MAX40018ATA+ [MAXIM]

Dual nanoPower Op Amps in Tiny WLP and TDFN Packages;
MAX40018ATA+
型号: MAX40018ATA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual nanoPower Op Amps in Tiny WLP and TDFN Packages

文件: 总13页 (文件大小:528K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX40018  
Dual nanoPower Op Amps  
in Tiny WLP and TDFN Packages  
General Description  
Benefits and Features  
Ultra-Low Power Preserves Battery Life  
The MAX40018 is a dual operational amplifier that  
consumes only 400nA supply current (per channel). At  
such low power consumption, the device is ideal for  
battery-powered applications such as portable medical  
equipment, portable instruments and wireless handsets.  
• 400nA Typical Supply Current (Per Channel)  
Single 1.7V to 5.5V Supply Voltage Range  
• The Device Can be Powered From the Same  
1.8V/2.5V/3.3V/5V System Rails  
The MAX40018 operates from a single 1.7V to 5.5V  
supply, allowing the device to be powered by the same  
1.8V, 2.5V, or 3.3V nominal supply that powers the  
microcontroller. The MAX40018 features rail-to-rail  
outputs and is unity-gain stable with a 9kHz gain bandwidth  
product (GBP).  
Tiny Packages Save Board Space  
• 1.63mm x 0.91mm x 0.5mm WLP-8 with 0.4mm  
Bump Pitch  
• 3mm x 3mm x 0.75mm TDFN-8 Package  
Precision Specifications for Buffer/Filter/Gain Stages  
Low 350μV Input Offset Voltage  
Rail-to-Rail Output Voltage  
• 9kHz GBP  
The ultra-low supply current, ultra-low input bias current,  
low operating voltage, and rail-to-rail output capabilities  
makethisdualoperationalamplifieridealforusewithsingle  
lithium-ion (Li+), or two-cell NiCd or alkaline batteries.  
• Low 0.1pA Input Bias Current  
• Unity-Gain Stable  
The MAX40018 is available in a tiny, 8-bump, 1.63mm x  
0.91mm wafer-level package (WLP), with a bump pitch  
of 0.4mm, as well as in an 8-pin 3mm x 3mm TDFN  
package. The device is specified over the -40°C to  
+125°C, automotive temperature range.  
-40°C to +125°C Temperature Range  
Ordering Information appears at end of data sheet.  
Simplified Block Diagram  
Applications  
Wearable Devices  
V
DD  
Handheld Devices  
Notebook and Tablet Computers  
Portable Medical Devices  
Portable Instrumentation  
IN1+  
IN1-  
OUT1  
OUT2  
IN2+  
IN2-  
MAX40018  
V
SS  
19-100227; Rev 3; 11/19  
MAX40018  
Dual nanoPower Op Amps  
in Tiny WLP and TDFN Packages  
Absolute Maximum Ratings  
V
to V ..............................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C; TDFN-8,  
A
DD  
SS  
OUT_ to V ......................................V - 0.3V to V  
+ 0.3V  
+ 0.3V  
derate 24.4mW/°C above +70°C)...........................1951.2mW  
Operating Temperature Range......................... -40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Reflow Soldering Peak Temperature (Pb-free) ...............+260°C  
SS  
SS  
DD  
IN_+, IN_- to V ...............................V - 0.3V to V  
SS  
SS  
DD  
IN_+ to IN_-...........................................................................±2V  
Continuous Current Into Any Input Pin.............................±10mA  
Continuous Current Into Any Output Pin..........................±20mA  
Output Short-Circuit Duration to V  
or V ........................ 10s  
DD  
SS  
Continuous Power Dissipation (T = +70°C; 8-Bump WLP,  
A
derate 11.4mW/°C above +70°C)................................912mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
TDFN-8  
PACKAGE CODE  
T833+2  
Outline Number  
21-0137  
90-0059  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
41°C/W  
8°C/W  
JA  
Junction to Case (θ  
)
JC  
WLP-8  
PACKAGE CODE  
N80B1+1  
Outline Number  
21-100228  
Land Pattern Number  
Refer to Application Note 1891  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
87.71°C/W  
N/A  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= +3V, V = 0V, V  
SS  
= 0.5V, V  
= V /2, R = 1MΩ to V /2, T = +25°C, unless otherwise noted (Note 1).)  
DD  
CM  
OUT DD L DD A  
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by PSRR tests  
MIN  
TYP  
MAX  
5.5  
UNITS  
Supply Voltage Range  
V
1.7  
V
DD  
T
T
T
= +25°C  
0.8  
1.3  
A
A
A
Supply Current (Dual)  
I
= -40°C to +85°C  
= -40°C to +125°C  
1.4  
μA  
DD  
1.6  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX40018  
Dual nanoPower Op Amps  
in Tiny WLP and TDFN Packages  
Electrical Characteristics (continued)  
(V  
= +3V, V = 0V, V  
= 0.5V, V  
= V /2, R = 1MΩ to V /2, T = +25°C, unless otherwise noted (Note 1).)  
DD  
SS  
CM  
OUT DD L DD A  
PARAMETER  
SYMBOL  
CONDITIONS  
= +25°C, V - 0.1V < V  
MIN  
TYP  
MAX  
UNITS  
T
T
V
< V - 1.1V  
±0.35  
±1.3  
A
SS  
CM  
DD  
Input Offset Voltage  
Input Offset Drift  
V
mV  
= -40°C to +125°C, V - 0.1V < V  
<
OS  
A
SS  
CM  
±9  
88  
- 1.1V  
DD  
6.2  
0.1  
μV/°C  
T
T
T
T
= +25°C  
A
A
A
A
Input Bias Current (Note 2)  
I
pA  
B
= -40°C to +125°C  
= +25°C  
200  
60  
0.1  
3
Input Offset Current (Note 2)  
I
pA  
OS  
= -40°C to +125°C  
Input Capacitance  
Either input, over entire CMVR  
Guaranteed by CMRR tests  
pF  
V
Common Mode Voltage Range  
CMVR  
CMRR  
V
- 0.1  
V
- 1.1  
DD  
SS  
DC, (V - 0.1V) ≤ V  
≤ (V - 1.1V)  
DD  
70  
67  
75  
95  
48  
88  
35  
110  
2.2  
19.3  
2.2  
20  
8
SS  
CM  
Common Mode Rejection Ratio  
dB  
AC, 100mV 1kHz, with output at V /2  
PP  
DD  
DC, 1.7V ≤ V  
≤ 5.5V  
DD  
Power Supply Rejection Ratio  
PSRR  
dB  
dB  
AC, 100mV 1kHz, superimposed on V  
PP  
DD  
Open Loop Gain  
A
R = 1MΩ, V  
= +50mV to V  
- 50mV  
VOL  
L
OUT  
DD  
R = 100kΩ to V /2  
8
Swing high specified  
as V - V  
L
DD  
V
OH  
R = 10kΩ to V /2  
70  
8
DD  
OUT  
L
DD  
Output Voltage Swing  
mV  
R = 100kΩ to V /2  
Swing low specified  
as V - V  
L
DD  
V
OL  
R = 10kΩ to V /2  
70  
OUT  
SS  
L
DD  
Shorted to V (sourcing)  
SS  
Output Short-Circuit Current  
mA  
Shorted to V  
(sinking)  
8
DD  
Gain Bandwidth Product  
Phase Margin  
GBP  
φM  
A
= 1V/V , C = 20pF  
9
kHz  
°
V
L
C = 20pF  
64  
6.4  
L
Slew Rate  
SR  
V
= 1V step, A = 1V/V  
V/ms  
OUT  
PP  
V
100mV step, A = 1V/V, C = 20pF,  
0.1% settling  
V
L
Settling Time  
165  
µs  
Input Voltage Noise Density  
Noise Voltage  
e
f = 1kHz  
730  
7
nV/Hz  
N
From 0.1Hz to 10Hz  
μV  
RMS  
Power-On Time  
t
Output reaches 1% of final value  
0.39  
30  
ms  
pF  
dB  
ON  
Stable Capacitive Load  
Crosstalk  
C
No sustained oscillations  
L
IN1+, 100mV , f = 1kHz, test VOUT2  
78  
PP  
Note 1: Limits are 100% tested at T = +25°C. Limits over the temperature range and relevant supply voltage range are guaranteed  
A
by design and characterization.  
Note 2: Guaranteed by design.  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX40018  
Dual nanoPower Op Amps  
in Tiny WLP and TDFN Packages  
Typical Operating Characteristics  
(V  
= +3.0V, V = 0V, V  
= 0.5V, V  
= V /2, R = 1MΩ to V /2, T = +25°C, unless otherwise noted.)  
DD  
SS  
CM  
OUT DD L DD A  
INPUT OFFSET VOLTAGE vs. INPUT COMMON  
INPUT OFFSET VOLTAGE vs. INPUT COMMON  
TOTAL SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
MODE VOLTAGE–CHANNEL B  
MODE VOLTAGE–CHANNEL A  
toc02B  
toc01  
toc02A  
800  
600  
400  
200  
0
1300  
3000  
2500  
2000  
1500  
1000  
500  
VDD = 3.0V  
VDD = 3.0V  
TA = +125°C  
TA = +125°C  
1200  
1100  
1000  
900  
TA = +125°C  
TA = +85°C  
TA =+85°C  
TA = +85°C  
0
TA = 25°C  
-200  
-400  
-600  
-800  
TA = +25°C  
TA = -40°C  
800  
TA = +25°C  
TA = -40°C  
-500  
-1000  
-1500  
-2000  
-2500  
700  
600  
TA = -40°C  
500  
-0.1  
0.2  
0.5  
0.8  
1.1  
1.4  
1.7  
2
1.7 2.2 2.7 3.2 3.7 4.2 4.7 5.2  
SUPPLY VOLTAGE (V)  
-0.1  
0.2  
0.5  
0.8  
1.1  
1.4  
1.7  
2
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT BIAS CURRENT  
vs. INPUT COMMON MODE VOLTAGE  
INPUT OFFSET CURRENT  
vs. INPUT COMMON MODE VOTLAGE  
DC CMRR vs. TEMPERATURE  
toc04  
toc03B  
toc03A  
120  
110  
100  
90  
100  
10  
1000  
100  
10  
VDD = 3.0V  
VDD = 3.0V  
VDD = 5.5V  
TA = +125°C  
TA = +125°C  
TA = +85°C  
TA = +85°C  
1
VDD = 3V  
1
TA = +25°C  
VDD = 1.7V  
80  
0.1  
0.01  
0.1  
0.01  
70  
TA = -40°C  
TA = -40°C  
TA = +25°C  
1.1  
60  
-50  
0
50  
100  
150  
-0.1  
0.2  
0.5  
0.8  
1.4  
1.7  
2
-0.1  
0.2  
0.5  
0.8  
1.1  
1.4  
1.7  
2
TEMPERATURE (°C)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
OUTPUT VOLTAGE LOW  
vs. OUTPUT SINK CURRENT  
OUTPUT VOLTAGE HIGH  
vs. OUTPUT SOURCE CURRENT  
DC PSRR vs. TEMPERATURE  
toc05  
toc06  
toc07  
100  
95  
90  
85  
80  
75  
200  
150  
100  
50  
200  
150  
100  
50  
VDD = 3.0V  
VDD = 3.0V  
CHA  
TA = +125°C  
TA = +125°C  
CHB  
TA =+25°C  
TA =+25°C  
TA = -40°C  
600  
TA = -40°C  
VDD = 1.7V TO 5.5V  
100  
0
0
-50  
0
50  
150  
0
200  
400  
800  
1000  
0
200  
400  
600  
800  
1000  
TEMPERATURE (°C)  
OUTPUT SOURCE CURRENT ( A)  
OUTPUT SINK CURRENT ( A)  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX40018  
Dual nanoPower Op Amps  
in Tiny WLP and TDFN Packages  
Typical Operating Characteristics (continued)  
(V  
= +3.0V, V = 0V, V  
= 0.5V, V  
= V /2, R = 1MΩ to V /2, T = +25°C, unless otherwise noted.)  
DD  
SS  
CM  
OUT DD L DD A  
SMALL SIGNAL RESPONSE  
vs. FREQUENCY  
SMALL SIGNAL RESPONSE  
vs. FREQUENCY  
toc08A  
toc08B  
5
0
45  
0
5
0
45  
0
-5  
-45  
-90  
-5  
-45  
MAGNITUDE  
MAGNITUDE  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-90  
-135  
-180  
-225  
-270  
-315  
-360  
-135  
-180  
-225  
-270  
-315  
-360  
PHASE  
PHASE  
VIN = 100mVp-p  
RLOAD = 1MΩ  
LOAD = 10pF  
VIN = 100mVp-p  
RLOAD = 100kΩ  
LOAD = 10pF  
-35  
-40  
C
C
10  
100  
1000  
10000  
100000  
10  
100  
1000  
FREQUENCY (Hz)  
10000  
100000  
FREQUENCY (Hz)  
LARGE SIGNAL RESPONSE  
vs. FREQUENCY  
LARGE SIGNAL RESPONSE  
vs. FREQUENCY  
toc09a  
toc09B  
5
0
45  
5
0
45  
0
0
-5  
-45  
-5  
-45  
MAGNITUDE  
MAGNITUDE  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-90  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-90  
-135  
-180  
-225  
-270  
-315  
-360  
-135  
-180  
-225  
-270  
-315  
-360  
PHASE  
PHASE  
VIN = 1Vp-p  
RLOAD = 1MΩ  
LOAD = 10pF  
VIN = 1Vp-p  
RLOAD = 100kΩ  
LOAD = 10pF  
C
C
10  
100  
1000  
10000  
100000  
10  
100  
1000  
10000  
100000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
INPUT VOLTAGE NOISE DENSITY  
vs. FREQUENCY  
toc12  
AC CMRR vs. FREQUENCY  
AC PSRR vs. FREQUENCY  
toc010  
toc011  
140  
120  
100  
80  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
VIN_CM = 100mVp-p  
AV = 1V/V  
VDD = 3V 100mVp-p  
AV = 1V/V  
60  
40  
20  
0
0
1
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
10  
100  
1000  
10000  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
FREQUENCY (Hz)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX40018  
Dual nanoPower Op Amps  
in Tiny WLP and TDFN Packages  
Typical Operating Characteristics (continued)  
(V  
= +3.0V, V = 0V, V  
= 0.5V, V  
= V /2, R = 1MΩ to V /2, T = +25°C, unless otherwise noted.)  
DD  
SS  
CM  
OUT DD L DD A  
RESISTIVE LOAD vs. CAPACITIVE LOAD  
0.1 TO 10 Hz INTEGRATED NOISE  
CROSSTALK vs. FREQUENCY  
toc14  
toc15  
toc13  
20  
100000  
10000  
1000  
100  
50  
VIN = 100mVp-p  
AV = 1V/V  
40  
30  
0
-20  
UNSTABLE  
20  
10  
-40  
0
-60  
-10  
-20  
-30  
-40  
-50  
STABLE  
-80  
-100  
-120  
VIN = 100mVp-p  
AV = 1V/V  
10  
0.01  
0.1  
1
10  
100  
1
10  
100  
1000  
10000  
2s/div  
INPUT FREQUENCY (kHz)  
RESISTIVE LOAD (k  
)
SMALL SIGNAL STEP RESPONSE vs. TIME  
SMALL SIGNAL STEP RESPONSE vs. TIME  
toc17  
50mV/div  
AC-  
50mV/div  
AC-  
VIN  
VIN  
COUPLED  
COUPLED  
VOUT  
50mV/div  
AC-  
COUPLED  
VOUT  
50mV/div  
AC-  
COUPLED  
CLOAD = 30pF  
100 s/div  
CLOAD = 15pF  
100 s/div  
LARGE SIGNAL STEP RESPONSE vs. TIME  
POWER UP RESPONSE vs. TIME  
LARGE SIGNAL STEP RESPONSE vs. TIME  
toc20  
toc18  
toc19  
500mV/di  
500mV/div  
AC-  
COUPLED  
1V/div  
AC-  
COUPLED  
v
VIN  
VIN  
VDD  
AC-  
COUPLED  
VOUT  
500mV/div  
VOUT  
VOUT  
500mV/div  
250mV/div  
AC-  
AC-  
AC-  
COUPLED  
COUPLED  
COUPLED  
CLOAD = 15pF  
CLOAD = 30pF  
VIN = 100mV  
100 s/div  
100 s/div  
200 s/div  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX40018  
Dual nanoPower Op Amps  
in Tiny WLP and TDFN Packages  
Pin Configuration  
TOP VIEW  
MAX40018  
1
2
3
4
+
A
B
OUT1  
IN1-  
IN1+  
V
SS  
OUT2  
IN2-  
IN2+  
V
DD  
THIN WLP-8  
BUMP PITCH = 0.4mm HEIGHT = 0.5mm  
TOP VIEW  
8
7
6
1
2
3
4
V
OUT1  
DD  
MAX40018  
OUT2  
IN2-  
IN1-  
IN1+  
IN2+  
5
V
SS  
3mm x 3mm x 0.75mm TDFN  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX40018  
Dual nanoPower Op Amps  
in Tiny WLP and TDFN Packages  
Pin Description  
PIN  
NAME  
FUNCTION  
WLP  
A1  
A2  
A3  
A4  
B1  
B2  
B3  
B4  
TDFN  
1
2
OUT1  
IN1-  
Amplifier 1 Output  
Inverting Input, Channel 1  
Noninverting Input, Channel 1  
3
IN1+  
4
V
Negative Power Supply Input. Connect V to 0V in single-supply application.  
SS  
SS  
8
V
Positive Power Supply Input  
Amplifier 2 Output  
DD  
7
OUT2  
IN2-  
IN2+  
EP  
6
Inverting Input, Channel 2  
Noninverting Input, Channel 2  
5
Exposed Pad. Connect EP to V or leave unconnected.  
SS  
Ground Sensing Inputs  
Detailed Description  
The common-mode voltage range of the MAX40018  
extends down to V - 0.1V, and offers excellent  
The MAX40018 is a dual operational amplifier that draws  
just 400nA supply current (typical, per channel). It is  
ideal for battery-powered applications, such as portable  
medical equipment, portable instruments, and wireless  
handsets. The amplifiers feature rail-to-rail outputs and  
are unity-gain stable with a 9kHz GBP. The ultra-low  
supply current, ultra-low input bias current, low operating  
voltage, and rail-to-rail output capabilities make this dual  
operational amplifier ideal for use with single lithium-ion  
(Li+), or two-cell NiCd or alkaline batteries.  
SS  
common-mode rejection. This feature allows input  
voltage below ground in a single power supply application,  
where ground sensing is very common. This op amp is  
also guaranteed not to exhibit phase reversal when either  
input is overdriven.  
Rail-To-Rail Outputs  
The outputs of the MAX40018 dual op amps are guaranteed  
to swing within 8mV of the power supply rails with a  
100kΩ load.  
Power Supplies and PCB Layout  
The MAX40018 operates from a single +1.7V to +5.5V  
power supply, or dual ±0.85V to ±2.75V power supplies.  
Bypass the power supplies with a 0.1μF ceramic capacitor  
ESD Protection  
The MAX40018 input and output pins are protected  
against electrical discharge (ESD) with dedicated diodes  
as shown in the Simplified Block Diagram. Caution must  
be used when input voltages are beyond the power rails.  
Also, the maximum current in or out of any input pin  
as shown in the Absolute Maximum Ratings must be  
observed.  
placed close to V  
and V pins. Adding a solid ground  
DD  
SS  
plane improves performance generally by decreasing  
the noise at the op amp’s inputs. However, in very high  
impedance circuits, it may be worth removing the ground  
plane under the IN_- pins to reduce the stray capacitance  
and help avoid reducing the phase margin. To further  
decrease stray capacitance, minimize PCB trace lengths  
and resistor and capacitor leads, and place external  
components close to the amplifier’s pins.  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX40018  
Dual nanoPower Op Amps  
in Tiny WLP and TDFN Packages  
Stability  
Capacitive Load Stability  
The MAX40018 maintains stability in its minimum gain  
configuration while driving capacitive loads up to 30pF or  
so. Larger capacitive loading is achieved using the tech-  
niques described in the Capacitive Load Stability section  
below. Although this amplifier is primarily designed for low  
frequency applications, good layout can still be extremely  
important, especially if very high value resistors are being  
used, as is likely in ultra-low-power circuitry. However,  
some stray capacitance may be unavoidable; and it may  
be necessary to add a 2pF to 10pF capacitor across the  
feedback resistor, as shown in Figure 1. Select the smallest  
capacitor value that ensures stability so that BW and  
settling time are not significantly impacted.  
Driving large capacitive loads can cause instability in  
amplifiers. The MAX40018 is stable with capacitive loads  
up to 30pF. Stability with higher capacitive loads can  
be achieved by adding a resistive load in parallel with  
the capacitive load, as shown in Figure 2. This resistor  
improves the circuit’s phase margin by reducing the effective  
bandwidth of the amplifier. The graph in the Typical  
Operating Characteristics gives the stable operation  
region for capacitive load versus resistive load.  
V
DD  
IN1+  
IN1-  
V
DD  
OUT1  
IN1+  
IN1-  
1/2 MAX40018  
OUT1  
1/2 MAX40018  
R1  
C
R
L
L
R2  
2pF TO 10pF  
Figure 1. Compensation for Feedback Node Capacitance  
Figure 2. RL Improving Capacitive Load Drive Capability of Op  
Amp  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX40018  
Dual nanoPower Op Amps  
in Tiny WLP and TDFN Packages  
Motion Detection Application Circuit  
Applications Information  
Figure 4 shows a human motion detection circuit using  
the MAX40018 dual op amp.  
Optimizing for Ultra-Low-Power Applications  
The MAX40018 is designed for ultra-low-power applications.  
To reduce the power consumption in the application  
circuits, use impedance as large as the performance  
allows. For example, choose low leakage ceramic capacitors  
and high-value resistors. If moisture in high-value resistors  
causes stray capacitance or current leakage, use special  
coating process to reduce the leakage.  
The motion sensor is a Murata IRA-S210ST0 pyroelectric  
passiveinfrared(PIR)sensorwithatypicalresponsivity(RV)  
of 4.6mV . With a power supply of 3.3V, the PIR sensor  
PP  
output is biased around 1.0V. Since we are interested  
in human motion, the frequency range of interest is set to  
0.5 Hz to 7 Hz.  
The first stage amplifies the PIR sensor output. The high  
frequency noise is filtered by R3 and C3 feedback filter,  
General Purpose Active Filters  
Figure 3 shows an active band-pass filter implemented  
with the MAX40018. Set the operating point based on  
the power supply voltage and the input signal range. Pay  
attention that the common mode input range is from -0.1V  
with a cutoff frequency f  
= 1/(2 x π x R3 x C3) = 7Hz.  
HIGH1  
The low frequency noise is filtered by the R1 and C1 high  
pass filter, with a cutoff frequency f = 1/(2 x π x R1  
LOW1  
x C1) = 0.5 Hz. The DC signal of the sensor output and  
the op amp input offset voltage are not amplified, they are  
showing at the output of the first stage op amp.  
to V  
- 1.1V. The example circuit sets the operating  
DD  
point at V /2.  
DD  
The low cut-off frequency is  
The first stage gain is set by G1 = 1 + R3/R1 = 46.3. This  
gain guarantees the amplified signal will not saturate the  
first stage op amp, but large enough to distinguish the  
motion generated signal from the background noise.  
1
f
=
LOW  
(2× π ×R2× C2)  
.
The high cut-off frequency is  
The second stage is similar to the first stage. It amplifies the  
AC component of the signal and rejects the DC component.  
1
f
=
HIGH  
(2 × π ×R1× C1)  
.
The high cutoff frequency f  
= 1/(2 x π x R5 x C5) =  
HIGH2  
7 Hz. The low cutoff frequency is f  
= 1/(2 x π x R4  
LOW2  
x C4) = 0.5 Hz. The second stage gain is G2 = 1 + R5/  
R4 = 46.3. Similar to the first stage, the input offset volt-  
age does not matter because only AC is amplified. The  
bias voltage at the noninverting input is set to 1.1V, so  
V
/2  
DD  
V
DD  
C3  
IN1+  
IN1-  
INPUT  
that the input has the largest swing between 0V to V  
-
DD  
OUT1  
1.1V. Use large divider network resistors to reduce power  
consumption of the system.  
1/2 MAX40018  
The circuit has a GBP requirement of 7Hz x 46.3 = 324.1Hz,  
which is guaranteed by the MAX40018's GBP of 9kHz.  
The MAX40018's dual op amps and the ultra-low supply  
current of 350nA per channel make it a perfect fit for this  
motion detection circuit.  
R1  
C1  
R2  
C2  
Figure 3. Active Band-Pass Filter  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX40018  
Dual nanoPower Op Amps  
in Tiny WLP and TDFN Packages  
R3 680k  
C3 33nF  
V
R5 680k  
DD  
V
DD  
C1  
R1  
22µF  
15k  
R8  
33k  
C5 33nF  
22µF  
C4  
R4 15k  
1/2 MAX40018  
D
PIR  
SENSOR  
S
G
2/2 MAX40018  
OUT  
R2  
C2  
1nF  
47k  
V
DD  
R6  
R7 1M  
2M  
C6  
10nF  
Figure 4. Motion Detection Circuit  
R1  
R3  
V
DD  
C1  
I
SENSE  
R2  
C3  
RE  
CE  
VREF1  
1/2 MAX40018  
WE  
VREF2  
2/2 MAX40018  
VOUT  
GAS  
SENSOR  
Figure 5. Gas Detection Circuit  
output. The output voltage V  
= VREF2 - I  
x R3.  
Gas Detection Circuit  
Figure 5 shows a gas detection circuit using the MAX40018.  
OUT  
SENSE  
I
can be positive or negative, depending on the  
SENSE  
type of the sensor.  
The first op amp generates a constant voltage at the sensor  
reference electrode (RE). The op amp's ultra-low input  
bias current of 1pA is ideal for this stage. The second op  
amp converts the sensor output current into a voltage  
The MAX40018's dual op amps, ultra-low current  
consumption, and ultra-low input bias current minimizes  
the power requirement of the gas detection circuit, while  
providing high accuracy and low system cost.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX40018  
Dual nanoPower Op Amps  
in Tiny WLP and TDFN Packages  
Ordering Information  
PART NUMBER  
MAX40018ANA+  
MAX40018ATA+  
TEMP RANGE  
PIN-PACKAGE  
WLP-8  
PACKAGE CODE  
N80B1+1  
TOP MARK  
AAK  
-40°C to +125°C  
-40°C to +125°C  
TDFN  
T833+2  
BAA  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Denotes tape-and-reel.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX40018  
Dual nanoPower Op Amps  
in Tiny WLP and TDFN Packages  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
12/17  
4/18  
0
1
2
3
Initial release  
12  
Updated Ordering Information table  
Updated Pin Configuration and Pin Description  
Updated Electrical Characteristics table  
10/19  
11/19  
7, 8  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2019 Maxim Integrated Products, Inc.  
13  

相关型号:

MAX40018EVKIT

Accommodates Multiple Op-Amp Configurations
MAXIM

MAX4001EBL+T

暂无描述
MAXIM

MAX4001EBL-T

2.5GHz 45dB RF-Detecting Controllers
MAXIM

MAX4001EUA

2.5GHz 45dB RF-Detecting Controllers
MAXIM

MAX4001EUA+

暂无描述
MAXIM

MAX4001EUA-T

Log Or Antilog Amplifier, 1 Func, 2400MHz Band Width, BIPolar, PDSO8, MICRO, MO-187C-AA, SOP-8
MAXIM

MAX4001EVKIT

Evaluation Kit for the MAX4000/MAX4001/MAX4002
MAXIM

MAX4002

2.5GHz 45dB RF-Detecting Controllers
MAXIM

MAX40025A

Supply Voltage 2.7V to 3.6V
MAXIM

MAX40025C

280ps High-Speed Comparator, Ultra-Low Dispersion with LVDS Outputs
MAXIM

MAX40025CAWT

280ps High-Speed Comparator, Ultra-Low Dispersion with LVDS Outputs
MAXIM

MAX40025CAWT+

Comparator,
MAXIM