  
Interface Schematics  
Crosstalk  
V
CC  
X
For InfiniBand and 10Gbase-CX4 applications, it is  
imperative to know the near-end crosstalk characteristics  
of the cable assemblies. 10Gbase-CX4 has defined the  
upper limit over frequency for near-end crosstalk (NEXT)  
with single and multiple aggressors. InfiniBand has only  
specified a percentage as measured in the time domain  
relative to the transmitter output. Regardless of the spec-  
ification method, NEXT is a critical component of the link  
performance. When using larger amounts of preempha-  
sis, the received eye height is small and vulnerable to  
NEXT. For those situations requiring a large transmit pre-  
emphasis, the NEXT should be less than -30dB at fre-  
quencies from 1GHz to 3GHz. It should be noted that  
cables that meet the 10Gbase-CX4 NEXT and MDNEXT  
should provide adequate isolation.  
5pF  
RX_IN[1:4]+  
TX_IN[1:4]+  
50Ω  
50Ω  
V
CC  
X - 1.5V  
RX_IN[1:4]-  
TX_IN[1:4]-  
Layout Considerations  
Circuit board layout and design can significantly affect  
the performance of the MAX3983. Use good high-fre-  
quency design techniques, including minimizing  
ground inductance and using controlled-impedance  
transmission lines on the data signals. Power-supply  
GND  
decoupling should also be placed as close to the V  
CC  
pins as possible. There should be sufficient supply fil-  
tering. Always connect all V s to a power plane. Take  
CC  
Figure 6. RX_IN and TX_IN Equivalent Input Structure  
care to isolate the input from the output signals to  
reduce feedthrough. The performance of the equalizer  
is optimized for lossy environments. For best results,  
use board material with a dielectric tangential loss of  
approximately 0.02 and 4-mil-wide transmission lines.  
High-speed materials with tangential loss of less than  
0.01 can be used, but require special care to reduce  
near-end crosstalk in cable assemblies.  
V
X
CC  
50Ω  
50Ω  
Exposed-Pad Package  
The exposed-pad, 68-pin QFN package incorporates  
features that provide a very low thermal resistance path  
for heat removal from the IC. The pad is electrical  
ground on the MAX3983 and must be soldered to the  
circuit board for proper thermal and electrical perfor-  
mance. For more information on exposed-pad pack-  
ages, refer to Maxim Application Note HFAN-08.1:  
Thermal Considerations of QFN and Other Exposed-  
Paddle Packages.  
RX_OUT[1:4]+  
TX_OUT[1:4]+  
RX_OUT[1:4]-  
TX_OUT[1:4]-  
GND  
Figure 7. RX_OUT and TX_OUT Equivalent Output Structure  
______________________________________________________________________________________ 13  
Quad Copper-Cable Signal Conditioner  
V
Y
CC  
V
X
CC  
RX_SD[1:4]  
TX_SD[1:4]  
40kΩ  
LVTTL IN  
MAX983  
GND  
GND  
V
CC  
X
V
Y
PIN NAME  
RX_ENABLE,  
CC  
V
3
1
V
4
2
CC  
CC  
LOOPBACK, RX_PE  
TX_ENABLE,  
TXPE[0:1]  
V
V
CC  
CC  
Figure 8. LVTTL Equivalent Input Structure  
Figure 9. Signal-Detect Equivalent Output Structure  
14 ______________________________________________________________________________________  
Quad Copper-Cable Signal Conditioner  
MAX983  
Pin Configuration  
TOP VIEW  
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52  
TX_SD1  
TX_SD2  
1
2
51 RX_SD1  
50 RX_SD2  
V
1
V
49  
3
CC  
3
CC  
TX_IN1-  
TX_IN1+  
GND  
4
48 RX_IN1+  
47 RX_IN1-  
46 GND  
5
6
TX_IN2-  
TX_IN2+  
GND  
7
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
RX_IN2+  
RX_IN2-  
GND  
8
9
MAX3983  
TX_IN3-  
TX_IN3+  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
RX_IN3+  
RX_IN3-  
GND  
TX_IN4-  
TX_IN4+  
RX_IN4+  
RX_IN4-  
V
CC  
1
V
CC  
3
TX_SD3  
TX_SD4  
RX_SD3  
RX_SD4  
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
68 QFN*  
*THE EXPOSED PAD OF THE QFN PACKAGE MUST BE SOLDERED TO GROUND  
FOR PROPER THERMAL AND ELECTRICAL OPERATION OF THE MAX3983.  
Chip Information  
TRANSISTOR COUNT: 7493  
PROCESS: SiGe Bipolar  
______________________________________________________________________________________ 15  
Quad Copper-Cable Signal Conditioner  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
MAX983  
PACKAGE OUTLINE, 68L QFN, 10x10x0.9 MM  
1
21-0122  
C
2
PACKAGE OUTLINE, 68L QFN, 10x10x0.9 MM  
1
21-0122  
C
2
16 ______________________________________________________________________________________  
Quad Copper-Cable Signal Conditioner  
MAX983  
Revision History  
Rev 0; 7/03: Initial data sheet release.  
Rev 1; 2/07: Added lead-free package to Ordering Information table (page 1).  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX3983UGK+

Telecom Circuit, 1-Func, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68
MAXIM

MAX3983UGK+D

暂无描述
MAXIM

MAX3983UGK+TD

Telecom Circuit, 1-Func, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68
MAXIM

MAX3983UGK-D

Telecom Circuit, 1-Func, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX3984

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer
MAXIM

MAX3984UTE+

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer
MAXIM

MAX3987ETM+

Interface Circuit,
MAXIM

MAX398C/D

Precision, 8-Channel/Dual 4-Channel, Low-Voltage, CMOS Analog Multiplexers
MAXIM

MAX398CEE

Single-Ended Multiplexer, 1 Func, 8 Channel, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137AB, QSOP-16
MAXIM

MAX398CEE+

Single-Ended Multiplexer, 1 Func, 8 Channel, CMOS, PDSO16, QSOP-16
MAXIM

MAX398CGE

Precision, 8-Channel/Dual 4-Channel, Low-Voltage, CMOS Analog Multiplexers
MAXIM

MAX398CPE

Precision, 8-Channel/Dual 4-Channel, Low-Voltage, CMOS Analog Multiplexers
MAXIM