MAX3992 [MAXIM]

10Gbps Clock and Data Recovery with Equalizer;
MAX3992
型号: MAX3992
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

10Gbps Clock and Data Recovery with Equalizer

文件: 总12页 (文件大小:271K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3496; Rev 2; 11/06  
10Gbps Clock and Data Recovery  
with Equalizer  
General Description  
Features  
Multirate Operation from 9.95Gbps to 11.1Gbps  
Span Up to 300mm (12in) FR4 with One Connector  
Low-Output Jitter Generation: 4mUIRMS  
Low-Output Deterministic Jitter: 4.6psP-P  
XFI-Compliant Input Interface  
The MAX3992 is a 10Gbps clock and data recovery  
(CDR) with equalizer IC for XFP optical transmitters. The  
MAX3992 and the MAX3991 (CDR with limiting amplifier)  
form a signal conditioner chipset for use in XFP trans-  
ceiver modules. The chipset is XFI compliant and offers  
multirate operation for data rates from 9.95Gbps to  
11.1Gbps.  
The MAX3992 recovers the data for up to 12 inches of  
FR-4 and one connector without the need for a stand-  
alone equalizer. The phase-locked loop is optimized for  
jitter tolerance in SONET, Ethernet, and Fibre-Channel  
LOS Indicator  
LOL Indicator  
Power Dissipation: 356mW  
applications. Low jitter generation of 4mUI  
leaves  
RMS  
adequate margin for meeting SONET jitter requirements  
at the optical output.  
An AC-based power detector asserts the loss-of-signal  
(LOS) output when the input signal is removed. An exter-  
nal reference clock, with frequency equal to 1/64 or 1/16  
of the serial data rate, is used to aid in frequency acqui-  
sition. A loss-of-lock (LOL) indicator is provided to indi-  
cate the lock status of the receiver PLL.  
Ordering Information  
PIN-  
PACKAGE  
PKG  
CODE  
PART  
TEMP RANGE  
MAX3992UTG  
0°C to +85°C  
0°C to +85°C  
24 QFN  
24 QFN  
T2444-4  
T2444-4  
MAX3992UTG+*  
The MAX3992 is available in a 4mm x 4mm, 24-pin QFN  
package. It consumes 356mW from a single +3.3V sup-  
ply and operates over a 0°C to +85°C temperature range.  
*Future product—contact factory for availability.  
+Denotes lead-free package.  
Pin Configuration  
Applications  
9.95Gbps to 11.1Gbps Optical XFP Modules  
SONET OC-192/SDH STM-64 XFP Transceivers  
10.3Gbps/11.1Gbps Ethernet XFP Transceivers  
10.5Gbps Fibre-Channel XFP Transceivers  
10Gbps DWDM Transceivers  
TOP VIEW  
24  
23  
22  
21  
20  
19  
V
CC  
V
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
CC  
10Gbps XFP Copper Modules  
GND  
SDI-  
SDI+  
GND  
GND  
SDO-  
SDO+  
GND  
High-Speed Backplane Interconnects  
MAX3992  
V
CC  
V
CC  
Typical Application Circuit appears at end of data sheet.  
7
8
9
10  
11  
12  
4mm x 4mm QFN*  
*THE EXPOSED PAD MUST BE CONNECTED TO CIRCUIT-BOARD GROUND FOR  
PROPER THERMAL AND ELECTRICAL PERFORMANCE.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
10Gbps Clock and Data Recovery  
with Equalizer  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V ..............................................-0.5V to +4.0V  
Input Voltage Levels  
Voltage at (CFIL, LOL, VTH, POL,  
LOS, FCTL1, FCTL2) ..............................-0.5V to (V  
CC  
+ 0.5V)  
CC  
(SDI+, SDI-, REFCLK+,  
REFCLK-) ....................................(V  
CML Output Voltage  
(SDO+, SDO-, SCLKO+,  
SLCKO-)......................................(V  
Continuous Power Dissipation (T = +85°C)  
A
- 1.0V) to (V  
- 1.0V) to (V  
+ 0.5V)  
+ 0.5V)  
24-Pin QFN (derate 20.8mW/°C above +85°C) .........1355mW  
Junction Temperature Range.............................-40°C to+150°C  
Storage Temperature Range.............…………..-55°C to +150°C  
Lead Temperature (soldering, 10s) ..……………………..+300°C  
CC  
CC  
CC  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(See Table 1 for operating conditions. Typical values at V  
= +3.3V, T = +25°C, unless otherwise noted.)  
A
CC  
PARAMETER  
Supply Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
108  
145  
mA  
CC  
DATA INPUT SPECIFICATION (SDI± ±  
Single-Ended Input Resistance  
Differential Input Resistance  
R
42  
84  
50  
58  
SE  
R
100  
116  
D
Single-Ended Input Resistance  
Matching  
5
%
0.1GHz to 5.5GHz (Note 1)  
5.5GHz to 12GHz (Note 1)  
15  
6
Differential-Input Return Loss  
SDD11  
SCD11  
SCC11  
dB  
dB  
dB  
Differential to Common-Mode  
Conversion  
0.1GHz to 15GHz  
0.1GHz to 15GHz  
17  
7
Common-Mode Input Return  
Loss  
REFERENCE CLOCK SPECIFICATION (REFCLK± ±  
Single-Ended Input Resisitance  
84  
100  
200  
116  
232  
Differential Input Resistance  
168  
CML OUTPUT SPECIFICATION (SDO± ±  
SDO Differential Output Swing  
(Note 2)  
RL = 50to V  
575  
650  
725  
mV  
P-P  
SDO Output Common-Mode  
Voltage  
V
-
CC  
V
CC  
0.16  
SCLKO Differential Output  
Single-Ended Output Resistance  
Differential Output Resistance  
380  
50  
mV  
P-P  
42  
84  
58  
R
O
100  
116  
Single-Ended Output Resistance  
Matching  
5
%
0.1GHz to 5.5GHz (Note 1)  
5.5GHz to 12GHz (Note 1)  
(20% to 80%) (Note 2)  
(Note 3)  
13  
8
Differential-Output Return Loss  
SDD22  
dB  
Rise/Fall Time  
18  
23  
30  
50  
ps  
µs  
Power-Down Assert Time  
2
_______________________________________________________________________________________  
10Gbps Clock and Data Recovery  
with Equalizer  
ELECTRICAL CHARACTERISTICS (continued)  
(See Table 1 for operating conditions. Typical values at V  
= +3.3V, T = +25°C, unless otherwise noted.)  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
0.25  
8.0  
UNITS  
JITTER SPECIFICATION  
120kHz < f 8MHz (Notes 2, 4)  
f 120kHz (Note 5)  
(Notes 2, 4)  
0.05  
0.03  
5.6  
Jitter Peaking  
J
dB  
P
Jitter Transfer Bandwidth  
J
MHz  
BW  
>2.8  
(Note 6)  
f = 400kHz  
2.8  
Sinusoidal Jitter Tolerance  
Jitter Generation  
(Notes 2, 4, 7)  
UI  
P-P  
f = 4MHz  
0.4  
0.4  
0.55  
0.45  
4
f = 80MHz  
(Notes 2, 4, 8)  
5.5  
13  
mUI  
ps  
RMS  
Serial-Data Output Deterministic  
Jitter  
DJ  
PRBS 27 - 1 (Note 2)  
4.6  
P-P  
PLL ACQUISITION/LOCK SPECIFICATION  
Acquisition Time  
Figures 1, 2 (Note 2)  
Figure 1 (Note 2)  
(Note 9)  
200  
90  
µs  
LOL Assert Time  
µs  
Maximum Frequency Pullin Time  
2
ms  
Frequency Difference at which  
LOL Is Asserted  
f = f  
N = 16 or 64  
/ N - f  
,
,
VCO  
REFCLK  
|
|
f/f  
f/f  
651  
ppm  
ppm  
REFCLK  
REFCLK  
Frequency Difference at which  
LOL Is Deasserted  
f = f / N - f  
VCO  
N = 16 or 64  
REFCLK  
|
|
500  
LOSS-OF-SIGNAL (LOS± SPECIFICATION  
VTH Control Voltage Range  
LOS Gain Factor  
VTH  
150  
500  
mV  
V/V  
VTH/  
10  
V
V
V
LOS_ASSERT  
Minimum LOS Assert Voltage  
Maximum LOS Assert Voltage  
LOS Gain-Factor Accuracy  
LOS Hysteresis  
15  
50  
mV  
mV  
dB  
dB  
%
LOS_ASSERT  
LOS_ASSERT  
(Notes 2, 10)  
(Notes 2, 11)  
-1.5  
3.5  
-10  
3
+1.5  
3.9  
+10  
90  
3.7  
LOS Gain-Factor Stability  
LOS Assert Time  
(Note 2) Overtemperature and supply  
Figure 2 (Note 2)  
µs  
LOS Deassert Time  
Figure 2 (Note 2)  
90  
µs  
VTH Input Current  
-5  
+5  
µA  
LVTTL INPUT/OUTPUT SPECIFICATION (LOL, LOS, FCTL1, FCTL2±  
Input High Voltage  
V
2.0  
-30  
V
IH  
Input Low Voltage  
Input Current  
V
0.8  
V
IL  
+30  
µA  
V
0.5  
-
CC  
Output High Voltage  
Output Low Voltage  
V
Sourcing 30µA  
Sinking 1mA  
V
V
OH  
V
0.4  
OL  
_______________________________________________________________________________________  
3
10Gbps Clock and Data Recovery  
with Equalizer  
ELECTRICAL CHARACTERISTICS (continued)  
(See Table 1 for operating conditions. Typical values at V  
= +3.3V, T = +25°C, unless otherwise noted.)  
CC  
A
Note 1: Measured with 100mV  
differential amplitude.  
P-P  
Note 2: Guaranteed by design and characterization.  
Note 3: Measured from the time that the FCTL1 input goes high with FCTL2 = 0, to the time when the supply current drops to less  
than 40% of the nominal value.  
31  
Note 4: Measured with PRBS = 2 - 1.  
Note 5: Larger C  
can be used to reduce jitter peaking at 120kHz. A larger C  
will increase acquisition time. C  
should  
FILT  
FILT  
FILT  
not exceed 200nF.  
Note 6: Measurement limited by test equipment.  
-12  
Note 7: Jitter tolerance is for BER 10 , measured with additional 0.1VI deterministic jitter through 15 inches of FR4. (See Typical  
Operating Characteristics 1.)  
Note 8: Measured with 50kHz to 80MHz SONET filter.  
Note 9: Applies on power-up or after standby.  
Note 10: Over process, temperature and supply.  
Note 11: Hysteresis is defined as 20Log(V  
/V  
).  
LOS-DEASSERT LOS-ASSERT  
Table 1. Operating Conditions (Unless otherwise noted, FCTL1 = FCTL2 = 0.)  
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
3.0  
0
TYP  
(See Table 2)  
50  
MAX  
3.6  
UNITS  
V
V
CC  
Ambient Temperature  
Input Data Rate  
T
A
+85  
°C  
Rb  
Gbps  
Differential Input Voltage to  
Transmission Line  
V
0 to 12 inches FR-4  
400  
1000  
mV  
D
P-P  
P-P  
Output Load Resistance  
RL  
RL is AC-coupled  
REFCLK Differential Input Voltage  
Swing  
300  
30  
1600  
70  
mV  
REFCLK Duty Cycle  
REFCLK Frequency  
REFCLK Accuracy  
%
Rb / 16  
Rb / 64  
f
GHz  
ppm  
ps  
REFCLK  
Relative to Rb / 16 or Rb / 64  
-100  
+100  
1200  
300  
10  
F
= Rb / 64  
= Rb / 16  
REFCLK  
REFCLK  
REFCLK Rise/Fall Times (20% to  
80%)  
f
REFCLK Random Jitter  
Noise bandwidth < 100MHz  
ps  
RMS  
Table 2. Serial Data Rate and Reference Clock Frequency  
DATA RATE (Rb±  
(Gbps±  
/16 REFERENCE CLOCK  
/64 REFERENCE CLOCK  
FREQUENCY (MHz±  
APPLICATION  
FREQUENCY (MHz±  
OC-192 SONET – SDH64  
OC-192 SONET over FEC  
ITU G.709  
9.95328  
10.664  
622.08  
666.5  
155.52  
166.625  
10.709  
669.3125  
644.53125  
693.483125  
657.421875  
167.328125  
161.1328125  
173.3707813  
164.355469  
10Gbps Ethernet, IEEE 802.3ae  
10Gbps Ethernet over ITU G.709  
10Gbps Fibre Channel  
10.3125  
11.09573  
10.51875  
Note: The part should be in standby mode when data rates are being switched.  
4
_______________________________________________________________________________________  
10Gbps Clock and Data Recovery  
with Equalizer  
f/f  
REFCLK  
651ppm  
500ppm  
LOL  
ASSERT TIME  
ACQUISITION  
TIME  
LOL  
*ASSERT AND ACQUISITION TIME ARE DEFINED  
WITH A VALID REFERENCE CLOCK APPLIED.  
Figure 1. TX LOL Assert and PLL Acquisition Time  
DATA INPUT  
POWER  
LOS ASSERT TIME  
LOS DEASSERT TIME  
LOS  
ACQUISITION TIME  
LOL  
Figure 2. LOS Assert/Deassert Time  
_______________________________________________________________________________________  
5
10Gbps Clock and Data Recovery  
with Equalizer  
Typical Operating Characteristics  
(V  
= 3.3V, T = +25°C, unless otherwise noted.)  
CC  
A
RECOVERED REFERENCE SIGNAL  
MAX3992 INPUT  
(15in FR-4)  
JITTER GENERATION vs. POWER-SUPPLY  
WHITE NOISE AMPLITUDE (BW < 100kHz)  
31  
PRBS 2 -1 15in FR-4  
MAX3992 toc02  
MAX3992 toc01  
16  
PRBS 231-1  
500  
14  
12  
10  
50  
8
6
-50  
4
2
-500  
0
0
1
1
0
0.35  
0.65  
0
10  
20  
30  
40  
)
50  
NORMALIZED BIT TIME (UI)  
NORMALIZED BIT TIME (UI)  
NOISE AMPLITUDE (mV  
RMS  
POWER-SUPPLY INDUCED OUTPUT  
JITTER vs. RIPPLE FREQUENCY  
SINUSOIDAL JITTER TOLERANCE  
12in FR-4 231-1 PRBS DATA  
JITTER TRANSFER  
3
0
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
100  
10  
TOLERANCE EXCEEDS  
MODULATION  
CAPABILITIES OF TEST  
EQUIPMENT  
-3  
-6  
-9  
1
XFI TELECOM  
MASK  
-12  
-15  
-18  
-21  
0.1  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
MAX3992  
SUPPLY CURRENT vs. TEMPERATURE  
DIFFERENTIAL S11  
SDD11  
140  
130  
120  
110  
100  
90  
10  
5
0
-5  
XFI MASK  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
80  
-10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
10M  
100M  
1G  
10G  
100G  
FREQUENCY (Hz)  
6
_______________________________________________________________________________________  
10Gbps Clock and Data Recovery  
with Equalizer  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, T = +25°C, unless otherwise noted.)  
A
CC  
DIFFERENTIAL TO COMMON MODE S11  
SCD11  
COMMON MODE S11  
SCC11  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-5  
XFI MASK  
XFI MASK  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
10M  
100M  
1G  
10G  
100G  
10M  
100M  
1G  
10G  
100G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 6, 11, 13, 18  
V
+3.3V Power Supply  
Supply Ground  
CC  
2, 5, 14, 17  
GND  
SDI-  
3
4
Negative Serial Input, CML  
Positive Serial Input, CML  
SDI+  
Positive Clock Output, CML. See Table 3 for information about enabling the SCLKO output (for use  
in device testing).  
7
SCLKO+  
Negative Clock Output, CML. See Table 3 for information about enabling the SCLKO output (for use  
in device testing).  
8
9
SCLKO-  
FCTL2  
POL  
Function Control Input 2, TTL. See Table 3 for more information.  
Data Polarity Control Input, TTL. Connect to V  
or leave open to maintain the same polarity as the  
CC  
10  
input. Connect to GND to invert the polarity of the data.  
Loop-Filter Capacitor Connection. Connect a 0.047µF capacitor between CFIL and V  
Positive Serial Data Output, CML  
12  
15  
16  
19  
20  
CFIL  
SDO+  
SDO-  
LOL  
.
CC  
Negative Serial Data Output, CML  
Lock Status Indicator, TTL. This output goes high to indicate the receiver is out of lock.  
LOS  
Receiver Loss-of-Signal Indicator, TTL . This output goes high when the input signal is removed.  
Positive Reference Clock Input, Digital. The REFCLK inputs are designed to be AC-coupled to the  
reference clock source. REFCLK have a 200differential impedance. See the Detailed Description  
section for more information. See Table 2.  
21  
REFCLK+  
_______________________________________________________________________________________  
7
10Gbps Clock and Data Recovery  
with Equalizer  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Negative Reference Clock Input, Digital. The REFCLK inputs are designed to be AC-coupled to the  
reference clock source. REFCLK have a 200differential impedance. See the Detailed Description  
section for more information. See Table 2.  
22  
REFCLK-  
23  
24  
FCTL1  
VTH  
Function Control Input 1, TTL. See Table 3 for more information.  
LOS Threshold Input, Analog. A voltage applied to this input sets the LOS assert threshold. The LOS  
power detector can be disabled if VTH is connected to V , which forces LOS low.  
CC  
Supply Ground. The exposed pad must be soldered to the circuit-board ground for proper thermal  
and electrical performance. The MAX3992 uses exposed-pad variation T2444-4 in the package  
outline drawing. See the exposed-pad package.  
Exposed  
Pad  
EP  
Functional Diagram  
VTH  
LOS  
MAX3992  
DFF  
SDI+  
SDI-  
SDO+  
SDO-  
EQUALIZER  
CML  
CML  
CML  
D
Q
PLL  
PHASE/  
FREQUENCY  
DETECTOR  
SCLKO+  
SCLKO-  
VCO  
REFCLK+  
REFCLK-  
LOL  
DETECTOR  
200Ω  
FUNCTIONAL  
CONTROL  
FCTL1  
FCTL2  
CFIL  
LOL  
POL  
Figure 3. Functional Diagram  
most of the deterministic jitter caused by frequency  
dependent skin effect and dielectric losses, as well as  
connector loss.  
Detailed Description  
The MAX3992 clock and data recovery with equalizer  
recovers data from the XFI interface. It consists of an  
equalizer with LOS power detector and a data retimer  
with LOL indicator. An optional recovered clock may  
also be enabled for performance testing.  
PLL Retimer  
The integrated PLL recovers a synchronous clock that  
is used to retime the input data. Connect a 0.047µF  
capacitor between CFIL and V  
to provide PLL damp-  
CC  
Equalizer  
The SDI inputs of the MAX3992 accept serial NRZ data  
from XFI standard interfaces. When signals from  
ening. The external reference connected to REFCLK  
aids in frequency acquisition. Because the reference  
clock is only used for frequency acquisition, an  
extremely low jitter generation can be achieved from a  
low-quality reference clock. The reference clock should  
be within 100ppm of the bit rate divided by 16 or 64.  
400mV  
to 1000mV  
are applied to a transmission  
P-P  
P-P  
line from 0 to 12 inches of FR-4, the equalizer restores  
them for recovery by the CDR. The equalizer removes  
8
_______________________________________________________________________________________  
10Gbps Clock and Data Recovery  
with Equalizer  
Loss-of-Lock Monitor  
The LOL output indicates that the frequency difference  
Design Procedure  
Modes of Operation  
The MAX3992 has a standby mode and jitter test mode  
in addition to its normal operating mode. Standby is  
used to conserve power. In the standby mode, the  
power consumption of the MAX3992 falls below 40% of  
the normal-operation power consumption. The jitter test  
mode enables the SCLK outputs to clock a BERT when  
testing jitter generation, jitter transfer, and jitter toler-  
ance. The FCTL1 and FCTL2 TTL inputs are used to  
select the mode of operation as shown in Table 3.  
between the recovered clock and the reference clock is  
excessive. LOL may assert due to excessive jitter at the  
data input, incorrect frequency, or loss of input data.  
The LOL detector monitors the frequency difference  
between the recovered clock and the reference clock.  
The LOL output is asserted high when the frequency  
difference exceeds 650ppm.  
Loss-of-Signal Monitor  
The LOS output indicates a loss of input data. Set VTH  
>500mV. When the input signal is removed (<50mV),  
LOS will be asserted high.  
Serial Data Rate and  
Reference Clock Frequency  
Reference Clock Input  
The REFCLK inputs are internally terminated and self-  
biased to allow AC-coupling. The input impedance is  
100single-ended (200differential). The REFCLK  
inputs of the MAX3991 and MAX3992 should be con-  
nected close together in parallel. The impedance look-  
ing into the parallel combination is 100differential.  
This allows both the MAX3991 and MAX3992 to easily  
interface with one reference clock without using addi-  
tional components. See Figure 4.  
Input Configuration  
The SDI± inputs of the MAX3992 are current-mode  
logic (CML) compatible. The inputs have internal 50Ω  
terminations for minimum external components. See  
Figure 5 for the input structure. For additional informa-  
tion on logic interfacing, refer to Maxim Application  
Note HFAN 1.0: Introduction to LVDS, PECL, and CML.  
Output Configuration  
The MAX3992 uses CML for its high-speed digital out-  
puts (SDO± and SCLKO±). The configuration of the out-  
put circuit includes internal 50back terminations to  
V
. See Figure 6 for the output structure. CML outputs  
CC  
may be terminated by 50to V , or by 100differen-  
CC  
tial impedance. The relation of the output polarity to input  
can be reversed using the POL pin. For additional infor-  
mation on logic interfacing, refer to Maxim Application  
Note HFAN 1.0: Introduction to LVDS, PECL, and CML.  
50W  
MAX3991  
50W  
MAX3992  
REFERENCE  
REFERENCE  
CLOCK  
200  
200Ω  
200Ω  
CLOCK  
50W  
50W  
TRANSMITTER-ONLY TERMINATION  
MAX3992  
200Ω  
TRANSCEIVER TERMINATION  
Figure 4. Reference Clock Termination  
_______________________________________________________________________________________  
9
10Gbps Clock and Data Recovery  
with Equalizer  
Applications Information  
V
CC  
Exposed Pad (EP) Package  
The exposed pad, 24-pin QFN incorporates features  
that provide a very low thermal-resistance path for heat  
removal from the IC. The pad is electrical ground on the  
MAX3992 and must be soldered to the circuit board for  
proper thermal and electrical performance.  
50Ω  
50Ω  
SDI+  
SDI-  
Layout Considerations  
For best performance, use good high-frequency layout  
techniques. Filter voltage supplies, keep ground con-  
nections short, and use multiple vias where possible.  
Use controlled-impedance transmission lines to inter-  
face with the MAX3992 high-speed inputs and outputs.  
Power-supply decoupling should be placed as close to  
V
as possible. To reduce feedthrough, take care to  
CC  
Figure 5. CML Input Model  
isolate the input signals from the output signals.  
VCC  
(SDI+) - (SDI-)  
50Ω  
50Ω  
(SDO+) - (SDO-)  
POL = VCC  
SDO+  
SDO-  
(SDO+) - (SDO-)  
POL = GND  
Figure 7. Polarity (POL) Function  
Table 3. Functional Control  
GND  
FCTL1  
FCTL2  
DESCRIPTION  
Figure 6. CML Output Model  
Normal operation, serial clock output  
disabled.  
0
1
0
0
0
1
Standby power-down mode.  
Normal operation, serial clock output  
disabled.  
Serial clock output enabled for jitter  
testing.  
1
1
10 ______________________________________________________________________________________  
10Gbps Clock and Data Recovery  
with Equalizer  
Typical Application Circuit  
V
CC  
0.047µF  
TOSA  
V
CFIL  
CC GND  
SDI+  
SDI-  
SDO+  
SDO-  
MAX3975  
MAX3992  
DRIVER  
REFCLK+  
REFCLK-  
LOL LOS  
FCTL VTH POL  
2
GND  
30-PIN  
CONNECTOR  
DS1862*  
CONTROLLER  
2-WIRE INTERFACE  
2
N.C.  
LOL LOS  
SDI+  
SDI-  
FCTL VTH POL  
REFCLK+  
REFCLK-  
ROSA  
SDO+  
SDO-  
MAX3991  
V
CFIL  
CC GND  
XFI  
REFERENCE  
0.047µF  
50TRANSMISSION LINE  
*FUTURE PRODUCT.  
V
CC  
______________________________________________________________________________________ 11  
10Gbps Clock and Data Recovery  
with Equalizer  
Chip Information  
Package Information  
TRANSISTOR COUNT: 10,300  
PROCESS: SiGe bipolar  
SUBSTRATE: SOI  
(The package drawing(s) in this data sheet may not  
reflect the most current specifications. For the latest  
package outline information, go to www.maxim-  
ic.com/packages.) (QFN 4mm x 4mm x 0.8mm, pack-  
age code: T2444-4)  
Revision History  
Rev 0; 11/04: Initial data sheet release.  
Rev 1; 11/05: Changed Jitter Peaking max to typ (page 3); added new Note 5 (page 4); updated Typical  
Application Circuit (page 11).  
Rev 2: 11/06: Changed Jitter Tolerance min from 2.2UI  
to 2.8UI ; changed Jitter Generation max from  
P-P  
P-P  
6.9mUI  
, to 5.5mUI  
(page 3).  
RMS  
RMS  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX3992UTG

10Gbps Clock and Data Recovery with Equalizer
MAXIM

MAX3992UTG+

ATM/SONET/SDH Clock Recovery Circuit, 1-Func, Bipolar, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, QFN-24
MAXIM

MAX3992UTG+*

10Gbps Clock and Data Recovery with Equalizer
MAXIM

MAX3992UTG+T

Clock Recovery Circuit, 1-Func, Bipolar, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, QFN-24
MAXIM

MAX3992UTG-T

Clock Recovery Circuit, 1-Func, Bipolar, 4 X 4 MM, 0.80 MM HEIGHT, QFN-24
MAXIM

MAX3996

3.0V to 5.5V, 2.5Gbps VCSEL and Laser Driver
MAXIM

MAX3996CGP

3.0V to 5.5V, 2.5Gbps VCSEL and Laser Driver
MAXIM

MAX3996CGP-T

暂无描述
MAXIM

MAX3996CTP

Interface Circuit, BIPolar, CQCC20, 4 X 4 MM, 0.80 MM HEIGHT, QFN-20
MAXIM

MAX3996CTP+

3.0V to 5.5V, 2.5Gbps VCSEL and Laser Driver
MAXIM

MAX3996CTP+T

Interface Circuit, BIPolar, CQCC20, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, QFN-20
MAXIM

MAX3996CTP-T

3.0V to 5.5V, 2.5Gbps VCSEL and Laser Driver
MAXIM