MAX4090AAUT+ [MAXIM]

Video Amplifier;
MAX4090AAUT+
型号: MAX4090AAUT+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Video Amplifier

文件: 总12页 (文件大小:651K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2813; Rev 2; 8/04  
3V/5V, 6dB Video Buffer with Sync-Tip Clamp  
and 150nA Shutdown Current  
General Description  
Features  
The MAX4090 3V/5V, 6dB video buffer with sync-tip  
clamp, and low-power shutdown mode is available in  
tiny SOT23 and SC70 packages. The MAX4090 is  
designed to drive DC-coupled, 150back-terminated  
video loads in portable video applications such as digi-  
tal still cams, portable DVD players, digital camcorders,  
PDAs, video-enabled cell phones, portable game sys-  
tems, and notebook computers. The input clamp posi-  
tions the video waveform at the output and allows the  
MAX4090 to be used as a DC-coupled output driver.  
Single-Supply Operation from 2.7V to 5.5V  
Input Sync-Tip Clamp  
DC-Coupled Output  
Low-Power Shutdown Mode Reduces Supply  
Current to 150nA  
Available in Space-Saving SOT23 and SC70  
Packages  
The MAX4090 operates from a single 2.7V to 5.5V sup-  
ply and consumes only 6.5mA of supply current. The  
low-power shutdown mode reduces the supply current  
to 150nA, making the MAX4090 ideal for low-voltage,  
battery-powered video applications.  
The MAX4090 is available in tiny 6-pin SOT23 and  
SC70 packages and is specified over the extended  
-40°C to +85°C temperature range.  
Applications  
Ordering Information  
Portable Video/Game Systems/DVD Players  
Digital Camcorders/Televisions/Still Cameras  
PDAs  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP RANGE  
MAX4090EXT-T  
MAX4090EUT-T  
-40°C to +85°C 6 SC70-6  
-40°C to +85°C 6 SOT23-6  
ABM  
ABOX  
Video-Enabled Cell Phones  
Notebook Computers  
Portable/Flat-Panel Displays  
Block Diagram  
Pin Configuration  
TOP VIEW  
IN  
V
CC  
TOP VIEW  
MAX4090  
OUT  
GND  
IN  
1
2
3
6
5
4
FB  
OUT  
MAX4090  
SHDN  
2.3k  
CLAMP  
FB  
V
CC  
580Ω  
780Ω  
1.2kΩ  
SC70/SOT23  
SHDN  
GND  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
3V/5V, 6dB Video Buffer with Sync-Tip Clamp  
and 150nA Shutdown Current  
ABSOLUTE MAXIMUM RATINGS  
CC  
OUT, FB, SHDN to GND............................ -0.3V to (V  
V
to GND............................................................. -0.3V to +6V  
Operating Temperature Range ..........................-40°C to +85°C  
Junction Temperature .....................................................+150°C  
Storage Temperature Range ............................-65°C to +150°C  
Lead Temperature (soldering, 10s) ................................+300°C  
+ 0.3V)  
+ 0.3V)  
CC  
CC  
IN to GND (Note 1) ................................... V  
to (V  
CLP  
IN Short-Circuit Duration from -0.3V to V  
........................1min  
CLP  
Output Short-Circuit Duration to V  
or GND .......... Continuous  
CC  
Continuous Power Dissipation (T = +70°C)  
A
6-Pin SOT23 (derate 8.7mW/°C above +70°C) ...........695mW  
6-Pin SC70 (derate 3.1mW/°C above +70°C) .............245mW  
Note 1: V  
is the input clamp voltage as defined in the DC Electrical Characteristics table.  
CLP  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= 3.0V, GND = 0V, C = 0.1µF from IN to GND, R = infinity to GND, FB shorted to OUT, SHDN = 3.0V, T = -40°C to +85°C.  
IN L A  
CC  
Typical values are at T = +25°C, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by PSRR  
MIN  
TYP  
MAX  
5.5  
10  
UNITS  
Supply Voltage Range  
V
2.7  
V
CC  
V
V
= 3V  
= 5V  
6.5  
6.5  
CC  
CC  
Quiescent Supply Current  
I
V
= V  
mA  
CC  
IN  
CLP  
10  
Shutdown Supply Current  
Input Clamp Voltage  
Input Voltage Range  
Input Bias Current  
I
SHDN = 0V  
0.15  
0.38  
1
µA  
V
SHDN  
V
Input referred  
0.27  
0.47  
1.45  
35  
CLP  
V
Inferred from voltage gain (Note 3)  
V
V
IN  
CLP  
I
V
V
= 1.45V  
22.5  
3
µA  
M  
V/V  
dB  
BIAS  
IN  
Input Resistance  
+ 0.5V < V < V  
+ 1V  
CLP  
CLP  
IN  
Voltage Gain  
A
R = 150, 0.5V < V < 1.45V (Note 4)  
L
1.9  
60  
2
2.1  
V
IN  
Power-Supply Rejection Ratio  
PSRR  
2.7V < V  
< 5.5V  
80  
2.7  
4.6  
CC  
V
V
= 3V  
= 5V  
2.55  
4.3  
CC  
CC  
Output Voltage High Swing  
Output Voltage Low Swing  
Output Current  
V
R = 150to GND  
L
V
V
OH  
V
R = 150to GND  
L
V
0.47  
OL  
CLP  
Sourcing, R = 20to GND  
45  
40  
85  
L
I
mA  
OUT  
Sinking, R = 20to V  
85  
L
CC  
Output Short-Circuit Current  
SHDN Logic-Low Threshold  
SHDN Logic-High Threshold  
SHDN Input Current  
I
OUT shorted to V  
or GND  
110  
mA  
V
SC  
CC  
V
V
x 0.3  
CC  
IL  
IH  
IH  
V
V
x 0.7  
V
CC  
I
0.003  
4
1
µA  
At DC  
R
OUT  
(Disabled)  
Shutdown Output Impedance  
SHDN = 0V  
kΩ  
At 3.58MHz or  
4.43MHz  
2
2
_______________________________________________________________________________________  
3V/5V, 6dB Video Buffer with Sync-Tip Clamp  
and 150nA Shutdown Current  
AC ELECTRICAL CHARACTERISTICS  
(V  
= 3.0V, GND = 0V, FB shorted to OUT, C = 0.1µF, R = 75to GND, R = 150to GND, SHDN = V , T = +25°C, unless  
CC  
IN  
IN  
L
CC  
A
otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
Small-Signal -3dB Bandwidth  
Large-Signal -3dB Bandwidth  
BW  
BW  
V
V
V
V
V
V
= 100mV  
55  
45  
25  
17  
275  
25  
50  
2.5  
1
SS  
LS  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
P-P  
= 2V  
P-P  
Small-Signal 0.1dB Gain Flatness BW  
Large-Signal 0.1dB Gain Flatness BW  
Slew Rate  
= 100mV  
P-P  
0.1dBSS  
= 2V  
0.1dBLS  
SR  
P-P  
= 2V step  
= 2V step  
Settling Time to 0.1%  
t
S
Power-Supply Rejection Ratio  
Output Impedance  
PSRR  
f = 100kHz  
f = 5MHz  
dB  
Z
OUT  
V
V
V
V
= 3V  
= 5V  
= 3V  
= 5V  
CC  
CC  
CC  
CC  
Differential Gain  
Differential Phase  
DG  
DP  
NTSC  
NTSC  
%
0.5  
0.8  
0.5  
20  
65  
2
Degrees  
Group Delay  
D/dT  
SNR  
f = 3.58MHz or 4.43MHz  
ns  
dB  
%
Peak Signal to RMS Noise  
Droop  
V
= 1V , 10MHz BW  
P-P  
IN  
C
= 0.1µF (Note 4)  
3
IN  
V
= V  
+ 1V, SHDN = 3V, V  
settled  
settled  
IN  
CLP  
OUT  
OUT  
SHDN Enable Time  
SHDN Disable Time  
t
250  
50  
ns  
ns  
ON  
to within 1% of the final voltage  
V
= V + 1V, SHDN = 0V, V  
IN  
CLP  
t
OFF  
to below 1% of the output voltage  
Note 2: All devices are 100% production tested at T = +25°C. Specifications over temperature limits are guaranteed by design.  
A
Note 3: Voltage gain (A ) is referenced to the clamp voltage, i.e., an input voltage of V = V + VI would produce an output volt-  
V
IN  
CLP  
age of V  
= V  
+ A x VI.  
CLP V  
OUT  
Note 4: Droop is guaranteed by the Input Bias Current specification.  
_______________________________________________________________________________________  
3
3V/5V, 6dB Video Buffer with Sync-Tip Clamp  
and 150nA Shutdown Current  
Typical Operating Characteristics  
(V  
= 3.0V, GND = 0V, FB shorted to OUT, C = 0.1µF, R = 75to GND, R = 150to GND, SHDN = V , T = +25°C, unless  
IN IN L CC A  
CC  
otherwise noted.)  
SMALL-SIGNAL GAIN  
vs. FREQUENCY  
SMALL-SIGNAL GAIN FLATNESS  
vs. FREQUENCY  
SMALL-SIGNAL GAIN  
vs. FREQUENCY  
3
2
0.3  
3
2
0.2  
0.1  
1
1
0
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-1  
-2  
-3  
-4  
-5  
-6  
A
V
V
= 2  
A
V
V
= 2  
A
V
V
= 2  
V
V
V
= 3V  
= 3V  
= 5V  
CC  
CC  
CC  
= 100mV  
= 100mV  
= 100mV  
OUT  
P-P  
OUT  
P-P  
OUT  
P-P  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SMALL-SIGNAL GAIN FLATNESS  
vs. FREQUENCY  
LARGE-SIGNAL GAIN  
vs. FREQUENCY  
LARGE-SIGNAL GAIN FLATNESS  
vs. FREQUENCY  
0.3  
0.2  
3
2
0.3  
0.2  
0.1  
1
0.1  
0
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-1  
-2  
-3  
-4  
-5  
-6  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
A
V
V
= 2  
A
V
V
= 2  
A
V
V
= 2  
V
V
V
= 5V  
= 3V  
= 3V  
CC  
OUT  
CC  
OUT  
CC  
OUT  
= 100mV  
= 2V  
= 2V  
P-P  
P-P  
P-P  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LARGE-SIGNAL GAIN  
vs. FREQUENCY  
LARGE-SIGNAL GAIN FLATNESS  
vs. FREQUENCY  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
3
2
0.3  
0.2  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
= 3V  
CC  
1
0.1  
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
A
V
V
= 2  
A
V
V
= 2  
V
V
= 5V  
= 5V  
CC  
OUT  
CC  
OUT  
= 2V  
= 2V  
P-P  
P-P  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
4
_______________________________________________________________________________________  
3V/5V, 6dB Video Buffer with Sync-Tip Clamp  
and 150nA Shutdown Current  
Typical Operating Characteristics (continued)  
(V  
= 3.0V, GND = 0V, FB shorted to OUT, C = 0.1µF, R = 75to GND, R = 150to GND, SHDN = V , T = +25°C, unless  
IN IN L CC A  
CC  
otherwise noted.)  
POWER-SUPPLY REJECTION RATIO  
QUIESCENT SUPPLY CURRENT  
vs. TEMPERATURE  
CLAMP VOLTAGE  
vs. TEMPERATURE  
vs. FREQUENCY  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
6.80  
6.75  
6.70  
6.65  
6.60  
6.55  
6.50  
6.45  
6.40  
6.35  
6.30  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
V
= 3V  
CC  
V
= 5V  
CC  
V
= 5V  
CC  
V
= 3V  
CC  
25  
10k  
100k  
1M  
10M  
100M  
-50  
-25  
0
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CLAMP VOLTAGE  
vs. TEMPERATURE  
VOLTAGE GAIN vs. TEMPERATURE  
VOLTAGE GAIN vs. TEMPERATURE  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
2.10  
2.05  
2.00  
1.95  
1.90  
2.10  
2.05  
2.00  
1.95  
1.90  
V
= 5V  
CC  
V
= 3V  
CC  
V
= 5V  
CC  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE HIGH SWING  
vs. TEMPERATURE  
OUTPUT VOLTAGE HIGH SWING  
vs. TEMPERATURE  
LARGE-SIGNAL PULSE RESPONSE  
MAX4090 toc18  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
V
= 5V  
V
= 3V  
CC  
CC  
V
IN  
500mV/div  
V
OUT  
1V/div  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
10ns/div  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
3V/5V, 6dB Video Buffer with Sync-Tip Clamp  
and 150nA Shutdown Current  
Typical Operating Characteristics (continued)  
(V  
= 3.0V, GND = 0V, FB shorted to OUT, C = 0.1µF, R = 75to GND, R = 150to GND, SHDN = V , T = +25°C, unless  
CC  
IN  
IN  
L
CC  
A
otherwise noted.)  
SMALL-SIGNAL PULSE RESPONSE  
DIFFERENTIAL GAIN AND PHASE  
MAX4090 toc19  
2.0  
1.0  
0
V
IN  
25mV/div  
-1.0  
-2.0  
0
1
2
3
4
5
6
1.0  
0.5  
0
V
OUT  
50mV/div  
-0.5  
-1.0  
0
1
2
3
4
5
6
10ns/div  
Typical Application Circuit  
Pin Description  
PIN NAME  
FUNCTION  
1
2
3
OUT Video Output  
GND Ground  
IN Video Input  
V
CC  
MAX4090  
Power-Supply Voltage. Bypass with a 0.1µF  
capacitor to ground as close to pin as  
possible.  
IN  
4
V
CC  
OUT  
R
IN  
R
L
CLAMP  
Shutdown. Pull SHDN low to place the  
5
6
SHDN  
MAX4090 in low-power shutdown mode.  
FB  
Feedback. Connect to OUT.  
FB  
SHDN  
GND  
6
_______________________________________________________________________________________  
3V/5V, 6dB Video Buffer with Sync-Tip Clamp  
and 150nA Shutdown Current  
The active sync-tip clamp also requires that the input  
Detailed Description  
impedance seen by the input capacitor be less than  
The MAX4090 3V/5V, 6dB video buffer with sync-tip  
100typically to function properly. This is easily met  
by the 75input resistor prior to the input-coupling  
capacitor and the back termination from a prior stage.  
Insufficient input resistance to ground causes the  
MAX4090 to appear to oscillate. Never operate the  
MAX4090 in this mode.  
clamp and low-power shutdown mode is available in tiny  
SOT23 and SC70 packages. The MAX4090 is designed  
to drive DC-coupled, 150back-terminated video loads  
in portable video applications such as digital still cams,  
portable DVD players, digital camcorders, PDAs, video-  
enabled cell phones, portable game systems, and note-  
book computers. The input clamp positions the video  
waveform at the output and allows the MAX4090 to be  
used as a DC-coupled output driver.  
Using the MAX4090 with the  
Reconstruction Filter  
In most video applications, the video signal generated  
from the DAC requires a reconstruction filter to smooth  
out the signal and attenuate the sampling aliases. The  
MAX4090 is a direct DC-coupled output driver, which  
can be used after the reconstruction filter to drive the  
video signal. The driving load from the video DAC can  
be varied from 75to 300. A low input impedance  
(<100) is required by the MAX4090 in normal opera-  
tion, special care must be taken when a reconstruction  
filter is used in front of the MAX4090.  
The MAX4090 operates from a single 2.7V to 5.5V sup-  
ply and consumes only 6.5mA of supply current. The  
low-power shutdown mode reduces the supply current  
to 150nA, making the MAX4090 ideal for low-voltage,  
battery-powered video applications.  
The input signal to the MAX4090 is AC-coupled  
through a capacitor into an active sync-tip clamp cir-  
cuit, which places the minimum of the video signal at  
approximately 0.38V. The output buffer amplifies the  
video signal while still maintaining the 0.38V clamp volt-  
For standard video signal, the video passband is about  
6MHz and the system oversampling frequency is at  
27MHz. Normally, a 9MHz BW lowpass filter can be  
used for the reconstruction filter. This section demon-  
strates the methods to build simple 2nd- and 3rd-order  
passive butterworth lowpass filters at the 9MHz cutoff  
frequency and the techniques to use them with the  
MAX4090 (Figures 1 and 4).  
age at the output. For example, if V = 0.38V, then  
IN  
V
= 0.38V. If V = (0.38V + 1V) = 1.38V, then V  
OUT  
IN OUT  
= (0.38V + 2 X (1V)) = 2.38V. The net result is that a 2V  
video output signal swings within the usable output  
voltage range of the output buffer when V  
= 3V.  
CC  
Shutdown Mode  
The MAX4090 features a low-power shutdown mode  
(I  
= 150nA) for battery-powered/portable applica-  
2nd-Order Butterworth Lowpass Filter Realization  
Table 1 shows the normalized 2nd-order butterworth  
LPF component values at 1rad/s with a source/load  
impedance of 1.  
SHDN  
tions. Pulling the SHDN pin high enables the output.  
Connecting the SHDN pin to ground (GND) disables  
the output and places the MAX4090 into a low-power  
shutdown mode.  
With the following equations, the L and C can be calcu-  
lated for the cutoff frequency at 9MHz. Table 2 shows  
the appropriated L and C values for different source/  
load impedance, the bench measurement values for  
the -3dB BW and attenuation at 27MHz. There is  
approximately 20dB attenuation at 27MHz, which effec-  
tively attenuates the sampling aliases. The MAX4090  
requires low input impedance for stable operation and  
it does not like the reactive input impedance. For R1/R2  
Applications Information  
Input Coupling the MAX4090  
The MAX4090 input must be AC-coupled because the  
input capacitor stores the clamp voltage. The MAX4090  
requires a typical value of 0.1µF for the input clamp to  
meet the Line Droop specification. A minimum of a  
ceramic capacitor with an X7R temperature coefficient  
is recommended to avoid temperature-related prob-  
lems with Line Droop. For extended temperature opera-  
tion, such as outdoor applications, or where the  
impressed voltage is close to the rated voltage of the  
capacitor, a film dielectric is recommended. Increasing  
the capacitor value slows the clamp capture time.  
Values above 0.5µF should be avoided since they do  
not improve the clamp’s performance.  
greater than 100, a series resistor R (Figure 1)  
IS  
Table 1. 2nd Order Butterworth Lowpass  
Filter Normalized Values  
Rn1 = Rn2 ()  
Cn1 (F)  
Ln1 (H)  
1
1.414  
1.414  
_______________________________________________________________________________________  
7
3V/5V, 6dB Video Buffer with Sync-Tip Clamp  
and 150nA Shutdown Current  
between 20to 100is needed to isolate the input  
capacitor (C4) to the filter to prevent the oscillation  
problem.  
3rd-Order Butterworth Lowpass Filter Realization  
If more flat passband and more stopband attenuation  
are needed, a 3rd-order LPF can be used. The design  
procedures are similar to the 2nd-order butterworth  
LPF.  
C
L R  
n L  
2πf  
C
n
C=  
L=  
Table 3 shows the normalized 3rd-order butterworth  
lowpass filter with the cutoff frequency at 1 rad/s and  
the stopband frequency at 3 rad/s. Table 4 shows the  
appropriated L and C values for different source/load  
impedance and the bench measurement values for  
-3dB BW and attenuation at 27MHz. The attenuation is  
over 40dB at 27MHz. At 6MHz, the attenuation is  
approximately 0.6dB for R1 = R2 = 150(Figure 5).  
2πf R  
C L  
Figure 2 shows the frequency response for R1 = R2 =  
150. At 6MHz, the attenuation is about 1.4dB. The  
attenuation at 27MHz is about 20dB. Figure 3 shows  
the multiburst response for R1 = R2 = 150.  
V
CC  
C7  
1µF  
2-POLE RECONSTRUCTION LPF  
L1  
4
R
C4  
0.1µF  
IS  
R3  
75Ω  
V
CC  
V
OUT  
49.9Ω  
3.9µH  
VIDEO  
CURRENT  
DAC  
3
5
1
6
IN  
OUT  
FB  
C1  
150pF  
MAX4090  
R1  
150Ω  
R2  
150Ω  
SHDN  
GND  
2
V
CC  
Figure 1. 2nd-Order Butterworth LPF with MAX4090  
FREQUENCY RESPONSE  
0
-10  
-20  
-30  
-40  
-50  
-60  
V
IN  
500mV/div  
V
OUT  
500mV/div  
10µs/div  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 2. Frequency Response  
Figure 3. Multiburst Response  
8
_______________________________________________________________________________________  
3V/5V, 6dB Video Buffer with Sync-Tip Clamp  
and 150nA Shutdown Current  
V
CC  
3-POLE RECONSTRUCTION LPF  
C3  
6.8pF  
C7  
1µF  
4
R
C4  
0.1µF  
IS  
L1  
4.7µH  
R3  
75Ω  
V
CC  
49.9Ω  
V
OUT  
VIDEO  
CURRENT  
DAC  
3
5
1
6
IN  
OUT  
FB  
C1  
120pF  
C2  
120pF  
R1  
150Ω  
R2  
150Ω  
MAX4090  
SHDN  
GND  
2
V
CC  
Figure 4. 3rd-Order Butterworth LPF with MAX4090  
Table 2. Bench Measurement Values  
Table 3. 3rd-Order Butterworth Lowpass  
Filter Normalized Values  
3dB  
BW  
ATTENUATION  
AT 27MHz  
(dB)  
R1 = R2  
()  
C1  
(pf)  
L1  
(µH)  
R
IS  
()  
Rn1 = Rn2  
Cn1 (F)  
Cn2 (F)  
Cn3 (F)  
Ln1 (H)  
(MHz)  
()  
75  
330  
150  
120  
82  
1.8  
3.9  
4.7  
8.2  
0
8.7  
9.0  
9.3  
8.7  
20  
20  
22  
20  
1
0.923  
0.923  
0.06  
1.846  
150  
200  
300  
50  
50  
100  
Table 4. Bench Measurement Values  
ATTENUATION AT  
27MHz (dB)  
R1 = R2 ()  
C1 (pF)  
C2 (pF)  
C3 (pF)  
L (µH)  
R
()  
3dB BW (MHz)  
IS  
75  
220  
120  
56  
220  
120  
56  
15.0  
6.8  
2.2  
4.7  
0
9.3  
8.9  
9.0  
43  
50  
45  
150  
300  
50  
3.3  
10.0  
100  
Sag Correction  
typically > 220µF. In sag configuration, the MAX4090  
eliminates the need for large coupling capacitors, and  
instead requires two 22µF capacitors (Figure 6) to  
reach the same performance as the large capacitor.  
Bench experiments show that increasing the output  
coupling capacitor C5 beyond 47µF does not improve  
the performance. If the supply voltage is less than 4.5V,  
the sag correction is not recommended for the  
MAX4090.  
In a 5V application, the MAX4090 can use the sag con-  
figuration if an AC-coupled output video signal is  
required. Sag correction refers to the low-frequency  
compensation for the highpass filter formed by the  
150load and the output capacitor. In video applica-  
tions, the cutoff frequency must be low enough to pass  
the vertical sync interval to avoid field tilt. This cutoff  
frequency should be less than 5Hz, and the coupling  
capacitor must be very large in normal configuration,  
_______________________________________________________________________________________  
9
3V/5V, 6dB Video Buffer with Sync-Tip Clamp  
and 150nA Shutdown Current  
Layout and Power-Supply Bypassing  
FREQUENCY RESPONSE  
The MAX4090 operates from single 2.7V to 5.5V sup-  
ply. Bypass the supply with a 0.1µF capacitor as close  
to the pin as possible. Maxim recommends using  
microstrip and stripline techniques to obtain full band-  
width. To ensure that the PC board does not degrade  
the device’s performance, design it for a frequency  
greater than 1GHz. Pay careful attention to inputs and  
outputs to avoid large parasitic capacitance. Whether  
or not you use a constant-impedance board, observe  
the following design guidelines:  
0
-10  
-20  
-30  
-40  
-50  
-60  
• Do not use wire-wrap boards; they are too inductive.  
• Do not use IC sockets; they increase parasitic  
capacitance and inductance.  
0.1  
1
10  
100  
FREQUENCY (MHz)  
• Use surface-mount instead of through-hole compo-  
nents for better, high-frequency performance.  
Figure 5. Frequency Response for R1 = R2 = 150  
• Use a PC board with at least two layers; it should be  
as free from voids as possible.  
• Keep signal lines as short and as straight as possible.  
Do not make 90° turns; round all corners.  
V
CC  
3-POLE RECONSTRUCTION LPF  
C3  
6.8pF  
C7  
1µF  
4
C5  
22µF  
L1  
4.7µH  
R
C4  
0.1µF  
IS  
R3  
75Ω  
V
CC  
V
OUT  
49.9Ω  
VIDEO  
3
5
1
6
IN  
OUT  
FB  
CURRENT  
DAC  
C1  
C2  
120pF  
R1  
R2  
150Ω  
C6  
22µF  
MAX4090  
120pF  
150Ω  
SHDN  
GND  
2
V
CC  
Figure 6. Sag Correction Configuration  
10 ______________________________________________________________________________________  
3V/5V, 6dB Video Buffer with Sync-Tip Clamp  
and 150nA Shutdown Current  
V
CC  
= 2.7V TO 5.5V  
V
CC  
C
BYP  
0.1µF  
SHDN  
OUT  
MAX4090  
C
0.1µF  
IN  
R
SOURCE  
75Ω  
IN  
R
75Ω  
OUT  
E
OUT  
R
IN  
E
SIGNAL  
75Ω  
R
75Ω  
L
CLAMP  
FB  
GND  
Figure 7. Typical Operating Circuit  
Chip Information  
TRANSISTOR COUNT: 755  
PROCESS: BiCMOS  
______________________________________________________________________________________ 11  
3V/5V, 6dB Video Buffer with Sync-Tip Clamp  
and 150nA Shutdown Current  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, SOT-23, 6L  
1
21-0058  
F
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX4090AAUT+T

Video Amplifier, 1 Channel(s), 1 Func, BICMOS, PDSO6, ROHS COMPLIANT, SOT-23, 6 PIN
MAXIM

MAX4090AAUT+T

1 CHANNEL, VIDEO AMPLIFIER, PDSO6, ROHS COMPLIANT, SOT-23, 6 PIN
ROCHESTER

MAX4090AAUT-T

3V/5V, 6dB Video Buffer with Sync-Tip Clamp and 150nA Shutdown Current
MAXIM

MAX4090AAXT+

Video Amplifier
MAXIM

MAX4090AAXT+T

Video Amplifier, 1 Channel(s), 1 Func, BICMOS, PDSO6, ROHS COMPLIANT, SC-70, 6 PIN
MAXIM

MAX4090AAXT-T

3V/5V, 6dB Video Buffer with Sync-Tip Clamp and 150nA Shutdown Current
MAXIM

MAX4090ELT+

1 CHANNEL, VIDEO AMPLIFIER, PDSO6, 2 X 2 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, UDFN-6
ROCHESTER

MAX4090ELT+T

1 CHANNEL, VIDEO AMPLIFIER, PDSO6, 2 X 2 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, UDFN-6
ROCHESTER

MAX4090ELT-T

3V/5V, 6dB Video Buffer with Sync-Tip Clamp and 150nA Shutdown Current
MAXIM

MAX4090EUT

Audio/Video Amplifier, BICMOS, PDSO6
MAXIM

MAX4090EUT+

Video Amplifier
MAXIM

MAX4090EUT+T

Audio Amplifier, 1 Channel(s), 1 Func, BICMOS, PDSO6, SOT-23, 6 PIN
MAXIM