MAX4165EUK [MAXIM]

IC-SM RAIL/RAIL I/O OP AMP ; IC- SM铁路/轨I / O运算放大器\n
MAX4165EUK
型号: MAX4165EUK
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

IC-SM RAIL/RAIL I/O OP AMP
IC- SM铁路/轨I / O运算放大器\n

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1377; Rev 0; 5/98  
S in g le /Du a l/Qu a d , Lo w -Co s t , S OT2 3 ,  
Mic ro p o w e r Ra il-t o -Ra il I/O Op Am p s  
–MAX04  
________________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX4040–MAX4044 family of micropower op amps  
operates from a single +2.4V to +5.5V supply or dual  
±1.2V to ±2.75V supplies and have Rail-to-Rail input  
Single-Supply Operation Down to +2.4V  
Ultra-Low Power Consumption:  
10µA Supply Current per Amplifier  
1µA Shutdown Mode (MAX4041/MAX4043)  
®
and output capabilities. These amplifiers provide a  
90kHz gain-bandwidth product while using only 10µA of  
supply current per amplifier. The MAX4041/MAX4043  
have a low-power shutdown mode that reduces supply  
current to less than 1µA and forces the output into a  
high-impedance state. The combination of low-voltage  
operation, rail-to-rail inputs and outputs, and ultra-low  
power consumption makes these devices ideal for any  
portable/battery-powered system.  
Rail-to-Rail Input Common-Mode Range  
Outputs Swing Rail-to-Rail  
No Phase Reversal for Overdriven Inputs  
200µV Input Offset Voltage  
Unity-Gain Stable for Capacitive Loads up to 200pF  
90kHz Gain-Bandwidth Product  
These amplifiers have outputs that typically swing to  
within 10mV of the rails with a 100kload. Rail-to-rail  
input and output characteristics allow the full power-  
supply voltage to be used for signal range. The combi-  
nation of low input offset voltage, low input bias current,  
and high open-loop gain makes them suitable for low-  
power/low-voltage precision applications.  
Available in Space-Saving 5-Pin SOT23 and  
8-Pin µMAX Packages  
Ord e rin g In fo rm a t io n  
The MAX4040 is offered in a space-saving 5-pin SOT23  
package. All specifications are guaranteed over the  
-40°C to +85°C extended temperature range.  
PIN-  
SOT  
PART  
TEMP. RANGE  
PACKAGE TOP MARK  
MAX4040EUK-T -40°C to +85°C 5 SOT23-5  
ACGF  
MAX4040EUA  
MAX4040ESA  
MAX4041ESA  
MAX4041EUA  
MAX4042EUA  
MAX4042ESA  
MAX4043EUB  
MAX4043ESD  
MAX4044ESD  
-40°C to +85°C 8 µMAX  
-40°C to +85°C 8 SO  
-40°C to +85°C 8 SO  
-40°C to +85°C 8 µMAX  
-40°C to +85°C 8 µMAX  
-40°C to +85°C 8 SO  
-40°C to +85°C 10 µMAX  
-40°C to +85°C 14 SO  
-40°C to +85°C 14 SO  
________________________Ap p lic a t io n s  
Battery-Powered  
Systems  
Strain Gauges  
Sensor Amplifiers  
Cellular Phones  
Notebook Computers  
PDAs  
Portable/Battery-Powered  
Electronic Equipment  
Digital Scales  
S e le c t o r Gu id e  
P in Co n fig u ra t io n s  
NO. OF  
AMPS  
TOP VIEW  
PART  
SHUTDOWN  
PIN-PACKAGE  
5-pin SOT23,  
8-pin µMAX/SO  
MAX4040  
1
OUT  
1
2
3
5
4
V
CC  
MAX4041  
MAX4042  
1
2
Yes  
8-pin µMAX/SO  
8-pin µMAX/SO  
MAX4040  
V
EE  
10-pin µMAX/  
14-pin SO  
MAX4043  
MAX4044  
2
4
Yes  
IN+  
IN-  
14-pin SO  
SOT23-5  
Pin Configurations continued at end of data sheet.  
Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
S in g le /Du a l/Qu a d , Lo w -Co s t , S OT2 3 ,  
Mic ro p o w e r, Ra il-t o -Ra il I/O Op Am p s  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V to V )..................................................+6V  
10-Pin µMAX (derate 5.6mW/°C above +70°C) ...........444mW  
14-Pin SO (derate 8.33mW/°C above +70°C)..............667mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
EE  
All Other Pins ...................................(V + 0.3V) to (V - 0.3V)  
CC  
EE  
Output Short-Circuit Duration to V or V ..............Continuous  
CC  
EE  
Continuous Power Dissipation (T = +70°C)  
A
5-Pin SOT23 (derate 7.1mW/°C above +70°C).............571mW  
8-Pin µMAX (derate 4.1mW/°C above +70°C) ..............330mW  
8-Pin SO (derate 5.88mW/°C above +70°C).................471mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—T = +25°C  
A
(V = +5.0V, V = 0, V = 0, V  
= V / 2, SHDN = V , R = 100ktied to V / 2, unless otherwise noted.)  
CC CC L CC  
CC  
EE  
CM  
OUT  
PARAMETER  
SYMBOL  
CONDITIONS  
Inferred from PSRR test  
MIN  
TYP  
MAX  
UNITS  
Supply-Voltage Range  
V
CC  
2.4  
5.5  
V
V
= 2.4V  
= 5.0V  
10  
14  
CC  
Supply Current  
per Amplifier  
I
µA  
µA  
CC  
–MAX04  
V
CC  
20  
V
= 2.4V  
= 5.0V  
1.0  
CC  
Shutdown Supply  
Current per Amplifier  
SHDN = V , MAX4041  
and MAX4043 only  
EE  
I
CC(SHDN)  
V
CC  
2.0  
5.0  
±2.0  
±2.5  
±1.50  
±10  
MAX4044ESD  
MAX404_EU_  
±0.20  
±0.25  
±0.20  
±2  
mV  
Input Offset Voltage  
V
V
V V  
OS  
EE CM CC  
All other packages  
mV  
nA  
Input Bias Current  
Input Offset Current  
I
V
V V  
B
EE CM CC  
I
OS  
V
EE  
V V  
CC  
±0.5  
45  
±3.0  
nA  
CM  
V
- V  
< 1.0V  
> 2.5V  
MΩ  
kΩ  
IN+  
IN-  
Differential Input  
Resistance  
R
IN(DIFF)  
V
- V  
IN-  
4.4  
IN+  
Input Common-Mode  
Voltage Range  
V
CM  
Inferred from the CMRR test  
V
EE  
V
CC  
V
MAX404_EU_  
65  
94  
94  
Common-Mode  
Rejection Ratio  
CMRR  
PSRR  
V
V V  
CC  
dB  
dB  
dB  
mV  
mV  
mA  
dB  
EE  
CM  
All other packages  
70  
Power-Supply  
Rejection Ratio  
2.4V V 5.5V  
75  
85  
CC  
R
R
R
R
R
R
= 100kΩ  
= 25kΩ  
= 100kΩ  
= 25kΩ  
= 100kΩ  
= 25kΩ  
94  
85  
10  
60  
10  
40  
0.7  
2.5  
L
L
L
L
L
L
Large-Signal  
Voltage Gain  
A
VOL  
(V + 0.2V) V  
(V - 0.2V)  
EE  
OUT CC  
74  
Output Voltage  
Swing High  
Specified as  
V
- V  
V
OH  
CC OH  
90  
60  
Output Voltage  
Swing Low  
Specified as  
V
- V  
V
OL  
EE OL  
Sourcing  
Sinking  
Output Short-Circuit  
Current  
I
OUT(SC)  
Channel-to-Channel  
Isolation  
Specified at DC, MAX4042/MAX4043/MAX4044 only  
80  
2
_______________________________________________________________________________________  
S in g le /Du a l/Qu a d , Lo w -Co s t , S OT2 3 ,  
Mic ro p o w e r, Ra il-t o -Ra il I/O Op Am p s  
–MAX04  
ELECTRICAL CHARACTERISTICS—T = +25°C (continued)  
A
(V = +5.0V, V = 0, V = 0, V  
= V / 2, SHDN = V , R = 100ktied to V / 2, unless otherwise noted.)  
CC  
EE  
CM  
OUT  
CC CC L CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Leakage Current in  
Shutdown  
SHDN = V = 0, MAX4041/MAX4043 only  
(Note 1)  
EE  
I
20  
100  
nA  
OUT(SHDN)  
V
IL  
MAX4041/MAX4043 only  
MAX4041/MAX4043 only  
MAX4041/MAX4043 only  
0.3 x V  
V
V
SHDN Logic Low  
CC  
V
IH  
0.7 x V  
SHDN Logic High  
CC  
I
, I  
IH IL  
40  
90  
120  
nA  
SHDN Input Bias Current  
Gain Bandwidth Product  
Phase Margin  
GBW  
kHz  
degrees  
dB  
Φ
68  
m
Gain Margin  
G
18  
m
Slew Rate  
SR  
40  
V/ms  
nV/Hz  
pA/Hz  
pF  
Input Voltage Noise Density  
Input Current Noise Density  
Capacitive-Load Stability  
Power-Up Time  
e
n
f = 1kHz  
f = 1kHz  
70  
i
n
0.05  
200  
200  
50  
A
VCL  
= +1V/V, no sustained oscillations  
t
µs  
ON  
Shutdown Time  
t
MAX4041 and MAX4043 only  
MAX4041 and MAX4043 only  
µs  
SHDN  
Enable Time from Shutdown  
Input Capacitance  
t
150  
3
µs  
EN  
C
pF  
IN  
Total Harmonic Distortion  
Settling Time to 0.01%  
THD  
f
= 1kHz, V  
= 2Vp-p, A = +1V/V  
0.05  
50  
%
IN  
OUT  
V
t
S
A
= +1V/V, V  
= 2V  
STEP  
µs  
V
OUT  
ELECTRICAL CHARACTERISTICS—T = T  
T
MAX  
A
MIN  
to  
(V = +5.0V, V = 0, V = 0, V  
= V / 2, SHDN = V , R = 100ktied to V / 2, unless otherwise noted.) (Note 2)  
CC  
EE  
CM  
OUT  
CC CC L CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply-Voltage Range  
V
CC  
Inferred from PSRR test  
2.4  
5.5  
V
Supply Current  
per Amplifier  
I
28  
µA  
µA  
CC  
Shutdown Supply  
Current per Amplifier  
I
6.0  
SHDN = V , MAX4041 and MAX4043 only  
CC(SHDN)  
EE  
MAX4044ESA  
±4.5  
±5.0  
±3.5  
Input Offset Voltage  
V
OS  
V
EE  
V V  
CC  
MAX404_EU_  
All other packages  
mV  
CM  
Input Offset Voltage Drift  
Input Bias Current  
TC  
2
µV/°C  
nA  
VOS  
I
V
V V  
CC  
±20  
±8  
B
EE  
CM  
Input Offset Current  
I
OS  
V
EE  
V V  
CC  
nA  
CM  
_______________________________________________________________________________________  
3
S in g le /Du a l/Qu a d , Lo w -Co s t , S OT2 3 ,  
Mic ro p o w e r, Ra il-t o -Ra il I/O Op Am p s  
ELECTRICAL CHARACTERISTICS—T = T  
T
(continued)  
MAX  
A
MIN  
to  
(V = +5.0V, V = 0, V = 0, V  
= V / 2, SHDN = V , R = 100ktied to V / 2, unless otherwise noted.) (Note 2)  
CC  
EE  
CM  
OUT  
CC CC L CC  
PARAMETER  
SYMBOL  
CONDITIONS  
Inferred from the CMRR test  
MIN  
TYP  
MAX  
UNITS  
Input Common-Mode  
Voltage Range  
V
CM  
V
EE  
V
CC  
V
MAX404_EU_  
All other packages  
60  
Common-Mode  
Rejection Ratio  
CMRR  
PSRR  
V
V V  
CC  
dB  
dB  
EE  
CM  
65  
Power-Supply  
Rejection Ratio  
2.4V V 5.5V  
70  
CC  
Large-Signal Voltage  
Gain  
A
VOL  
(V + 0.2V) V  
(V - 0.2V), R = 25kΩ  
68  
dB  
EE  
OUT  
CC  
L
Output Voltage Swing  
High  
Specified as  
V
- V  
, R = 25kΩ  
V
125  
75  
mV  
mV  
L
CC  
OH  
OH  
Output Voltage Swing  
Low  
Specified as  
V - V , R = 25kΩ  
L
EE OL  
V
OL  
–MAX04  
Note 1: Tested for V V  
V . Does not include current through external feedback network.  
CC  
EE  
OUT  
Note 2: All devices are 100% tested at T = +25°C. All temperature limits are guaranteed by design.  
A
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5.0V, V = 0, V = V / 2, SHDN = V , R = 100kto V / 2, T = +25°C, unless otherwise noted.)  
CC  
EE  
CM  
CC  
CC  
L
CC  
A
MAX4041/MAX4043  
SHUTDOWN SUPPLY CURRENT  
PER AMPLIFIER vs. TEMPERATURE  
SUPPLY CURRENT PER AMPLIFIER  
vs. TEMPERATURE  
20  
18  
5
SHDN = 0  
16  
14  
12  
10  
8
4
3
2
1
0
V
CC  
= +5.5V  
V
= +5.5V  
= +2.4V  
CC  
V
= +2.4V  
CC  
6
V
CC  
4
2
0
40  
TEMPERATURE (°C)  
0
-60 -40 -20  
0
20  
60 80 100  
-60 -40 -20  
20 40 60 80 100  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
S in g le /Du a l/Qu a d , Lo w -Co s t , S OT2 3 ,  
Mic ro p o w e r, Ra il-t o -Ra il I/O Op Am p s  
–MAX04  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5.0V, V = 0, V = V / 2, SHDN = V , R = 100kto V / 2, T = +25°C, unless otherwise noted.)  
CC  
EE  
CM  
CC  
CC  
L
CC  
A
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
INPUT BIAS CURRENT vs.  
COMMON-MODE VOLTAGE (V = 2.4V)  
CC  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
400  
5.0  
2.5  
0
0
-1  
-2  
-3  
-4  
V
= +2.4V  
CC  
V
= 0  
CM  
V
= +2.4V  
= +5.5V  
CC  
300  
200  
100  
0
V
CC  
-2.5  
-5.0  
40  
TEMPERATURE (°C)  
0.6  
1.0  
V
1.4  
1.8  
-60 -40 -20  
0
20  
60 80 100  
0
0.2  
2.2  
40  
-60 -40 -20  
0
20  
60 80 100  
(V)  
TEMPERATURE (°C)  
CM  
INPUT BIAS CURRENT vs.  
COMMON-MODE VOLTAGE (V = 5.5V)  
OUTPUT SWING HIGH  
vs. TEMPERATURE  
CC  
5.0  
120  
100  
80  
V
CC  
= +5.5V  
R TO V  
L
EE  
2.5  
0
V
CC  
= +2.4V, R = 10kΩ  
L
60  
V
CC  
= +5.5V, R = 20kΩ  
L
40  
-2.5  
-5.0  
V
= +5.5V, R = 100kΩ  
L
CC  
20  
0
V
= +2.4V, R = 100kΩ  
L
CC  
1.5  
2.5  
V
3.5  
5.5  
0
0.5  
4.5  
40  
0
TEMPERATURE (°C)  
-60 -40 -20  
20  
60 80 100  
(V)  
CM  
COMMON-MODE REJECTION  
vs. TEMPERATURE  
OUTPUT SWING LOW  
vs. TEMPERATURE  
-80  
-85  
120  
100  
80  
R TO V  
L
CC  
V
= +2.4V  
= +5.5V  
CC  
-90  
60  
V
= +5.5V, R = 20kΩ  
L
CC  
40  
V
CC  
V
CC  
= +2.4V, R = 10kΩ  
L
-95  
V
= +5.5V, R = 100kΩ  
L
CC  
20  
0
V
CC  
= +2.4V, R = 100kΩ  
L
-100  
40  
TEMPERATURE (°C)  
-60 -40 -20  
0
20  
60 80 100  
40  
TEMPERATURE (°C)  
-60 -40 -20  
0
20  
60 80 100  
_______________________________________________________________________________________  
5
S in g le /Du a l/Qu a d , Lo w -Co s t , S OT2 3 ,  
Mic ro p o w e r, Ra il-t o -Ra il I/O Op Am p s  
____________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5.0V, V = 0, V = V / 2, SHDN = V , R = 100kto V / 2, T = +25°C, unless otherwise noted.)  
CC  
EE  
CM  
CC  
CC  
L
CC  
A
OPEN-LOOP GAIN vs. OUTPUT SWING LOW  
OPEN-LOOP GAIN vs. OUTPUT SWING HIGH  
(V = +2.4V, R TIED TO V )  
OPEN-LOOP GAIN vs. OUTPUT SWING LOW  
(V = +5.5V, R TIED TO V  
(V = +2.4V, R TIED TO V )  
CC  
)
CC  
CC  
L
CC  
L
EE  
CC  
L
100  
100  
90  
110  
100  
90  
R = 100kΩ  
L
90  
80  
R = 100kΩ  
L
R = 100kΩ  
L
80  
R = 10kΩ  
L
R = 20kΩ  
L
R = 10kΩ  
L
80  
70  
60  
70  
60  
70  
60  
50  
40  
30  
50  
40  
30  
50  
40  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
0
100  
200  
V (mV)  
300  
400  
V (mV)  
OUT  
V (mV)  
OUT  
OUT  
–MAX04  
OPEN-LOOP GAIN  
vs. TEMPERATURE  
OPEN-LOOP GAIN vs. OUTPUT SWING HIGH  
(V = +5.5V, R TIED TO V )  
OPEN-LOOP GAIN  
vs. TEMPERATURE  
CC  
L
EE  
110  
105  
100  
95  
110  
105  
100  
95  
110  
100  
R = 100kΩ  
L
V
= +5.5V, R TO V  
L EE  
CC  
V
CC  
= +5.5V, R = 20kTO V  
L EE  
90  
80  
V
CC  
= +5.5V, R TO V  
L CC  
R = 20kΩ  
L
90  
90  
V
CC  
= +5.5V, R = 20kTO V  
L CC  
V = +2.4V, R TO V  
CC L EE  
70  
60  
85  
85  
V
CC  
= +2.4V, R TO V  
L
CC  
V
CC  
= +2.4V, R = 10kTO V  
L EE  
80  
80  
50  
40  
75  
75  
V
= +2.4V, R = 10kTO V  
L CC  
CC  
70  
70  
40  
-60 -40 -20  
0
20  
60 80 100  
40  
TEMPERATURE (°C)  
0
100  
200  
300  
400  
-60 -40 -20  
0
20  
60 80 100  
TEMPERATURE (°C)  
V (mV)  
OUT  
GAIN AND PHASE vs. FREQUENCY  
GAIN AND PHASE vs. FREQUENCY  
(NO LOAD)  
(C = 100pF)  
L
MAX4040/44-16  
MAX4040/44-17  
60  
180  
60  
180  
A = +1000V/V  
V
A = +1000V/V  
V
50  
40  
30  
20  
144  
108  
50  
40  
144  
108  
72  
36  
30  
20  
72  
36  
10  
0
0
10  
0
0
-36  
-72  
-108  
-144  
-36  
-72  
-108  
-144  
-10  
-20  
-30  
-10  
-20  
-30  
-40  
-40  
-180  
-180  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6
_______________________________________________________________________________________  
S in g le /Du a l/Qu a d , Lo w -Co s t , S OT2 3 ,  
Mic ro p o w e r, Ra il-t o -Ra il I/O Op Am p s  
–MAX04  
____________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5.0V, V = 0, V = V / 2, SHDN = V , R = 100kto V / 2, T = +25°C, unless otherwise noted.)  
CC  
EE  
CM  
CC  
CC  
L
CC  
A
MAX4042/MAX4043/MAX4044  
CROSSTALK vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
-60  
-70  
1
R = 10kΩ  
L
-80  
0.1  
-90  
-100  
-110  
R = 100kΩ  
L
R = 10kΩ  
L
0.01  
100  
10  
1k  
10k  
1
10  
100  
1000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SMALL-SIGNAL TRANSIENT RESPONSE  
LOAD RESISTOR vs.  
CAPACITIVE LOAD  
(NONINVERTING)  
MAX4040/44-21  
1000  
100  
10  
10%  
OVERSHOOT  
100mV  
0V  
IN  
REGION OF  
MARGINAL STABILITY  
50mV/div  
100mV  
0V  
OUT  
REGION OF  
STABLE OPERATION  
10µs/div  
0
250  
500  
(pF)  
750  
1000  
C
LOAD  
SMALL-SIGNAL TRANSIENT RESPONSE  
LARGE-SIGNAL TRANSIENT RESPONSE  
LARGE-SIGNAL TRANSIENT RESPONSE  
(INVERTING)  
(INVERTING)  
(NONINVERTING)  
MAX4040/44-22  
MAX4040/42/44-24  
MAX4040/42/44-23  
4.5V  
0.5V  
4.5V  
100mV  
0V  
+2V  
-2V  
+2V  
-2V  
IN  
IN  
50mV/div  
OUT  
IN  
2V/div  
2V/div  
OUT  
100mV  
0V  
OUT  
0.5V  
10µs/div  
100µs/div  
100µs/div  
_______________________________________________________________________________________  
7
S in g le /Du a l/Qu a d , Lo w -Co s t , S OT2 3 ,  
Mic ro p o w e r, Ra il-t o -Ra il I/O Op Am p s  
______________________________________________________________P in De s c rip t io n  
PIN  
MAX4040  
MAX4043  
NAME  
FUNCTION  
MAX4041 MAX4042  
MAX4044  
SOT23-5 SO/µMAX  
µMAX  
SO  
Amplifier Output. High impedance  
when in shutdown mode.  
1
2
6
4
6
4
4
4
11  
OUT  
Negative Supply. Tie to ground for  
single-supply operation.  
4
V
EE  
3
4
5
3
2
7
3
2
7
8
10  
14  
4
IN+  
IN-  
Noninverting Input  
Inverting Input  
V
CC  
Positive Supply  
5, 7,  
8, 10  
No Connection. Not internally con-  
nected.  
1, 5, 8  
1, 5  
N.C.  
Shutdown Input. Drive high, or tie to  
8
V
for normal operation. Drive to V  
SHDN  
CC EE  
to place device in shutdown mode.  
–MAX04  
OUTA,  
OUTB  
Outputs for Amplifiers A and B. High  
impedance when in shutdown mode.  
1, 7  
2, 6  
3, 5  
1, 9  
2, 8  
3, 7  
1, 13  
2, 12  
3, 11  
1, 7  
2, 6  
3, 5  
INA-,  
INB-  
Inverting Inputs to Amplifiers A and B  
INA+,  
INB+  
Noninverting Inputs to Amplifiers A  
and B  
Shutdown Inputs for Amplifiers A  
SHDNA,  
SHDNB  
and B. Drive high, or tie to V for  
CC  
normal operation. Drive to V to  
EE  
5, 6  
6, 9  
place device in shutdown mode.  
Outputs for Amplifiers C and D  
OUTC,  
OUTD  
8, 14  
9, 13  
INC-,  
IND-  
Inverting Inputs to Amplifiers C and D  
INC+,  
IND+  
Noninverting Inputs to Amplifiers C  
and D  
10, 12  
an excellent choice for precision or general-purpose,  
low-voltage battery-powered systems.  
_______________De t a ile d De s c rip t io n  
Ra il-t o -Ra il In p u t S t a g e  
The MAX4040–MAX4044 have rail-to-rail inputs and  
rail-to-rail output stages that are specifically designed  
for low-volta g e , s ing le -s up p ly op e ra tion. The inp ut  
stage consists of separate NPN and PNP differential  
stages, which operate together to provide a common-  
mod e ra ng e e xte nd ing to b oth s up p ly ra ils . The  
crossover region of these two pairs occurs halfway  
Since the input stage consists of NPN and PNP pairs,  
the input bias current changes polarity as the common-  
mode voltage passes through the crossover region.  
Match the effective impedance seen by each input to  
reduce the offset error caused by input bias currents  
flowing through external source impedances (Figures  
1a and 1b). The combination of high source impedance  
plus input capacitance (amplifier input capacitance  
plus stray capacitance) creates a parasitic pole that  
produces an underdamped signal response. Reducing  
input capacitance or placing a small capacitor across  
the feedback resistor improves response in this case.  
between V  
and V . The input offset voltage is typi-  
CC  
EE  
cally 200µV. Low operating supply voltage, low supply  
current, rail-to-rail common-mode input range, and rail-  
to-rail outputs make this family of operational amplifiers  
8
_______________________________________________________________________________________  
S in g le /Du a l/Qu a d , Lo w -Co s t , S OT2 3 ,  
Mic ro p o w e r, Ra il-t o -Ra il I/O Op Am p s  
–MAX04  
The MAX4040–MAX4044 family’s inputs are protected  
from large differential input voltages by internal 2.2kΩ  
series resistors and back-to-back triple-diode stacks  
across the inputs (Figure 2). For differential input volt-  
ages (much less than 1.8V), input resistance is typically  
45M. For differential input voltages greater than 1.8V,  
input resistance is around 4.4k, and the input bias  
current can be approximated by the following equation:  
MAX4040–  
MAX4044  
V
IN  
R3  
R1  
R3 = R1 R2  
I
= (V  
- 1.8V) / 4.4kΩ  
BIAS  
DIFF  
In the re g ion whe re the d iffe re ntia l inp ut volta g e  
approaches 1.8V, the input resistance decreases expo-  
nentially from 45Mto 4.4kas the diode block begins  
conducting. Conversely, the bias current increases with  
the same curve.  
R2  
Ra il-to-Ra il Output Sta ge  
The MAX4040–MAX4044 output stage can drive up to a  
25kload and still swing to within 60mV of the rails.  
Figure 3 shows the output voltage swing of a MAX4040  
configured as a unity-gain buffer, powered from a single  
+4.0V supply voltage. The output for this setup typically  
Figure 1a. Minimizing Offset Error Due to Input Bias Current  
(Noninverting)  
swings from (V + 10mV) to (V - 10mV) with a 100kΩ  
load.  
EE  
CC  
MAX4040–  
MAX4044  
Ap p lic a t io n s In fo rm a t io n  
R3  
P o w e r-S u p p ly Co n s id e ra t io n s  
The MAX4040–MAX4044 operate from a single +2.4V to  
+5.5V supply (or dual ±1.2V to ±2.75V supplies) and  
consume only 10µA of supply current per amplifier. A  
high power-supply rejection ratio of 85dB allows the  
amplifiers to be powered directly off a decaying battery  
voltage, simplifying design and extending battery life.  
R3 = R1 R2  
V
IN  
R1  
R2  
P o w e r-Up S e t t lin g Tim e  
The MAX4040–MAX4044 typ ic a lly re q uire 200µs to  
power up after V  
the outp ut is inde te rmina nt. The a pplic a tion c irc uit  
should allow for this initial delay.  
is stable. During this start-up time,  
CC  
Figure 1b. Minimizing Offset Error Due to Input Bias Current  
(Inverting)  
IN+  
2.2k  
IN-  
2.2k  
Figure 2. Input Protection Circuit  
_______________________________________________________________________________________  
9
S in g le /Du a l/Qu a d , Lo w -Co s t , S OT2 3 ,  
Mic ro p o w e r, Ra il-t o -Ra il I/O Op Am p s  
MAX4040-44 fig04  
MAX4040-44 fig03  
V = 2V  
IN  
R = 100kTIED TO V  
L
EE  
R = 100kTIED TO V  
V = 4.0V  
IN  
L
EE  
f
IN  
= 1kHz  
SHDN  
1V/div  
OUT  
5V/div  
1V/div  
OUT  
1V/div  
IN  
200µs/div  
200µs/div  
Figure 3. Rail-to-Rail Input/Output Voltage Range  
Figure 4. Shutdown Enable/Disable Output Voltage  
S h u t d o w n Mo d e  
The MAX4041 (single) and MAX4043 (dual) feature a  
low-power shutdown mode. When the shutdown pin  
(SHDN) is pulled low, the supply current drops to 1µA  
per amplifier, the amplifier is disabled, and the outputs  
enter a high-impedance state. Pulling SHDN high or  
leaving it floating enables the amplifier. Take care to  
ensure that parasitic leakage current at the SHDN pin  
does not inadvertently place the part into shutdown  
mode when SHDN is left floating. Figure 4 shows the  
output voltage response to a shutdown pulse. The logic  
1200  
–MAX04  
V
= 5.5V, V = 200mV  
OH  
CC  
1000  
800  
600  
400  
200  
V
V
OH  
= 2.4V,  
= 200mV  
CC  
V
CC  
= 5.5V, V = 100mV  
OH  
V
V
OH  
= 2.4V,  
= 100mV  
CC  
V
CC  
= 5.5V, V = 50mV  
OH  
threshold for SHDN is always referred to V / 2 (not to  
CC  
V
CC  
= 2.4V, V = 50mV  
OH  
GND). When using dual supplies, pull SHDN to V to  
EE  
0
enter shutdown mode.  
-60 -40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
Lo a d -Drivin g Ca p a b ilit y  
The MAX4040–MAX4044 are fully guaranteed over tem-  
perature and supply voltage to drive a maximum resis-  
Figure 5a. Output Source Current vs. Temperature  
tive load of 25kto V / 2, although heavier loads can  
CC  
be driven in many applications. The rail-to-rail output  
stage of the amplifier can be modeled as a current  
3000  
source when driving the load toward V , and as a cur-  
V = 5.5V, V = 200mV  
CC OL  
CC  
2500  
2000  
1500  
1000  
500  
rent sink when driving the load toward V . The magni-  
EE  
V
= 2.4V, V = 200mV  
OL  
CC  
tud e of this c urre nt s ourc e /s ink va rie s with s up p ly  
voltage, ambient temperature, and lot-to-lot variations  
of the units.  
V
= 5.5V,  
= 100mV  
CC  
V
OL  
Figures 5a and 5b show the typical current source and  
sink capability of the MAX4040–MAX4044 family as a  
function of supply voltage and ambient temperature.  
The contours on the graph depict the output current  
value, based on driving the output voltage to within  
50mV, 100mV, and 200mV of either power-supply rail.  
V
CC  
= 2.4V, V = 100mV  
OL  
V
CC  
= 5.5V, V = 50mV  
OL  
V
CC  
= 2.4V, V = 50mV  
OL  
0
-60 -40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
Figure 5b. Output Sink Current vs. Temperature  
10 ______________________________________________________________________________________  
S in g le /Du a l/Qu a d , Lo w -Co s t , S OT2 3 ,  
Mic ro p o w e r, Ra il-t o -Ra il I/O Op Am p s  
–MAX04  
For example, a MAX4040 running from a single +2.4V  
supply, operating at T = +25°C, can source 240µA to  
A
within 100mV of V and is capable of driving a 9.6k  
CC  
load resistor to V  
:
EE  
R
ISO  
2.4V - 0.1V  
R
=
= 9.6kto V  
EE  
L
240µA  
R
L
C
L
The same application can drive a 4.6kload resistor  
MAX4040–  
MAX4044  
when terminated in V / 2 (+1.2V in this case).  
CC  
Drivin g Ca p a c it ive Lo a d s  
The MAX4040–MAX4044 are unity-gain stable for loads  
up to 200pF (see Load Resistor vs. Capacitive Load  
g ra p h in Typ ic a l Op e ra ting Cha ra c te ris tic s ).  
Applications that require greater capacitive drive capa-  
bility should use an isolation resistor between the output  
and the capacitive load (Figures 6a–6c). Note that this  
alternative results in a loss of gain accuracy because  
R
R + R  
L
L
A =  
V
1  
ISO  
Figure 6a. Using a Resistor to Isolate a Capacitive Load from  
the Op Amp  
MAX4040/42/44 fig06b  
R
ISO  
forms a voltage divider with the load resistor.  
P o w e r-S u p p ly Byp a s s in g a n d La yo u t  
50mV/div  
50mV/div  
IN  
The MAX4040–MAX4044 family operates from either a  
single +2.4V to +5.5V supply or dual ±1.2V to ±2.75V  
s up p lie s . For s ing le -s up p ly op e ra tion, b yp a s s the  
power supply with a 100nF capacitor to V (in this  
EE  
case GND). For dual-supply operation, both the V  
CC  
and V supplies should be bypassed to ground with  
EE  
OUT  
separate 100nF capacitors.  
Good PC board layout techniques optimize perfor-  
mance by decreasing the amount of stray capacitance  
at the op amps inputs and output. To decrease stray  
capacitance, minimize trace lengths by placing exter-  
nal components as close as possible to the op amp.  
Surface-mount components are an excellent choice.  
100µs/div  
R
ISO  
= NONE, R = 100k, C = 700pF  
L
L
Figure 6b. Pulse Response without Isolating Resistor  
Us in g t h e MAX4 0 4 0 –MAX4 0 4 4  
a s Co m p a ra t o rs  
MAX4040/42/44 fig06c  
Although optimized for use as operational amplifiers,  
the MAX4040–MAX4044 can also be used as rail-to-rail  
I/O comparators. Typical propagation delay depends  
on the input overdrive voltage, as shown in Figure 7.  
External hysteresis can be used to minimize the risk of  
output oscillation. The positive feedback circuit, shown  
in Figure 8, causes the input threshold to change when  
the output voltage changes state. The two thresholds  
create a hysteresis band that can be calculated by the  
following equations:  
50mV/div  
50mV/div  
IN  
OUT  
V
= V - V  
HI LO  
HYST  
100µs/div  
= 1k, R = 100k, C = 700pF  
V
LO  
= V x R2 / (R1 + (R1 x R2 / R  
) + R2)  
IN  
HYST  
R
ISO  
L
L
V
HI  
= [(R2 / R1 x V ) + (R2 / R  
) x V ] /  
HYST CC  
IN  
(1 + R1 / R2 + R2 / R  
)
HYST  
Figure 6c. Pulse Response with Isolating Resistor  
______________________________________________________________________________________ 11  
S in g le /Du a l/Qu a d , Lo w -Co s t , S OT2 3 ,  
Mic ro p o w e r, Ra il-t o -Ra il I/O Op Am p s  
10,000  
HYSTERESIS  
V
HI  
INPUT  
V
OH  
V
LO  
t
+; V = +5V  
PD CC  
1000  
100  
10  
V
OH  
t
-; V = +5V  
PD CC  
OUTPUT  
V
V
OL  
t
+; V = +2.4V  
PD CC  
IN  
R
HYST  
t
-; V = +2.4V  
PD CC  
R1  
R2  
V
CC  
0
10 20 30 40 50 60 70 80 90 100  
(mV)  
V
OUT  
V
OD  
MAX4040–  
MAX4044  
V
EE  
Figure 7. Propagation Delay vs. Input Overdrive  
–MAX04  
V
The MAX4040–MAX4044 contain special circuitry to  
boost internal drive currents to the amplifier output  
stage. This maximizes the output voltage range over  
which the amplifiers are linear. In an open-loop com-  
parator application, the excursion of the output voltage  
is so close to the supply rails that the output stage tran-  
sistors will saturate, causing the quiescent current to  
increase from the normal 10µA. Typical quiescent cur-  
EE  
Figure 8. Hysteresis Comparator Circuit  
I
LOAD  
rents increase to 35µA for the output saturating at V  
CC  
R1  
and 28µA for the output at V  
.
EE  
V
CC  
Us in g t h e MAX4 0 4 0 –MAX4 0 4 4  
a s Ult ra -Lo w -P o w e r Cu rre n t Mo n it o rs  
The MAX4040–MAX4044 are ideal for applications pow-  
ered from a battery stack. Figure 9 shows an application  
circuit in which the MAX4040 is used for monitoring the  
current of a battery stack. In this circuit, a current load is  
applied, and the voltage drop at the battery terminal is  
sensed.  
R2  
Q1  
V
OUT  
The voltage on the load side of the battery stack is  
equal to the voltage at the emitter of Q1, due to the  
feedback loop containing the op amp. As the load cur-  
rent increases, the voltage drop across R1 and R2  
increases. Thus, R2 provides a fraction of the load cur-  
rent (set by the ratio of R1 and R2) that flows into the  
emitter of the PNP transistor. Neglecting PNP base cur-  
rent, this current flows into R3, producing a ground-ref-  
erenced voltage proportional to the load current. Scale  
R1 to give a voltage drop large enough in comparison  
R3  
MAX4040  
V
EE  
Figure 9. Current Monitor for a Battery Stack  
to V of the op amp, in order to minimize errors.  
OS  
For a 1V output and a current load of 50mA, the choice  
of resistors can be R1 = 2, R2 = 100k, R3 = 1M.  
The circuit consumes less power (but is more suscepti-  
ble to noise) with higher values of R1, R2, and R3.  
The output voltage of the application can be calculated  
using the following equation:  
V
OUT  
= [I  
x (R1 / R2)] x R3  
LOAD  
12 ______________________________________________________________________________________  
S in g le /Du a l/Qu a d , Lo w -Co s t , S OT2 3 ,  
Mic ro p o w e r, Ra il-t o -Ra il I/O Op Am p s  
–MAX04  
_____________________________________________P in Co n fig u ra t io n s (c o n t in u e d )  
TOP VIEW  
N.C.  
IN-  
1
2
3
4
8
7
6
5
N.C.  
OUTA  
INA-  
1
2
3
4
8
7
6
5
V
CC  
N.C.  
IN-  
1
2
3
4
8
7
6
5
SHDN  
VCC  
OUT  
N.C.  
V
CC  
OUTB  
INB-  
MAX4040  
MAX4042  
MAX4041  
IN+  
OUT  
N.C.  
INA+  
IN+  
V
EE  
V
EE  
INB+  
V
EE  
SO/µMAX  
SO/µMAX  
SO/µMAX  
OUTA  
INA-  
1
14  
V
OUTA  
INA-  
1
2
3
4
5
6
7
14 OUTD  
13 IND-  
12 IND+  
CC  
OUTA  
INA-  
1
10  
9
V
CC  
2
3
4
5
6
7
13 OUTB  
12 INB-  
11 INB+  
10 N.C.  
2
3
4
5
OUTB  
INB-  
MAX4043  
INA+  
INA+  
INA+  
8
V
EE  
MAX4043  
V
CC  
11  
V
EE  
MAX4044  
V
EE  
7
INB+  
N.C.  
SHDNA  
N.C.  
INB+  
INB-  
10 INC+  
SHDNA  
6
SHDNB  
9
8
SHDNB  
N.C.  
9
8
INC-  
µMAX  
OUTB  
OUTC  
SO  
SO  
___________________Ch ip In fo rm a t io n  
MAX4040/MAX4041  
TRANSISTOR COUNT: 234  
MAX4042/MAX4043  
TRANSISTOR COUNT: 466  
MAX4044  
TRANSISTOR COUNT: 932  
SUBSTRATE CONNECTED TO V  
EE  
______________________________________________________________________________________ 13  
S in g le /Du a l/Qu a d , Lo w -Co s t , S OT2 3 ,  
Mic ro p o w e r, Ra il-t o -Ra il I/O Op Am p s  
________________________________________________________P a c k a g e In fo rm a t io n  
–MAX04  
14 ______________________________________________________________________________________  
S in g le /Du a l/Qu a d , Lo w -Co s t , S OT2 3 ,  
Mic ro p o w e r, Ra il-t o -Ra il I/O Op Am p s  
–MAX04  
___________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
______________________________________________________________________________________ 15  
S in g le /Du a l/Qu a d , Lo w -Co s t , S OT2 3 ,  
Mic ro p o w e r, Ra il-t o -Ra il I/O Op Am p s  
P a c k a g e In fo rm a t io n (c o n t in u e d )  
–MAX04  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX4165EUK+

暂无描述
MAXIM

MAX4165EUK-T

High-Output-Drive, Precision, Low-Power, Single- Supply, Rail-to-Rail I/O Op Amps with Shutdown
MAXIM

MAX4166

High-Output-Drive, Precision, Low-Power, Single- Supply, Rail-to-Rail I/O Op Amps with Shutdown
MAXIM

MAX4166ELA+

Operational Amplifier, 1 Func, 4900uV Offset-Max, PDSO8, LEAD FREE, DFN-8
MAXIM

MAX4166ELA+T

High-Output-Drive, Precision, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps with Shutdown
MAXIM

MAX4166ELAT

High-Output-Drive, Precision, Low-Power, Single-Supply, Rail-to-Rail I-O Op Amps with Shutdown
MAXIM

MAX4166EPA

High-Output-Drive, Precision, Low-Power, Single- Supply, Rail-to-Rail I/O Op Amps with Shutdown
MAXIM

MAX4166ESA

High-Output-Drive, Precision, Low-Power, Single- Supply, Rail-to-Rail I/O Op Amps with Shutdown
MAXIM

MAX4166EUA

High-Output-Drive, Precision, Low-Power, Single- Supply, Rail-to-Rail I/O Op Amps with Shutdown
MAXIM

MAX4166EUA+

Operational Amplifier, 1 Func, 4900uV Offset-Max, BIPolar, PDSO8, MO-187CAA, MSOP-8
MAXIM

MAX4166EUA-T

Operational Amplifier, 1 Func, 4900uV Offset-Max, BIPolar, PDSO8, MO-187CAA, MSOP-8
MAXIM

MAX4167

High-Output-Drive, Precision, Low-Power, Single- Supply, Rail-to-Rail I/O Op Amps with Shutdown
MAXIM