MAX4020EEE-T [MAXIM]

Video Amplifier, 1 Channel(s), 4 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137AB, QSOP-16;
MAX4020EEE-T
型号: MAX4020EEE-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Video Amplifier, 1 Channel(s), 4 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137AB, QSOP-16

放大器 光电二极管
文件: 总17页 (文件大小:806K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1246; Rev 3; 8/04  
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
General Description  
____________________________Features  
Low-Cost  
The MAX4012 single, MAX4016 dual, MAX4018 triple,  
and MAX4020 quad op amps are unity-gain-stable  
devices that combine high-speed performance with Rail-  
to-Rail outputs. The MAX4018 has a disable feature that  
reduces power-supply current to 400µA and places its  
outputs into a high-impedance state. These devices  
operate from a 3.3V to 10V single supply or from 1.6ꢀV  
to ꢀV dual supplies. The common-mode input voltage  
range extends beyond the negative power-supply rail  
(ground in single-supply applications).  
High Speed:  
200MHz -3dB Bandwidth (MAX4012)  
150MHz -3dB Bandwidth  
(MAX4016/MAX4018/MAX4020)  
30MHz 0.1dB Gain Flatness  
600V/µs Slew Rate  
Single 3.3V/5.0V Operation  
Rail-to-Rail Outputs  
These devices require only ꢀ.ꢀmA of quiescent supply  
current while achieving a 200MHz -3dB bandwidth and  
a 600V/µs slew rate. These parts are an excellent solu-  
tion in low-power/low-voltage systems that require wide  
bandwidth, such as video, communications, and instru-  
mentation. In addition, when disabled, their high-output  
impedance makes them ideal for multiplexing  
applications.  
Input Common-Mode Range Extends Beyond V  
Low Differential Gain/Phase: 0.02%/0.02°  
EE  
Low Distortion at 5MHz:  
-78dBc SFDR  
-75dB Total Harmonic Distortion  
High-Output Drive: 120mA  
The MAX4012 comes in a miniature ꢀ-pin SOT23 and 8-  
pin SO package, while the MAX4016 comes in 8-pin  
400µA Shutdown Capability (MAX4018)  
High-Output Impedance in Off State (MAX4018)  
®
µMAX and SO packages. The MAX4018/MAX4020 are  
available in a space-saving 16-pin QSOP, as well as a  
14-pin SO.  
Space-Saving SOT23, SO, µMAX, or QSOP  
Packages  
Applications  
Set-Top Boxes  
Ordering Information  
Surveillance Video Systems  
Battery-Powered Instruments  
Video Line Driver  
Analog-to-Digital Converter Interface  
CCD Imaging Systems  
TEMP  
RANGE  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
MAX4012EUK-T -40°C to +8ꢀ°C  
ꢀ SOT23-ꢀ  
8 SO  
ABZP  
MAX4012ESA  
MAX4016ESA  
MAX4016EUA  
-40°C to +8ꢀ°C  
-40°C to +8ꢀ°C  
-40°C to +8ꢀ°C  
8 SO  
Video Routing and Switching Systems  
8 µMAX  
Ordering Information continued at end of data sheet.  
Typical Operating Circuit  
Pin Configurations  
TOP VIEW  
R
F
24Ω  
MAX4012  
R
50Ω  
TO  
1
5
4
1
2
3
4
8
7
6
5
V
N.C.  
IN-  
N.C.  
OUT  
CC  
V
OUT  
V
Z
O
= 50Ω  
CC  
MAX4012  
MAX4012  
2
3
V
EE  
R
50Ω  
IN  
OUT  
N.C.  
O
IN+  
R
TIN  
V
EE  
IN+  
IN-  
50Ω  
SO  
UNITY-GAIN LINE DRIVER  
(R = R + R  
SOT23-5  
)
TO  
L
O
Pin Configurations continued at end of data sheet.  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V  
to V )..................................................12V  
8-Pin µMAX (derate 4.1mW/°C above +70°C) ............330mW  
14-Pin SO (derate 8.3mW/°C above +70°C)...............667mW  
16-Pin QSOP (derate 8.3mW/°C above +70°C)..........667mW  
Operating Temperature Range ...........................-40°C to +8ꢀ°C  
Storage Temperature Range.............................-6ꢀ°C to +1ꢀ0°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
EE  
IN_-, IN_+, OUT_, EN_.....................(V - 0.3V) to (V  
+ 0.3V)  
EE  
CC  
Output Short-Circuit Duration to V  
or V ............. Continuous  
CC  
EE  
Continuous Power Dissipation (T = +70°C)  
A
ꢀ-Pin SOT23 (derate 7.1mW/°C above +70°C)...........ꢀ71mW  
8-Pin SO (derate ꢀ.9mW/°C above +70°C).................471mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= ꢀV, V = 0, EN_ = ꢀV, R =  
to V /2, V  
= V /2, T = T  
OUT  
to T  
, unless otherwise noted. Typical values are at T  
MAX A  
CC  
EE  
L
CC  
CC  
A
MIN  
= +2ꢀ°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by CMRR test  
MIN  
TYP  
MAX  
UNITS  
V
Input Common-Mode  
Voltage Range  
V
EE  
-
V
-
CC  
V
CM  
0.20  
2.2ꢀ  
Input Offset Voltage (Note 2)  
V
4
8
20  
mV  
OS  
Input Offset Voltage  
Temperature Coefficient  
TC  
µV/°C  
VOS  
Any channels for MAX4016/MAX4018/  
MAX4020  
Input Offset Voltage Matching  
1
mV  
Input Bias Current  
Input Offset Current  
I
(Note 2)  
(Note 2)  
ꢀ.4  
0.1  
70  
20  
20  
µA  
µA  
B
I
OS  
Differential mode (-1V V +1V)  
Common mode (-0.2V V  
kΩ  
MΩ  
dB  
IN  
Input Resistance  
R
IN  
+2.7ꢀV)  
3
CM  
Common-Mode Rejection Ratio  
CMRR  
(V - 0.2V) V  
(V - 2.2ꢀV)  
70  
ꢀ2  
100  
61  
EE  
CM  
CC  
0.2ꢀV V  
0.ꢀV V  
1.0V V  
4.7ꢀV, R = 2kΩ  
L
4.ꢀV, R = 1ꢀ0Ω  
4V, R = ꢀ0Ω  
OUT  
Open-Loop Gain (Note 2)  
A
ꢀ9  
dB  
VOL  
OUT  
OUT  
L
ꢀ7  
L
V
V
V
V
V
V
V
V
- V  
0.06  
0.06  
0.30  
0.30  
0.6  
0.6  
1.1  
0.0ꢀ  
120  
CC  
OL  
CC  
OL  
CC  
OL  
CC  
OL  
OH  
R = 2kΩ  
L
- V  
- V  
EE  
OH  
EE  
R = 1ꢀ0Ω  
L
- V  
- V  
Output Voltage Swing  
(Note 2)  
V
V
OUT  
1.ꢀ  
1.ꢀ  
OH  
EE  
R = 7ꢀΩ  
L
- V  
- V  
2.0  
OH  
EE  
R = 7ꢀΩ  
L
to ground  
- V  
0.ꢀ0  
T
A
A
= +2ꢀ°C  
70  
60  
R = 20to V  
or  
CC  
L
Output Current  
I
mA  
OUT  
V
EE  
T
= T  
to T  
MIN MAX  
Output Short-Circuit Current  
Open-Loop Output Resistance  
I
Sinking or sourcing  
1ꢀ0  
8
mA  
SC  
R
OUT  
2
_______________________________________________________________________________________  
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= ꢀV, V = 0, EN_ = ꢀV, R =  
to V /2, V  
= V /2, T = T  
OUT  
to T  
, unless otherwise noted. Typical values are at T  
MAX  
CC  
EE  
L
CC  
CC  
A
MIN  
A
= +2ꢀ°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
= ꢀV, V = 0, V = 2.0V  
MIN  
46  
TYP  
ꢀ7  
MAX  
UNITS  
V
CC  
V
CC  
V
CC  
EE  
CM  
Power-Supply Rejection Ratio  
(Note 3)  
PSRR  
= ꢀV, V = -ꢀV, V  
= 0  
ꢀ4  
66  
dB  
EE  
CM  
CM  
= 3.3V, V = 0, V  
= 0.90V  
4ꢀ  
EE  
Operating Supply-Voltage  
Range  
V
V
to V  
EE  
3.1ꢀ  
28  
11.0  
V
S
CC  
Disabled Output Resistance  
EN_ Logic-Low Threshold  
EN_ Logic-High Threshold  
R
EN_ = 0, 0 V  
ꢀV (Note 4)  
OUT  
3ꢀ  
kΩ  
V
OUT (OFF)  
V
V
- 2.6  
IL  
CC  
V
V
- 1.6  
V
IH  
CC  
(V + 0.2V) EN_ V  
0.ꢀ  
200  
0.ꢀ  
EE  
CC  
EN_ Logic Input Low Current  
EN_ Logic Input High Current  
I
µA  
µA  
IL  
EN_ = 0  
EN_ = ꢀV  
Enabled  
400  
10  
I
IH  
ꢀ.ꢀ  
7.0  
Quiescent Supply Current  
(per Amplifier)  
I
mA  
S
MAX4018, disabled (EN_ = 0)  
0.40  
0.6ꢀ  
_______________________________________________________________________________________  
3
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
AC ELECTRICAL CHARACTERISTICS  
(V  
= ꢀV, V = 0, V  
= 2.ꢀV, EN_ = ꢀV, R = 24, R = 100to V /2, V  
= V /2, A  
= 1, T = +2ꢀ°C, unless otherwise  
VCL A  
CC  
EE  
CM  
F
L
CC  
OUT  
CC  
noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX4012  
200  
Small-Signal -3dB Bandwidth  
Large-Signal -3dB Bandwidth  
BW  
BW  
V
= 20mV  
MHz  
SS  
OUT  
P-P  
MAX4016/MAX4018/  
MAX4020  
1ꢀ0  
140  
30  
V
V
= 2V  
MHz  
MHz  
LS  
OUT  
OUT  
P-P  
Bandwidth for 0.1dB Gain  
Flatness  
BW  
= 20mV  
(Note ꢀ)  
6
0.1dB  
P-P  
Slew Rate  
SR  
V
V
V
= 2V step  
= 2V step  
600  
4ꢀ  
1
V/µs  
ns  
OUT  
OUT  
OUT  
Settling Time to 0.1%  
Rise/Fall Time  
t
S
t , t  
R
= 100mV  
P-P  
ns  
F
Spurious-Free Dynamic  
Range  
SFDR  
f
= ꢀMHz, V  
= 2V  
P-P  
-78  
dBc  
dBc  
dB  
C
OUT  
2nd harmonic  
-78  
-82  
3rd harmonic  
f
V
= ꢀMHz,  
C
Harmonic Distortion  
HD  
= 2V  
P-P  
OUT  
Total harmonic  
distortion  
-7ꢀ  
3ꢀ  
Two-Tone, Third-Order  
Intermodulation Distortion  
IP3  
f1 = 10.0MHz, f2 = 10.1MHz, V  
= 1V  
dBc  
OUT  
P-P  
Input 1dB Compression Point  
Differential Phase Error  
Differential Gain Error  
f
= 10MHz, A  
= 2  
VCL  
11  
0.02  
0.02  
10  
1.3  
1
dBm  
degrees  
%
C
DP  
NTSC, R = 1ꢀ0Ω  
L
DG  
NTSC, R = 1ꢀ0Ω  
L
Input Noise-Voltage Density  
Input Noise-Current Density  
Input Capacitance  
e
n
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
pF  
i
n
C
IN  
OUT (OFF)  
Disabled Output Capacitance  
Output Impedance  
C
MAX4018, EN_ = 0  
f = 10MHz  
2
pF  
Z
6
OUT  
Amplifier Enable Time  
t
MAX4018  
100  
1
ns  
ON  
Amplifier Disable Time  
t
MAX4018  
µs  
OFF  
MAX4016/MAX4018/MAX4020,  
Amplifier Gain Matching  
Amplifier Crosstalk  
0.1  
-9ꢀ  
dB  
dB  
f = 10MHz, V  
= 20mV  
OUT  
P-P  
MAX4016/MAX4018/MAX4020,  
f = 10MHz, V = 2V , R = ꢀ0to ground  
X
TALK  
OU  
P-P  
T
S
Note 1: The MAX4012EUT is 100% production tested at T = +2ꢀ°C. Specifications over temperature limits are guaranteed by  
A
design.  
Note 2: Tested with V  
= 2.ꢀV.  
CM  
Note 3: PSR for single ꢀV supply tested with V = 0, V  
= 4.ꢀV to ꢀ.ꢀV; for dual ꢀV supply with V = -4.ꢀV to -ꢀ.ꢀV,  
EE  
EE  
CC  
V
= 4.ꢀV to ꢀ.ꢀV; and for single 3.3V supply with V = 0, V  
= 3.1ꢀV to 3.4ꢀV.  
CC  
EE  
CC  
Note 4: Does not include the external feedback network’s impedance.  
Note 5: Guaranteed by design.  
4
_______________________________________________________________________________________  
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Typical Operating Characteristics  
(V  
= ꢀV, V = 0, A  
= 1, R = 24, R = 100to V /2, T = +2ꢀ°C, unless otherwise noted.)  
F L CC  
A
CC  
EE  
VCL  
MAX4012  
SMALL-SIGNAL GAIN vs. FREQUENCY  
(A = 1)  
MAX4012  
SMALL-SIGNAL GAIN vs. FREQUENCY  
MAX4016/MAX4018/MAX4020  
SMALL-SIGNAL GAIN vs. FREQUENCY  
(A  
= 2)  
VCL  
VCL  
(A  
= 1)  
VCL  
4
3
9
8
3
2
A
V
= 2  
= 20mV  
A
V
= 1  
= 20mV  
VCL  
OUT  
VCL  
OUT  
A
V
= 1  
= 20mV  
VCL  
OUT  
P-P  
P-P  
P-P  
2
1
7
6
5
4
3
2
1
0
1
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-7  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FREQUENCY (Hz)  
MAX4016/MAX4018/MAX4020  
SMALL-SIGNAL GAIN vs. FREQUENCY  
(A = 2)  
MAX4012  
GAIN FLATNESS vs. FREQUENCY  
LARGE-SIGNAL GAIN vs. FREQUENCY  
VCL  
4
0.7  
0.6  
9
V
V
= 2V  
P-P  
OUT  
A
V
= 1  
= 20mV  
VCL  
OUT  
3
A
V
= 2  
= 20mV  
VCL  
OUT  
= 1.75V  
OUT BIAS  
8
P-P  
P-P  
2
1
0.5  
0.4  
0.3  
0.2  
0.1  
0
7
6
5
4
3
2
1
0
0
-1  
-2  
-3  
-4  
-5  
-0.1  
-0.2  
-6  
-0.3  
-1  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
0.1M  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
MAX4016/MAX4018/MAX4020  
GAIN FLATNESS vs. FREQUENCY  
MAX4016/MAX4018/MAX4020  
CROSSTALK vs. FREQUENCY  
CLOSED-LOOP OUTPUT IMPEDANCE  
vs. FREQUENCY  
1000  
100  
10  
0.5  
0.4  
50  
A
V
= 1  
R
= 50  
VCL  
S
30  
= 20mV  
P-P  
OUT  
0.3  
0.2  
10  
-10  
0.1  
-30  
0
-50  
-0.1  
-0.2  
-0.3  
-0.4  
-70  
-90  
1
-110  
-130  
-0.5  
-150  
0.1  
0.1M  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
0.1M  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
5
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Typical Operating Characteristics (continued)  
(V  
= ꢀV, V = 0, A  
= 1, R = 24, R = 100to V /2, T = +2ꢀ°C, unless otherwise noted.)  
VCL F L  
A
CC  
EE  
HARMONIC DISTORTION  
vs. FREQUENCY (A = 1)  
CC  
HARMONIC DISTORTION  
vs. FREQUENCY (A = 2)  
HARMONIC DISTORTION  
vs. FREQUENCY (A = 5)  
VCL  
VCL  
VCL  
0
0
0
V
A
= 2V  
= 1  
V
A
= 2V  
= 2  
V
A
= 2V  
P-P  
= 5  
OUT  
VCL  
P-P  
OUT  
VCL  
P-P  
OUT  
VCL  
-10  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
2ND HARMONIC  
3RD  
HARMONIC  
2ND HARMONIC  
2ND HARMONIC  
3RD HARMONIC  
10M  
3RD HARMONIC  
10M  
-100  
-100  
-100  
100k  
1M  
100M  
100k  
1M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
DIFFERENTIAL GAIN AND PHASE  
HARMONIC DISTORTION  
vs. LOAD  
HARMONIC DISTORTION  
vs. OUTPUT SWING  
0.03  
V
= 1.35V  
0
CM  
0
0.02  
0.01  
f = 5MHz  
= 2V  
f
= 5MHz  
O
-10  
-10  
V
OUT  
P-P  
-20  
-30  
-40  
-50  
-60  
-20  
-30  
-40  
-50  
-60  
0.00  
-0.01  
0
100  
IRE  
0.03  
0.02  
0.01  
0.00  
-0.01  
V
= 1.35V  
CM  
-70  
-80  
-90  
-70  
-80  
-90  
2rd HARMONIC  
2ND HARMONIC  
3RD HARMONIC  
3rd HARMONIC  
200  
-100  
0
100  
-100  
0
400  
600  
800  
1000  
IRE  
0.5  
1.0  
1.5  
2.0  
LOAD ()  
OUTPUT SWING (Vp-p)  
OUTPUT SWING  
vs. LOAD RESISTANCE  
COMMON-MODE REJECTION  
vs. FREQUENCY  
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0
20  
10  
R to V /2  
L
CC  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
R to GROUND  
L
A
= 2  
VCL  
-100  
-80  
25  
50  
75  
100  
125  
150  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
LOAD RESISTANCE ()  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6
_______________________________________________________________________________________  
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Typical Operating Characteristics (continued)  
(V  
= ꢀV, V = 0, A  
= 1, R = 24, R = 100to V /2, T = +2ꢀ°C, unless otherwise noted.)  
VCL F L  
A
CC  
EE  
SMALL-SIGNAL PULSE RESPONSE  
(A = 1)  
CC  
SMALL-SIGNAL PULSE RESPONSE  
(A = 2)  
SMALL-SIGNAL PULSE RESPONSE  
(C = 5pF, A = 1)  
VCL  
L
VCL  
VCL  
MAX4012-20  
MAX4012-21  
MAX4012-19  
IN  
(25mV/  
div)  
IN  
(50mV/  
div)  
IN  
(50mV/  
div)  
OUT  
(25mV/  
div)  
OUT  
(25mV/  
div)  
OUT  
(25mV/  
div)  
20ns/div  
20ns/div  
= 1.75V, R = 100to GROUND  
20ns/div  
V
= 1.25V, R = 100to GROUND  
V
V
= 2.5V, R = 100to GROUND  
CM  
L
CM  
L
CM  
L
LARGE-SIGNAL PULSE RESPONSE  
(A = 2)  
LARGE-SIGNAL PULSE RESPONSE  
(A = 1)  
LARGE-SIGNAL PULSE RESPONSE  
(C = 5pF, A = 2)  
VCL  
VCL  
L
VCL  
MAX4012-23  
MAX4012-22  
MAX4012-24  
IN  
(1V/  
div)  
IN  
(500mV/  
div)  
IN  
(1V/div)  
OUT  
(500mV/  
div)  
OUT  
(1V/div)  
OUT  
(500mV/  
div)  
20ns/div  
20ns/div  
20ns/div  
V
= 0.9V, R = 100to GROUND  
V
= 1.75V, R = 100to GROUND  
CM  
L
V
= 1.75V, R = 100to GROUND  
CM  
L
CM  
L
VOLTAGE-NOISE DENSITY  
vs. FREQUENCY  
CURRENT-NOISE DENSITY  
vs. FREQUENCY  
ENABLE RESPONSE TIME  
MAX4012-27  
100  
10  
1
10  
5.0V  
(ENABLE)  
EN_  
OUT  
0
(DISABLE)  
1V  
0
1
1µs/div  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
V
= 1.0V  
IN  
_______________________________________________________________________________________  
7
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Typical Operating Characteristics (continued)  
= 1, R = 24, R = 100to V /2, T = +2ꢀ°C, unless otherwise noted.)  
VCL F L CC  
A
(V  
= ꢀV, V = 0, A  
CC  
EE  
OPEN-LOOP GAIN  
vs. LOAD RESISTANCE  
CLOSED-LOOP BANDWIDTH  
vs. LOAD RESISTANCE  
OFF-ISOLATION vs. FREQUENCY  
10  
0
70  
60  
50  
40  
30  
20  
400  
350  
300  
250  
200  
150  
100  
50  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
100k  
1M  
10M  
100M  
0
200  
400  
600  
800  
1k  
0
100  
200  
300  
400  
500  
600  
FREQUENCY (Hz)  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
SUPPLY CURRENT  
vs. TEMPERATURE  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
INPUT OFFSET CURRENT  
vs. TEMPERATURE  
7
6
5
4
3
6.0  
5.5  
5.0  
4.5  
4.0  
0.20  
0.16  
0.12  
0.08  
0.04  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
OUTPUT VOLTAGE SWING  
vs. TEMPERATURE  
5
4
3
2
1
0
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
10  
8
R = 150TO V /2  
L
CC  
6
4
2
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
3
4
5
6
7
8
9
10 11  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
8
_______________________________________________________________________________________  
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX4012 MAX4012  
MAX4018  
MAX4020  
MAX4016  
SO/µMAX  
SO-8  
SOT23  
SO  
QSOP  
8, 9  
SO  
QSOP  
8, 9  
No Connection. Not internally connected. Tie  
to ground or leave open.  
1, ꢀ, 8  
6
1
4
11  
11  
N.C.  
OUT  
Amplifier Output  
Negative Power Supply or Ground (in single-  
supply operation)  
4
2
13  
13  
V
EE  
3
3
8
4
4
4
4
IN+  
IN-  
Noninverting Input  
Inverting Input  
2
4
7
V
Positive Power Supply  
CC  
1
7
7
1
1
OUTA Amplifier A Output  
2
6
6
2
2
INA-  
Amplifier A Inverting Input  
3
3
3
INA+ Amplifier A Noninverting Input  
OUTB Amplifier B Output  
7
8
10  
11  
12  
16  
1ꢀ  
14  
1
7
7
6
9
6
6
INB-  
Amplifier B Inverting Input  
10  
14  
13  
12  
1
INB+ Amplifier B Noninverting Input  
OUTC Amplifier C Output  
8
10  
11  
12  
16  
1ꢀ  
14  
9
INC-  
Amplifier C Inverting Input  
10  
14  
13  
12  
INC+ Amplifier C Noninverting Input  
OUTD Amplifier D Output  
IND-  
Amplifier D Inverting Input  
IND+ Amplifier D Noninverting Input  
EN  
Enable Amplifier  
Enable Amplifier A  
Enable Amplifier B  
Enable Amplifier C  
ENA  
ENB  
ENC  
3
3
2
2
_______________________________________________________________________________________  
9
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
cuit formed by the parasitic feedback capacitance and  
inductance.  
Detailed Description  
The MAX4012/MAX4016/MAX4018/MAX4020 are sin-  
gle-supply, rail-to-rail, voltage-feedback amplifiers that  
employ current-feedback techniques to achieve  
600V/µs slew rates and 200MHz bandwidths. Excellent  
harmonic distortion and differential gain/phase perfor-  
mance make these amplifiers an ideal choice for a wide  
variety of video and RF signal-processing applications.  
Inverting and Noninverting Configurations  
Select the gain-setting feedback (R ) and input (R )  
F
G
resistor values to fit your application. Large resistor val-  
ues increase voltage noise and interact with the amplifi-  
er’s input and PC board capacitance. This can  
generate undesirable poles and zeros and decrease  
bandwidth or cause oscillations. For example, a nonin-  
The output voltage swing comes to within ꢀ0mV of each  
supply rail. Local feedback around the output stage  
assures low open-loop output impedance to reduce  
gain sensitivity to load variations. This feedback also  
produces demand-driven current bias to the output  
transistors for 120mA drive capability, while constrain-  
ing total supply current to less than 7mA. The input  
stage permits common-mode voltages beyond the nega-  
tive supply and to within 2.2ꢀV of the positive supply rail.  
verting gain-of-two configuration (R = R ) using 1k  
F
G
resistors, combined with 1pF of amplifier input capaci-  
tance and 1pF of PC board capacitance, causes a pole  
at 1ꢀ9MHz. Since this pole is within the amplifier band-  
width, it jeopardizes stability. Reducing the 1kresis-  
tors to 100extends the pole frequency to 1.ꢀ9GHz,  
but could limit output swing by adding 200in parallel  
with the amplifier’s load resistor. Table 1 shows sug-  
gested feedback, gain resistors, and bandwidth for  
several gain values in the configurations shown in  
Figures 1a and 1b.  
Applications Information  
Choosing Resistor Values  
Layout and Power-Supply Bypassing  
These amplifiers operate from a single 3.3V to 11V power  
supply or from dual supplies to ꢀ.ꢀV. For single-supply  
Unity-Gain Configuration  
The MAX4012/MAX4016/MAX4018/MAX4020 are inter-  
nally compensated for unity gain. When configured for  
operation, bypass V  
to ground with a 0.1µF capacitor  
CC  
unity gain, the devices require a 24resistor (R ) in  
F
as close to the pin as possible. If operating with dual sup-  
plies, bypass each supply with a 0.1µF capacitor.  
series with the feedback path. This resistor improves  
AC response by reducing the Q of the parallel LC cir-  
R
F
R
F
R
G
R
G
IN  
R
TIN  
R
TO  
R
TO  
V
OUT  
V
OUT  
MAX40_ _  
MAX40_ _  
IN  
R
O
R
O
V
OUT  
= [1+ (R / R )] V  
F G IN  
V
OUT  
= -(R / R ) V  
F G  
IN  
R
S
R
TIN  
Figure 1a. Noninverting Gain Configuration  
Figure 1b. Inverting Gain Configuration  
10 ______________________________________________________________________________________  
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Maxim recommends using microstrip and stripline tech-  
The output swings to within 60mV of either power-  
supply rail with a 2kload. The input ground-sensing  
and the rail-to-rail output substantially increase the  
dynamic range. With a symmetric input in a single ꢀV  
niques to obtain full bandwidth. To ensure that the PC  
board does not degrade the amplifier’s performance,  
design it for a frequency greater than 1GHz. Pay care-  
ful attention to inputs and outputs to avoid large para-  
sitic capacitance. Whether or not you use a constant-  
impedance board, observe the following guidelines  
when designing the board:  
application, the input can swing 2.9ꢀV , and the out-  
P-P  
put can swing 4.9V  
with minimal distortion.  
P-P  
Enable Input and Disabled Output  
The enable feature (EN_) allows the amplifier to be  
placed in a low-power, high-output-impedance state.  
• Don’t use wire-wrap boards because they are too  
inductive.  
Typically, the EN_ logic low input current (I ) is small.  
IL  
• Don’t use IC sockets because they increase parasitic  
capacitance and inductance.  
However, as the EN voltage (V ) approaches the nega-  
IL  
tive supply rail, I increases (Figure 2). A single resis-  
IL  
tor connected as shown in Figure 3 prevents the rise in  
the logic-low input current. This resistor provides a  
• Use surface-mount instead of through-hole compo-  
nents for better high-frequency performance.  
feedback mechanism that increases V as the logic  
IL  
• Use a PC board with at least two layers; it should be  
as free from voids as possible.  
input is brought to V . Figure 4 shows the resulting  
EE  
input current (I ).  
IL  
• Keep signal lines as short and as straight as possi-  
ble. Do not make 90° turns; round all corners.  
When the MAX4018 is disabled, the amplifier’s output  
impedance is 3ꢀk. This high resistance and the low  
2pF output capacitance make this part ideal in  
RF/video multiplexer or switch applications. For larger  
arrays, pay careful attention to capacitive loading. See  
the Output Capacitive Loading and Stability section for  
more information.  
Rail-to-Rail Outputs,  
Ground-Sensing Input  
The input common-mode range extends from  
(V - 200mV) to (V  
EE  
- 2.2ꢀV) with excellent common-  
CC  
mode rejection. Beyond this range, the amplifier output  
is a nonlinear function of the input, but does not under-  
go phase reversal or latchup.  
Table 1. Recommended Component Values  
GAIN (V/V)  
COMPONENT  
+1  
24  
-1  
ꢀ00  
ꢀ00  
0
+2  
ꢀ00  
ꢀ00  
-2  
ꢀ00  
2ꢀ0  
0
+5  
ꢀ00  
124  
-5  
ꢀ00  
100  
0
+10  
ꢀ00  
ꢀ6  
-10  
ꢀ00  
ꢀ0  
+25  
ꢀ00  
20  
-25  
1200  
ꢀ0  
R ()  
F
R
()  
G
R ()  
S
0
0
R
R
()  
()  
49.9  
49.9  
200  
ꢀ6  
49.9  
49.9  
10ꢀ  
62  
49.9  
49.9  
2ꢀ  
100  
49.9  
33  
49.9  
49.9  
11  
49.9  
49.9  
6
TIN  
TO  
49.9  
90  
49.9  
60  
49.9  
2ꢀ  
49.9  
10  
Small-Signal -3dB Bandwidth (MHz)  
Note: = R + R ; R and R  
R
are calculated for ꢀ0applications. For 7ꢀsystems, R  
TO  
= 7ꢀ; calculate R from the  
TIN  
L
O
TO  
TIN  
TO  
following equation:  
7ꢀ  
R
=
TIN  
7ꢀ  
1-  
R
G
______________________________________________________________________________________ 11  
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
20  
ENABLE  
0
-20  
10kΩ  
EN_  
-40  
IN-  
IN+  
-60  
-80  
OUT  
MAX40_ _  
-100  
-120  
-140  
-160  
0
50 100 150 200 250 300 350 400 450 500  
mV ABOVE V  
Figure 3. Circuit to Reduce Enable Logic-Low Input Current  
EE  
To implement the mux function, the outputs of multiple  
amplifiers can be tied together, and only the amplifier  
with the selected input will be enabled. All of the other  
amplifiers will be placed in the low-power shutdown  
mode, with their high output impedance presenting  
very little load to the active amplifier output. For gains  
of +2 or greater, the feedback network impedance of  
all the amplifiers used in a mux application must be  
considered when calculating the total load on the  
active amplifier output  
Figure 2. Enable Logic-Low Input Current vs. V  
IL  
0
-1  
-2  
-3  
-4  
Output Capacitive Loading and Stability  
The MAX4012/MAX4016/MAX4018/MAX4020 are opti-  
mized for AC performance. They are not designed to  
drive highly reactive loads, which decreases phase  
margin and may produce excessive ringing and oscilla-  
tion. Figure ꢀ shows a circuit that eliminates this prob-  
lem. Figure 6 is a graph of the optimal isolation resistor  
-5  
-6  
-7  
-8  
-9  
(R ) vs. capacitive load. Figure 7 shows how a capaci-  
S
-10  
0
50 100 150 200 250 300 350 400 450 500  
mV ABOVE V  
tive load causes excessive peaking of the amplifier’s  
frequency response if the capacitor is not isolated from  
the amplifier by a resistor. A small isolation resistor  
(usually 20to 30) placed before the reactive load  
prevents ringing and oscillation. At higher capacitive  
loads, AC performance is controlled by the interaction  
of the load capacitance and the isolation resistor.  
Figure 8 shows the effect of a 27isolation resistor on  
closed-loop response.  
EE  
Figure 4. Enable Logic-Low Input Current vs. V with 10kΩ  
Series Resistor  
IL  
Coaxial cable and other transmission lines are easily  
driven when properly terminated at both ends with their  
characteristic impedance. Driving back-terminated  
transmission lines essentially eliminates the line’s  
capacitance.  
12 ______________________________________________________________________________________  
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
30  
25  
R
F
R
G
20  
R
ISO  
15  
10  
5
V
OUT  
MAX40_ _  
V
IN  
C
L
50Ω  
R
TIN  
0
0
50  
100  
150  
200  
250  
CAPACITIVE LOAD (pF)  
Figure 5. Driving a Capacitive Load through an Isolation Resistor  
Figure 6. Capacitive Load vs. Isolation Resistance  
6
5
3
R
ISO  
= 27Ω  
2
1
C = 47pF  
L
C = 15pF  
L
4
3
0
C = 68pF  
L
C = 10pF  
L
2
-1  
-2  
-3  
-4  
-5  
-6  
-7  
1
C = 120pF  
L
0
C = 5pF  
-1  
-2  
-3  
-4  
L
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. Small-Signal Gain vs. Frequency with Load  
Capacitance and No Isolation Resistor  
Figure 8. Small-Signal Gain vs. Frequency with Load  
Capacitance and 27Isolation Resistor  
______________________________________________________________________________________ 13  
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Pin Configurations (continued)  
TOP VIEW  
OUTC  
OUTD  
14  
ENA  
1
2
3
4
5
6
7
14  
OUTA  
INA-  
1
2
3
4
5
6
7
ENC  
ENB  
13 INC-  
12 INC+  
13 IND-  
12 IND+  
INA+  
V
CC  
11  
10  
9
V
V
CC  
11  
10  
9
V
EE  
MAX4018  
MAX4020  
EE  
INB+  
INB-  
INC+  
INC-  
INA+  
INA-  
INB+  
INB-  
OUTB  
OUTC  
OUTA  
8
OUTB  
8
SO  
SO  
OUTA  
INA-  
8
7
6
5
V
CC  
1
2
3
4
OUTB  
INB-  
MAX4016  
INA+  
V
EE  
INB+  
SO/µMAX  
1
16 OUTC  
ENA  
ENC  
ENB  
1
2
3
4
5
6
7
8
16 OUTD  
OUTA  
INA-  
INC-  
INC+  
2
3
4
5
6
7
8
15  
14  
13  
IND-  
IND+  
15  
14  
INA+  
V
V
CC  
MAX4018  
V
V
CC  
MAX4020  
EE  
13  
12  
EE  
12 INB+  
INA+  
INA-  
INC+  
INC-  
OUTC  
N.C.  
INB+  
INB-  
INB-  
OUTB  
N.C.  
11  
10  
9
11  
10  
9
OUTA  
N.C.  
OUTB  
N.C.  
QSOP  
QSOP  
14 ______________________________________________________________________________________  
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Ordering Information (continued)  
___________________Chip Information  
MAX4012 TRANSISTOR COUNT: 9ꢀ  
MAX4016 TRANSISTOR COUNT: 190  
MAX4018 TRANSISTOR COUNT: 299  
MAX4020 TRANSISTOR COUNT: 362  
TEMP  
RANGE  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
MAX4018ESD  
MAX4018EEE  
MAX4020ESD  
MAX4020EEE  
-40°C to +8ꢀ°C  
-40°C to +8ꢀ°C  
-40°C to +8ꢀ°C  
-40°C to +8ꢀ°C  
14 SO  
16 QSOP  
14 SO  
16 QSOP  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, SOT-23, 5L  
1
21-0057  
E
1
______________________________________________________________________________________ 15  
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MAX  
MIN  
-
-
0.043  
0.006  
0.037  
0.014  
0.007  
0.120  
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
E
H
ÿ 0.50 0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.6 0.1  
E
H
0.116  
0.188  
0.016  
0∞  
0.120  
2.95  
4.78  
0.41  
0∞  
3.05  
5.03  
0.66  
6∞  
0.198  
0.026  
6∞  
L
1
1
α
S
0.6 0.1  
0.0207 BSC  
0.5250 BSC  
D
BOTTOM VIEW  
TOP VIEW  
A1  
A2  
A
c
α
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
PACKAGE OUTLINE, QSOP .150", .025" LEAD PITCH  
1
21-0055  
E
1
16 ______________________________________________________________________________________  
Low-Cost, High-Speed, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
INCHES  
MILLIMETERS  
DIM  
A
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
MIN  
1.35  
0.10  
0.35  
0.19  
MAX  
1.75  
0.25  
0.49  
0.25  
0.053  
0.004  
0.014  
0.007  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.228  
0.016  
0.157  
0.244  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
DIM  
D
MIN  
MAX  
0.197  
0.344  
0.394  
MIN  
4.80  
8.55  
9.80  
MAX  
5.00  
N
8
MS012  
AA  
TOP VIEW  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
B
0-8∞  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
17 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX4020ESD

Low-Cost, High-Speed, SOT23, Single-Supply Op Amps with Rail-to-Rail Outputs
MAXIM

MAX4020ESD+

Video Amplifier, 1 Channel(s), 4 Func, PDSO14, 0.150 INCH, MS-012AB, SO-14
MAXIM

MAX4020ESD-T

Video Amplifier, 1 Channel(s), 4 Func, PDSO14, 0.150 INCH, MS-012AB, SO-14
MAXIM

MAX4022

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23
MAXIM

MAX4022EEE

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23
MAXIM

MAX4022EEE+

Buffer Amplifier, 4 Func, PDSO16, QSOP-16
MAXIM

MAX4022EEE+T

Buffer Amplifier, 4 Func, PDSO16, QSOP-16
MAXIM

MAX4022EEE-T

Buffer Amplifier, 4 Func, PDSO16, QSOP-16
MAXIM

MAX4022ESD

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23
MAXIM

MAX4022ESD+

Buffer Amplifier, 4 Func, PDSO14, SO-14
MAXIM

MAX4022ESD+T

暂无描述
MAXIM

MAX4022ESD-T

Buffer Amplifier, 4 Func, PDSO14, SO-14
MAXIM