MAX4175BLEUK-T [MAXIM]

Application Specific Amplifier ; 专用放大器\n
MAX4175BLEUK-T
型号: MAX4175BLEUK-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Application Specific Amplifier
专用放大器\n

放大器
文件: 总20页 (文件大小:348K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1407; Rev 3; 8/99  
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
75,MAX812/4  
General Description  
Features  
GainAmp Family Provides Internal Precision  
Gain-Setting Resistors in SOT23 (MAX4174/5)  
0.1% Gain Accuracy (R /R ) (MAX4174/5,  
The MAX4174/MAX4175/MAX4274/MAX4275 Gain-  
Amp™ family combines a low-cost Rail-to-Rail® op amp  
with precision internal gain-setting resistors and V  
/ 2  
CC  
F
G
biasing. Factory-trimmed on-chip resistors decrease  
design size, cost, and layout, and provide 0.1% gain  
accuracy. Fixed inverting gains from -0.25V/V to  
-100V/V or noninverting gains from +1.25V/V to  
+101V/V are available. These devices operate from a  
single +2.5V to +5.5V supply and consume only 300µA.  
GainAmp amplifiers are optimally compensated for  
each gain version, achieving exceptional GBW prod-  
MAX4274/5)  
54 Standard Gains Available (MAX4174/5,  
MAX4274/5)  
Open-Loop Unity-Gain-Stable Op Amps  
(MAX4281/2/4)  
Rail-to-Rail Outputs Drive 1kLoad  
Internal V  
/ 2 Biasing (MAX4175/MAX4275)  
ucts up to 23MHz (A = +25V/V to +101V/V). High-volt-  
V
CC  
age fault protection withstands 17V at either input  
without excessive current draw.  
+2.5V to +5.5V Single Supply  
300µA Supply Current  
Three versions are available in this amplifier family: single/  
dual/quad open-loop, unity-gain stable (MAX4281/  
MAX4282/MAX4284); single/dual fixed gain (MAX4174/  
MAX4274); and single/dual fixed gain plus internal  
Up to 23MHz GBW Product  
Fault-Protected Inputs Withstand ±17V  
Stable with Capacitive Loads Up to 470pF with  
V
/ 2 bias at the noninverting input (MAX4175/  
CC  
No Isolation Resistor  
MAX4275), which simplifies input biasing in single-supply  
designs. The input common-mode voltage range of the  
open-loop amplifiers extends from 150mV below the  
negative supply to within 1.2V of the positive supply.  
The outputs can swing rail-to-rail and drive a 1kload  
while maintaining excellent DC accuracy. The amplifier  
is stable for capacitive loads up to 470pF.  
Ordering Information  
PIN-  
TOP  
PART*  
TEMP. RANGE  
PACKAGE MARK  
††  
MAX4174_EUK-T -40°C to +85°C  
MAX4175_EUK-T -40°C to +85°C  
5 SOT23-5  
††  
5 SOT23-5  
Applications  
Ordering Information continued at end of data sheet.  
* Insert the desired gain code (from the Gain Selection Guide)  
in the blank to complete the part number.  
Refer to the Gain Selection Guide for a list of preferred gains  
and SOT Top Marks.  
Portable Instruments  
Instruments, Terminals,  
and Bar-Code Readers  
Keyless Entry  
Photodiode Preamps  
Smart-Card Readers  
Infrared Receivers for  
Remote Controls  
Low-Side Current-Sense  
Amplifiers  
††  
Selector Guide appears at end of data sheet.  
Pin Configurations  
Typical Operating Circuit  
TOP VIEW  
+5V  
V
MAX4174  
5
CC  
0.1µF  
V
CC  
1
OUT  
V
CC  
MAX4175  
R
B
R
F
+
IN+  
IN-  
V
2
3
EE  
0.1µF  
R
G
R
B
OUT  
V
EE  
IN+  
4
IN-  
INPUT  
R
G
R
F
SOT23-5  
0.1µF  
V
EE  
Pin Configurations continued at end of data sheet.  
Patent pending  
GainAmp is a trademark of Maxim Integrated Products. Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V  
Voltage Inputs (IN_)  
MAX4281/4282/4284.....................(V - 0.3V) to (V  
MAX4174/4175/4274/4275 (with respect to GND) ........... 17V  
Output Short-Circuit Duration  
(OUT_).....................................Continuous to Either V or V  
Continuous Power Dissipation (T = +70°C)  
to V ) ....................................-0.3V to +6V  
8-Pin µMAX (derate 4.1mW/°C above +70°C)............330mW  
14-Pin SO (derate 8.3mW/°C above +70°C)...............667mW  
16-Pin QSOP (derate 8.3mW/°C above +70°C)..........667mW  
Operating Temperature Range ...........................-40°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
EE  
+ 0.3V)  
CC  
EE  
EE  
CC  
A
5-Pin SOT23 (derate 7.1mW/°C above +70°C).............571mW  
8-Pin SO (derate 5.88mW/°C above +70°C).................471mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX4174/MAX4175/MAX4274/MAX4275 Fixed-Gain  
Amplifiers  
(V  
= +2.5V to +5.5V, V = 0, V  
= V = V  
/ 2, R to V  
/ 2, R = open, T = T  
to T , unless otherwise noted. Typical  
MAX  
CC  
EE  
IN+  
IN-  
CC  
L
CC  
L
A
MIN  
values are at V  
= +5V and T = +25°C.) (Note 1)  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by PSRR tests  
MIN  
2.5  
TYP  
MAX  
5.5  
UNITS  
Supply Voltage Range  
V
CC  
V
V
= 3V  
= 5V  
= 3V  
= 5V  
300  
330  
320  
355  
0.5  
460  
510  
480  
530  
2.5  
CC  
CC  
CC  
CC  
MAX4174/MAX4274  
V
V
V
Supply Current  
(per Amplifier)  
I
µA  
CC  
MAX4175/MAX4275,  
includes V / 2 bias resistors  
CC  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
V
R = 100k  
L
mV  
µV/°C  
nA  
OS  
5
I
IN_+, MAX4174/MAX4274 (Note 2)  
0.05  
150  
40  
10  
BIAS  
A < 25V/V  
V
Inverting Input Resistance  
kΩ  
A > 25V/V  
V
MAX4174/MAX4274  
MAX4175/MAX4275  
1000  
75  
MΩ  
kΩ  
Noninverting Input  
Resistance  
V
/ 2  
V
/ 2  
CC  
CC  
IN_+ Bias Voltage  
MAX4175/MAX4275, V + = V  
-
V
IN  
IN  
- 0.25  
+ 0.25  
- 1.2  
CC  
75,MAX812/4  
IN_+ Input Voltage Range  
IN_- Input Voltage Range  
Guaranteed by functional test (Note 3)  
Guaranteed by functional test  
V
V
V
V
V
EE  
V
EE  
CC  
Power-Supply Rejection  
Ratio  
PSRR  
V
CC  
= 2.5V to 5.5V  
70  
90  
dB  
Closed-Loop Output  
Impedance  
R
OUT  
0.02  
Shorted to V  
Shorted to V  
10  
65  
2
EE  
Short-Circuit Current  
mA  
CC  
V
CC  
V
OL  
V
CC  
V
OL  
- V  
8
8
OH  
R = 100kΩ  
L
- V  
- V  
2
Output Voltage Swing  
(Note 4)  
EE  
V /V  
OH OL  
mV  
150  
60  
250  
150  
OH  
EE  
R = 1kΩ  
L
- V  
2
_______________________________________________________________________________________  
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
75,MAX812/4  
ELECTRICAL CHARACTERISTICS—MAX4174/MAX4175/MAX4274/MAX4275 Fixed-Gain  
Amplifiers (continued)  
(V  
CC  
= +2.5V to +5.5V, V = 0, V  
= V = V  
/ 2, R to V  
/ 2, R = open, T = T  
to T , unless otherwise noted. Typical  
MAX  
EE  
IN+  
IN-  
CC  
L
CC  
L
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
Output settling to 1%  
MIN  
TYP  
1
MAX  
UNITS  
ms  
Power-Up Time  
Slew Rate  
SR  
V
CC  
= 5V, V  
= 4V step  
0.7  
V/µs  
OUT  
Settling Time to Within  
0.01%  
V
CC  
= 5V, V  
= 4V step  
7
µs  
OUT  
Input Noise Voltage Density  
Input Noise Current Density  
Capacitive Load Stability  
e
n
f = 10kHz (Note 5)  
f = 10kHz  
90  
4
nV/Hz  
fA/Hz  
pF  
i
n
C
No sustained oscillations  
470  
LOAD  
(V + 25mV) < V  
R = 100k(Note 6)  
L
< (V  
- 25mV),  
EE  
OUT  
CC  
DC Gain Accuracy  
0.1  
0.5  
%
Gain = +1.25V/V  
Gain = +3V/V  
Gain = +5V/V  
Gain = +10V/V  
Gain = +25V/V  
Gain = +51V/V  
1700  
970  
970  
640  
590  
330  
-3dB Bandwidth  
BW  
kHz  
-3dB  
ELECTRICAL CHARACTERISTICS—MAX4281/MAX4282/MAX4284 Open-Loop Op Amps  
(V  
= +2.5V to +5.5V, V = 0, V  
= V = V  
/ 2, R to V  
/ 2, R = open, T = T  
to T , unless otherwise noted. Typical  
MAX  
CC  
EE  
IN+  
IN-  
CC  
L
CC  
L
A
MIN  
values are at V  
= +5V and T = +25°C.) (Note 1)  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by PSRR tests  
MIN  
TYP  
MAX  
5.5  
450  
500  
2
UNITS  
V
Supply Voltage Range  
V
CC  
2.5  
V
CC  
V
CC  
= 3V  
= 5V  
290  
320  
0.5  
5
µA  
Supply Current  
(per Amplifier)  
I
CC  
µA  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Offset Current  
Input Resistance  
V
OS  
R = 100k  
L
mV  
µV/°C  
nA  
I
0.05  
10  
10  
BIAS  
I
1000  
pA  
OS  
R
C
Differential or common mode  
Guaranteed by CMRR test  
1000  
2.5  
MΩ  
pF  
IN  
Input Capacitance  
IN  
Common-Mode Input  
Voltage Range  
CMVR  
CMRR  
PSRR  
V
- 0.15  
V
- 1.2  
V
EE  
CC  
Common-Mode Rejection  
Ratio  
V
V
- 0.15V V  
V - 1.2V  
CC  
60  
70  
90  
90  
dB  
dB  
EE  
CM  
Power-Supply Rejection  
Ratio  
= 2.5V to 5.5V  
CC  
Closed-Loop Output  
Impedance  
R
OUT  
A = 1V/V  
V
0.02  
_______________________________________________________________________________________  
3
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
ELECTRICAL CHARACTERISTICS—MAX4281/MAX4282/MAX4284 Open-Loop Op Amps  
(continued)  
(V  
= +2.5V to +5.5V, V = 0, V  
= V = V  
/ 2, R to V  
/ 2, R = open, T = T  
to T , unless otherwise noted. Typical  
MAX  
CC  
EE  
IN+  
IN-  
CC  
L
CC  
L
A
MIN  
values are at V  
= +5V and T = +25°C.) (Note 1)  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
10  
65  
120  
100  
2
MAX  
UNITS  
mA  
mA  
dB  
dB  
Shorted to V  
Shorted to V  
EE  
Short-Circuit Current  
CC  
V
EE  
V
EE  
+ 0.05V < V  
+ 0.25V < V  
< V - 0.1V, R = 100kΩ  
90  
80  
OUT  
CC  
L
Large-Signal Voltage Gain  
Output Voltage Swing  
A
VOL  
< V - 0.3V, R = 1kΩ  
OUT  
CC  
L
OH  
EE  
V
- V  
8
CC  
OL  
CC  
OL  
R = 100kΩ  
L
V
V
V
- V  
- V  
2
8
V /V  
OH OL  
mV  
160  
60  
2
250  
100  
OH  
EE  
R = 1kΩ  
L
- V  
Gain Bandwidth Product  
Slew Rate  
GBW  
SR  
MHz  
V/µs  
µs  
V
V
= 5V, V  
= 5V, V  
= 4V step  
= 4V step  
0.7  
7
CC  
OUT  
Settling Time to within 0.01%  
Input Noise Voltage Density  
Input Noise Current Density  
Capacitive Load Stability  
Power-Up Time  
CC  
OUT  
e
n
f = 10kHz  
f = 10kHz  
60  
1.8  
470  
1
nV/Hz  
fA/Hz  
pF  
i
n
C
LOAD  
No sustained oscillations, A = 1V/V  
V
Output settling to 1%  
ms  
Note 1: MAX4174/MAX4175/MAX4281 and MAX4274/MAX4275/MAX4282 and MAX4284 are 100% production tested at  
= +25°C. All temperature limits are guaranteed by design.  
T
A
Note 2: Guaranteed by design.  
Note 3: The input common-mode range for IN_+ is guaranteed by a functional test. A similar test is done on the IN_- input. See the  
Applications Information section for more information on the input voltage range of the GainAmp.  
Note 4: For A = -0.5V/V and A = -0.25V/V, the output voltage swing is limited by the input voltage range.  
V
V
Note 5: Includes noise from on-chip resistors.  
Note 6: The gain accuracy test is performed with the GainAmp in noninverting configuration. The output voltage swing is limited by  
the input voltage range for certain gains and supply voltage conditions. For situations where the output voltage swing is lim-  
ited by the valid input range, the output limits are adjusted accordingly.  
Typical Operating Characteristics  
(V = +5V, R = 100kto V / 2, small-signal V  
= 100mVp-p, large-signal V  
= 1Vp-p, T = +25°C, unless otherwise noted.)  
A
OUT  
CC  
L
CC  
OUT  
75,MAX812/4  
LARGE-SIGNAL GAIN  
vs. FREQUENCY  
LARGE-SIGNAL GAIN  
vs. FREQUENCY  
LARGE-SIGNAL GAIN  
vs. FREQUENCY  
4
3
4
4
3
3
2
2
2
A
V
= +5V/V  
A
V
= +2.5V/V  
A
V
= +1.25V/V  
1
1
0
1
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
A
= +4V/V  
V
A
= +9V/V  
V
A
= +2.25V/V  
100k  
V
1k  
10k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
4
_______________________________________________________________________________________  
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
75,MAX812/4  
Typical Operating Characteristics (continued)  
(V = +5V, R = 100kto V / 2, small-signal V  
= 100mVp-p, large-signal V  
= 1Vp-p, T = +25°C, unless otherwise noted.)  
A
OUT  
CC  
L
CC  
OUT  
MAX4174/MAX4175  
LARGE-SIGNAL GAIN  
vs. FREQUENCY  
LARGE-SIGNAL GAIN  
vs. FREQUENCY  
LARGE-SIGNAL GAIN  
vs. FREQUENCY  
4
4
3
2
1
0
4
3
3
2
2
A = +25V/V  
V
A
V
= +51V/V  
A
V
= +10V/V  
1
0
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
A
V
= +50V/V  
A
= +21V/V  
V
A
V
= +100V/V  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
SMALL-SIGNAL GAIN  
vs. FREQUENCY  
SMALL-SIGNAL GAIN  
vs. FREQUENCY  
SMALL-SIGNAL GAIN  
vs. FREQUENCY  
4
3
4
3
4
3
2
2
2
A
V
= +5V/V  
A
V
= +1.25V/V  
A
V
= +2.5V/V  
1
1
1
0
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
A
= +9V/V  
V
A
= +4V/V  
V
A
= +2.25V/V  
100k  
V
1k  
10k  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
SMALL-SIGNAL GAIN  
vs. FREQUENCY  
SMALL-SIGNAL GAIN  
vs. FREQUENCY  
SMALL-SIGNAL GAIN  
vs. FREQUENCY  
4
3
4
3
4
3
2
2
2
A
V
= +51V/V  
A
V
= +10V/V  
A
V
= +25V/V  
1
1
1
0
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
A
V
= +100V/V  
100k  
A
V
= +21V/V  
100k  
A
V
= +50V/V  
100k  
1k  
10k  
1M  
10M  
1k  
10k  
1M  
10M  
1k  
10k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
5
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
Typical Operating Characteristics (continued)  
(V = +5V, R = 100kto V / 2, small-signal V  
= 100mVp-p, large-signal V  
= 1Vp-p, T = +25°C, unless otherwise noted.)  
A
CC  
L
CC  
OUT  
OUT  
MAX4174/MAX4175  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
0
0
V = 1Vp-p  
OUT  
V
= 1Vp-p  
OUT  
-20  
-20  
-40  
-40  
-60  
-60  
A
V
= +51V/V  
A
V
= +10V/V  
A
V
= +1.25V/V  
-80  
-80  
-100  
-120  
A
V
= +25V/V  
100k  
-100  
-120  
A
V
= +3V/V  
1k  
10k  
1M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION  
vs. OUTPUT VOLTAGE SWING  
TOTAL HARMONIC DISTORTION  
vs. OUTPUT VOLTAGE SWING  
-60  
-60  
f = 10kHz  
f = 10kHz  
-70  
-80  
-70  
-80  
A
V
= +51V/V  
A
= +10V/V  
V
-90  
-90  
A
V
= +25V/V  
A
V
= +1.25V/V  
-100  
-110  
-120  
-100  
-110  
-120  
A
= +3V/V  
V
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VOLTAGE SWING (Vp-p)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VOLTAGE SWING (Vp-p)  
75,MAX812/4  
VOLTAGE NOISE DENSITY vs. FREQUENCY  
CURRENT NOISE DENSITY vs.  
FREQUENCY  
VOLTAGE NOISE DENSITY vs. FREQUENCY  
(A = +25, +51)  
V
(A = +1.25, +3, +10)  
V
1000  
100  
10  
1000  
A
V
= +10V/V  
A
V
= +3V/V  
A
V
= +25V/V  
100  
A
V
= +51V/V  
10k  
A
V
= +1.25V/V  
10k  
INCLUDES RESISTOR NOISE  
10  
1
10  
1
10  
100  
1k  
100k  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6
_______________________________________________________________________________________  
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
75,MAX812/4  
Typical Operating Characteristics (continued)  
(V = +5V, R = 100kto V / 2, small-signal V  
= 100mVp-p, large-signal V  
= 1Vp-p, T = +25°C, unless otherwise noted.)  
A
OUT  
CC  
L
CC  
OUT  
MAX4174/MAX4175  
LARGE-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
INPUT  
VOLTAGE  
INPUT  
VOLTAGE  
A
= +1.25V/V  
OUTPUT  
50mV/div  
V
A = +1.25V/V  
V
OUTPUT  
500mV/div  
A
= +3V/V  
OUTPUT  
V
A = +3V/V  
V
OUTPUT  
50mV/div  
50mV/div  
A
= +5V/V  
OUTPUT  
V
A = +5V/V  
V
50mV/div  
OUTPUT  
500mV/div  
A
V
= +10V/V  
OUTPUT  
50mV/div  
A = +10V/V  
V
OUTPUT  
500mV/div  
A
V
= +25V/V  
OUTPUT  
50mV/div  
A = +25V/V  
V
OUTPUT  
500mV/div  
A
V
= +51V/V  
OUTPUT  
50mV/div  
A = +51V/V  
V
OUTPUT  
500mV/div  
2µs/div  
C = 0  
L
2µs/div  
C = 0  
L
_______________________________________________________________________________________  
7
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
Typical Operating Characteristics (continued)  
(V = +5V, R = 100kto V / 2, small-signal V  
= 100mVp-p, large-signal V  
= 1Vp-p, T = +25°C, unless otherwise noted.)  
A
OUT  
CC  
L
CC  
OUT  
MAX4174/MAX4175/MAX4281/MAX4282/MAX4284  
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
OUTPUT VOLTAGE SWING  
OUTPUT IMPEDANCE  
vs. FREQUENCY  
vs. R  
LOAD  
-70  
-75  
-80  
-85  
-90  
-95  
5.0  
100  
10  
1
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
0.1  
0.01  
100  
1k  
10k  
100k  
1M  
1
10  
100  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
R
LOAD  
(k)  
FREQUENCY (Hz)  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
INPUT OFFSET VOLTAGE vs.  
TEMPERATURE  
200  
150  
100  
50  
1000  
800  
600  
400  
200  
0
V
CC  
= 5.5V  
V
= 2.5V  
= 5.5V  
CC  
0
V
-50  
-100  
-150  
-200  
CC  
V
CC  
= 2.5V  
-200  
-50 -35 -20 -5 10 25 40 55 70 85  
TEMPERATURE (°C)  
-45 -30 -15  
0
15 30 45 60 75 90  
75,MAX812/4  
TEMPERATURE (°C)  
V
AND V vs. TEMPERATURE  
OL  
V
AND V vs. TEMPERATURE  
OH  
OH  
OL  
(V = 2.5V)  
CC  
SUPPLY CURRENT vs. TEMPERATURE  
(V = 5.5V)  
CC  
100  
80  
380  
200  
180  
160  
140  
120  
100  
80  
V
= 5.5V  
CC  
V
, R = 1kΩ  
L
OH  
360  
340  
320  
300  
280  
260  
240  
V
, R = 1kΩ  
L
OH  
V
CC  
= 5V  
60  
V , R = 100kΩ  
OH L  
V
CC  
= 4V  
40  
V , R = 10kΩ  
OH L  
20  
V , R = 100kΩ  
OH L  
60  
V
, R = 10kΩ  
L
0
OH  
V
, R = 100kΩ  
L
40  
OL  
-20  
-40  
-60  
-80  
-100  
20  
0
V
, R = 100kΩ  
L
OL  
V , R = 10kΩ  
OL L  
-20  
-40  
-60  
-80  
-100  
V
= 3V  
CC  
V
OL  
, R = 1kΩ  
L
V
, R = 100kΩ  
L
OL  
V
CC  
= 2.5V  
V
, R = 1kΩ  
OL L  
-50 -35 -20 -5 10 25 40 55 70 85  
TEMPERATURE (°C)  
-50 -35 -20 -5 10 25 40 55 70 85  
TEMPERATURE (°C)  
-50 -35 -20 -5 10 25 40 55 70 85  
TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
75,MAX812/4  
Typical Operating Characteristics  
(V = +5V, R = 100kto V / 2, small-signal V  
= 100mVp-p, large-signal V  
= 1Vp-p, T = +25°C, unless otherwise noted.)  
A
OUT  
CC  
L
CC  
OUT  
MAX4281/MAX4282/MAX4284  
OPEN-LOOP GAIN AND PHASE  
vs. FREQUENCY  
SMALL-SIGNAL GAIN  
vs. FREQUENCY  
LARGE-SIGNAL GAIN  
vs. FREQUENCY  
4
4
3
160  
140  
120  
100  
80  
3
2
2
1
1
60  
40  
20  
0
-20  
-40  
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
-6  
0
-45  
-90  
-135  
-180  
-225  
-270  
-315  
-6  
1
10  
100 1k  
10k 100k 1M 10M  
1k  
10k  
100k  
1M  
10M  
100k  
10M  
1k  
10k  
100k  
1M  
10M  
100k  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
CURRENT NOISE DENSITY  
vs. FREQUENCY  
COMMON-MODE REJECTION  
vs. FREQUENCY  
VOLTAGE NOISE DENSITY  
vs. FREQUENCY  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
1000  
100  
10  
10  
1
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
MAX4282  
CROSSTALK vs. FREQUENCY  
MAX4284  
CROSSTALK vs. FREQUENCY  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-50  
-55  
-60  
0
THREE AMPLIFIERS DRIVEN,  
ONE OUTPUT MEASURED  
A
V
= 1  
OUT  
V
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
= 1Vp-p  
-65  
-70  
-75  
-100  
-110  
-120  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
9
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
Pin Description  
PIN  
NAME  
FUNCTION  
FUNCTION  
MAX4174/  
MAX4175  
MAX4274/  
MAX4275  
MAX4281  
MAX4282  
MAX4284  
5 SOT23 8 SO  
5 SOT23  
8 SO/µMAX  
8 SO/µMAX 14 SO/TSSOP 16 QSOP  
NAME  
OUT, OUTA,  
OUTB,  
1, 7,  
8, 14  
1, 7,  
10, 16  
1
2
6
4
1
1, 7  
4
1, 7  
4
Amplifier Output  
OUTC,  
OUTD  
Negative Supply or  
Ground  
2
3
11  
13  
V
EE  
Noninverting  
Amplifier Input.  
Internally biased to  
IN+, INA+,  
INB+, INC+,  
IND+  
3, 5,  
10, 12  
3, 5,  
12, 14  
3
4
3
3, 5  
2, 6  
3, 5  
2, 6  
V
CC  
/ 2 for  
MAX4175/MAX4275  
Inverting Amplifier  
Input. Connects to  
IN-, INA-,  
INB-, INC-,  
IND-  
2, 6,  
9, 13  
2, 6,  
11, 15  
2
7
4
R for MAX4174/  
G
4175/4274/4275.  
Positive Supply  
5
5
8
8
4
4
V
CC  
No Connection.  
Not internally  
connected.  
1, 5,  
8
8, 9  
N.C.  
Functional Diagrams  
V
CC  
V
CC  
75,MAX812/4  
V
CC  
V
CC  
150k  
150k  
R
B
MAX4175  
MAX4174  
IN+  
MAX4281  
IN+  
IN-  
IN+  
OUT  
OUT  
OUT  
R
B
R
G
R
F
V
G
EE  
IN-  
R
R
F
IN-  
V
EE  
V
EE  
V
EE  
10 ______________________________________________________________________________________  
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
75,MAX812/4  
ly increases usable bandwidth, while decompensation  
above gains of +25V/V offers diminished returns.  
Detailed Description  
Maxim’s GainAmp fixed-gain amplifiers combine a low-  
cost rail-to-rail op amp with internal gain-setting resis-  
tors. Factory-trimmed on-chip resistors provide 0.1%  
gain accuracy while decreasing design size, cost, and  
layout. Three versions are available in this amplifier  
family: single/dual/quad open-loop, unity-gain-stable  
devices (MAX4281/MAX4282/MAX4284); single/dual  
fixed-gain devices (MAX4174/MAX4274); and single/  
V
/ 2 Internal Bias  
CC  
The MAX4175/MAX4275 GainAmp fixed-gain amplifiers  
with the V / 2 bias option are identical to standard  
CC  
GainAmp fixed-gain amplifiers, with the added feature  
of V / 2 internal bias at the noninverting inputs. Two  
CC  
150kresistors form a voltage-divider for self-biasing  
the noninverting input, eliminating external bias resis-  
tors for AC-coupled applications, and allowing maxi-  
mum signal swing at the op amp’s rail-to-rail output for  
single-supply systems (see Typical Operating Circuit).  
For DC-coupled applications, use the MAX4174/  
MAX4274.  
dual devices with fixed gain plus internal V  
/ 2 bias  
CC  
at the noninverting input (MAX4175/MAX4275). All  
amplifiers feature rail-to-rail outputs and drive a 1kΩ  
load while maintaining excellent DC accuracy.  
Open-Loop Op Amps  
The single/dual/quad MAX4281/MAX4282/MAX4284  
are high-performance, open-loop op amps with rail-to-  
rail outputs. These devices are compensated for unity-  
gain stability, and feature a gain bandwidth (GBW) of  
2MHz. The op amps in these ICs feature an input com-  
mon-mode range that extends from 150mV below the  
negative rail to within 1.2V of the positive rail. These  
high performance op amps serve as the core for this  
family of GainAmp fixed-gain amplifiers. Although the  
-3dB bandwidth will not correspond to that of a fixed-  
gain amplifier in higher gain configurations, these  
open-loop op-amps can be used to prototype designs.  
High-Voltage ( 17V) Input Fault Protection  
The MAX4174/MAX4175/MAX4274/MAX4275 include  
17V input fault protection. For normal operation, see  
the input voltage range specification in the Electrical  
Characteristics. Overdriven inputs up to 17V will not  
V
CC  
-R  
R
F
A =  
V
G
R
R
F
R
R
A = 1 +  
V
F
G
G
IN-  
Internal Gain-Setting Resistors  
Maxim’s proprietary laser trimming techniques produce  
V
EE  
the necessary R /R values (Figure 1), so many gain  
F
G
offerings are easily available. These GainAmp fixed-gain  
amplifiers feature a negative-feedback resistor network  
that is laser trimmed to provide a gain-setting feedback  
OUT  
IN+  
ratio (R /R ) with 0.1% typical accuracy. The standard  
F
G
Figure 1. Internal Gain-Setting Resistors  
op amp pinouts allow the GainAmp fixed-gain amplifiers  
to drop in directly to existing board designs, easily  
replacing op-amp-plus-resistor gain blocks.  
60  
MAX4281, A = 100  
V
2MHz GBW  
GainAmp Bandwidth  
GainAmp fixed-gain amplifiers feature factory-trimmed  
precision resistors to provide fixed inverting gains from  
-0.25V/V to -100V/V or noninverting gains from  
+1.25V/V to +101V/V. The op-amp core is decompen-  
sated strategically over the gain-set options to maxi-  
mize bandwidth. Open-loop decompensation increases  
GBW product, ensuring that usable bandwidth is main-  
tained with increasing closed-loop gains. A GainAmp  
50  
MAX4174,  
A = 100  
V
40  
23MHz GBW  
-3dB  
20kHz  
230kHz  
30  
20  
10  
0
with a fixed gain of A = 100V/V has a -3dB bandwidth  
V
of 230kHz. By comparison, a unity-gain-stable op amp  
configured for A = 100V/V would yield a -3dB band-  
V
10 100  
1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
width of only 20kHz (Figure 2). Decompensation is per-  
formed at five intermediate gain sets, as shown in the  
Gain Selection Guide. Low gain decompensation great-  
Figure 2. Gain-Bandwidth Comparison  
______________________________________________________________________________________ 11  
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
cause output phase reversal. A back-to-back SCR  
GainAmp Input Voltage Range  
The MAX4174/MAX4175/MAX4274/MAX4275 combine  
both an op amp and gain-setting feedback resistors on  
the same chip. Because the inverting input pin is actu-  
structure at the input pins allows either input to safely  
swing 17V relative to V (Figure 3). Additionally, the  
EE  
internal op-amp inputs are diode clamped to either  
supply rail for the protection of sensitive input stage cir-  
cuitry. Current through the clamp diodes is limited by a  
ally tied to the R input series resistor, the inverting  
G
input voltage range is different from the noninverting  
input voltage range. Just as with a discrete design,  
care must be taken not to saturate the inputs/output of  
the core op amp, to avoid signal distortions or clipping.  
5kresistor at the noninverting input, and by R at the  
G
inverting input. An IN+ or IN- fault voltage as high as  
17V will cause less than 3.5mA of current to flow  
through the input pin, protecting both the GainAmp and  
the signal source from damage.  
The inverting inputs (IN_-) of the MAX4174/MAX4175/  
MAX4274/MAX4275 must be within the supply rails or  
signal distortion may result. The GainAmp’s inverting  
input structure includes diodes to both supplies, such  
that driving the inverting input beyond the rails may  
cause signal distortions (Figure 1). For applications that  
require sensing voltages beyond the rails, use the  
MAX4281/MAX4282/MAX4284 open-loop op amps  
(Figure 4).  
Applications Information  
GainAmp fixed-gain amplifiers offer a precision, fixed  
gain amplifier in a small package that can be used in a  
variety of circuit board designs. GainAmp fixed-gain  
amplifiers can be used in many op amp circuits that use  
resistive negative feedback to set gain, and that do not  
require other connections to the op-amp inverting input.  
Both inverting and noninverting op-amp configurations  
can be implemented easily using a GainAmp.  
R
F
R
G
IN-  
17V  
SCR  
75,MAX812/4  
OUT  
MAX4174  
MAX4175  
MAX4274  
MAX4275  
V
CC  
V
CC  
V
EE  
5k  
IN+  
17V  
SCR  
NOTE: INPUT STAGE PROTECTION INCLUDES  
V
EE  
V
EE  
V
EE  
TWO 17V SCRs AND TWO DIODES AT THE INPUT STAGE.  
BIAS RESISTORS (MAX4175/MAX4275 ONLY)  
Figure 3. Input Protection  
12 ______________________________________________________________________________________  
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
75,MAX812/4  
MAX4281  
V
CC  
MAX4175  
V
CC  
R
R
B
B
V
2
R
F
R
G
CC  
V
OUT  
=
- V  
IN  
(
)
V
CC  
0.1µF  
V
IN  
R
G
R
F
-R  
F
V
OUT  
=
(V )  
IN  
V
IN  
R
G
R
G
R
F
Figure 4. Single-Supply, DC-Coupled Inverting Amplifier with  
Negative Input Voltage  
Figure 6. Single-Supply, AC-Coupled Inverting Amplifier  
MAX4174  
MAX4174  
V
CC  
V
CC  
V
IN  
R
R
F
V
OUT  
= V 1+  
IN  
(
)
R
R
F
G
V
OUT  
= - V  
IN  
(
)
G
V
EE  
V
EE  
R
F
V
IN  
R
G
R
F
R
G
Figure 5. Dual-Supply, DC-Coupled Inverting Amplifier  
Figure 7. Dual-Supply, AC-Coupled Noninverting Amplifier  
GainAmp Signal Coupling  
and Configurations  
IN_+ Filter on MAX4175/MAX4275  
Internal resistor biasing of the V / 2 bias options cou-  
CC  
Common op-amp configurations include both nonin-  
verting and inverting amplifiers. Figures 5–8 show vari-  
ous single and dual-supply circuit configurations.  
Single-supply systems benefit from a midsupply bias  
on the noninverting input (provided internally on  
MAX4175/MAX4275), as this produces a quiescent DC  
level at the center of the rail-to-rail output stage signal  
swing. For dual-supply systems, ground-referenced  
signals may be DC-coupled into the inverting or non-  
inverting inputs.  
ples power-supply noise directly to the op amp’s nonin-  
verting input. To minimize high-frequency power-supply  
noise coupling, add a 1µF to 0.1µF capacitor from IN+  
to ground to create a lowpass filter (Figure 6). The low-  
pass filter resulting from the internal bias resistors and  
added capacitor can help eliminate higher frequency  
power-supply noise coupling through the noninverting  
input.  
______________________________________________________________________________________ 13  
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
gain amplifiers of this GainAmp family are stable with  
Supply Bypassing and Board Layout  
All devices in the GainAmp family operate from a +2.5V  
to +5.5V single supply or from 1.25V to 2.75V dual  
supplies. For single-supply operation, bypass the  
power supply with a 0.1µF capacitor to ground. For  
dual supplies, bypass each supply to ground. Bypass  
with capacitors as close to the device as possible, to min-  
imize lead inductance and noise. A printed circuit board  
with a low-inductance ground plane is recommended.  
capacitive loads up to 470pF. Stability with higher  
capacitive loads can be improved by adding an isolation  
resistor in series with the op-amp output, as shown in  
Figure 9. This resistor improves the circuit’s phase mar-  
gin by isolating the load capacitor from the amplifier’s  
output. In Figure 10, a 1000pF capacitor is driven with a  
100isolation resistor exhibiting some overshoot but no  
oscillation. Figures 11 and 12 show the typical small-sig-  
nal pulse responses of GainAmp fixed-gain amplifiers  
with 250pF and 470pF capacitive loads and no isolation  
resistor.  
Capacitive-Load Stability  
Driving large capacitive loads can cause instability in  
most low-power, rail-to-rail output amplifiers. The fixed-  
MAX4174  
INPUT  
V
CC  
V
IN  
R
R
F
V
OUT  
= V 1+  
IN  
(
)
G
A = +5V/V  
V
OUTPUT  
OUTPUT  
50mV/div  
V
EE  
R
F
A = +5V/V  
V
500mV/div  
R
G
Figure 8. Dual-Supply, DC-Coupled Noninverting Amplifier  
Figure 10. Small-Signal/Large-Signal Transient Response with  
Excessive Capacitive Load with Isolation Resistor  
75,MAX812/4  
MAX4174  
R
G
R
F
V
CC  
R
ISO  
OUTPUT  
INPUT  
C
L
R
L
V
EE  
Figure 9. Dual-Supply, Capacitive-Load Driving Circuit  
14 ______________________________________________________________________________________  
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
75,MAX812/4  
INPUT  
INPUT  
A = +1.25V/V  
V
A = +1.25V/V  
V
OUTPUT  
OUTPUT  
50mV/div  
50mV/div  
A = +3V/V  
V
A = +3V/V  
V
OUTPUT  
OUTPUT  
50mV/div  
50mV/div  
A = +5V/V  
V
A = +5V/V  
V
OUTPUT  
OUTPUT  
50mV/div  
50mV/div  
A = +10V/V  
V
A = +10V/V  
V
OUTPUT  
OUTPUT  
50mV/div  
50mV/div  
A = +25V/V  
V
OUTPUT  
50mV/div  
A = +25V/V  
V
OUTPUT  
50mV/div  
A = +51V/V  
V
A = +51V/V  
V
OUTPUT  
OUTPUT  
50mV/div  
50mV/div  
2µs/div  
2µs/div  
Figure 11. MAX4174/MAX4175 Small-Signal Pulse Response  
(C = 250pF, R = 100k)  
Figure 12. MAX4174/MAX4175 Small-Signal Pulse Response  
(C = 470pF, R = 100k)  
L
L
L
L
______________________________________________________________________________________ 15  
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
Gain Selection Guide  
R /R  
INVERTING  
GAIN  
1+ (R /R )  
F G  
NONINVERTING  
GAIN  
F
G
TOP MARK  
GAIN  
CODE  
-3dB BW  
(kHz)  
MAX4174  
MAX4175  
AB*  
AC  
AD*  
AE  
0.25  
0.5  
1
1.25  
1.5  
2
1700  
1280  
590  
450  
1180  
970  
820  
690  
970  
790  
640  
480  
640  
560  
460  
390  
300  
590  
580  
510  
390  
310  
330  
310  
260  
230  
230  
ACDS  
ACDT  
ACDU  
ACDV  
ACDW  
ACDX  
ACDY  
ACDZ  
ACEA  
ACEB  
ACEC  
ACED  
ACEE  
ACEF  
ACEG  
ACEH  
ACEI  
ACET  
ACEU  
ACEV  
ACEW  
ACEX  
ACEY  
ACEZ  
ACFA  
ACFB  
ACFC  
ACFD  
ACFE  
ACFF  
ACFG  
ACFH  
ACFI  
1.25  
1.5  
2
2.25  
2.5  
3
AF  
AG*  
AH  
AJ  
2.5  
3
3.5  
4
AK*  
AL  
4
5
5
6
AM  
AN  
AO*  
BA*  
BB  
6
7
8
9
9
10  
11  
13.5  
16  
21  
25  
26  
31  
41  
50  
51  
61  
81  
100  
101  
10  
12.5  
15  
20  
24  
25  
30  
40  
49  
50  
60  
80  
99  
100  
BC  
BD  
BE*  
BF  
ACFJ  
ACFK  
ACFL  
ACFM  
ACFN  
ACFO  
ACFP  
ACFQ  
ACFR  
ACFS  
ACFT  
ACEJ  
ACEK  
ACEL  
ACEM  
ACEN  
ACEO  
ACEP  
ACEQ  
ACER  
ACES  
BG  
BH  
BJ*  
BK*  
BL  
BM  
BN*  
CA*  
75,MAX812/4  
Note: Gains in the noninverting configuration are 1+ (R /R ) and range from +1.25V/V to +101V/V. For a +1V/V gain, use the  
F
G
MAX4281/MAX4282/MAX4284.  
* Preferred Gains. These gain versions are available as samples and in small quantities.  
The -3dB bandwidth is the same for inverting and noninverting configurations.  
16 ______________________________________________________________________________________  
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
75,MAX812/4  
Pin Configurations (continued)  
TOP VIEW  
MAX4175  
+ -  
MAX4281  
1
2
3
5
4
1
2
3
OUT  
5
4
V
CC  
OUT  
V
CC  
R
R
F
V
V
EE  
EE  
+ -  
R
G
R
IN+  
IN+  
IN-  
V
CC  
SOT23-5  
SOT23-5  
MAX4281  
MAX4282  
MAX4274  
N.C.  
OUTA  
INA-  
1
2
3
4
8
7
6
5
V
OUTA  
1
8
7
6
V
CC  
N.C.  
IN-  
1
2
3
4
8
CC  
R
F
- +  
- +  
+ -  
V
CC  
OUTB  
INB-  
INA-  
INA+  
2
3
4
OUTB  
INB-  
7
6
R
G
R
F
+ -  
INA+  
IN+  
OUT  
N.C.  
R
G
V
EE  
INB+  
V
EE  
5
INB+  
V
EE  
5
µMAX/SO  
MAX4284  
µMAX/SO  
SO  
MAX4284  
MAX4275  
OUTA  
INA-  
1
14 OUTD  
13 IND-  
12 IND+  
OUTA  
INA-  
1
16 OUTD  
15 IND-  
14 IND+  
OUTA  
INA-  
1
2
3
4
8
7
6
V
CC  
R
F
- + + -  
+
+
+
+
-
-
-
-
- +  
2
3
4
5
6
2
3
4
5
6
R
G
OUTB  
V
CC  
R
F
INA+  
INA+  
+ -  
R
R
R
G
INA+  
INB-  
INB+  
V
EE  
V
EE  
11  
13  
12  
V
CC  
V
CC  
V
CC  
R
R
INC+  
INC-  
INC+  
INB+  
INB-  
10  
9
INB+  
INB-  
V
EE  
5
11 INC-  
µMAX/SO  
- +  
+ -  
8
OUTB  
7
OUTC  
OUTB  
N.C.  
7
8
10 OUTC  
SO/TSSOP  
9
N.C.  
QSOP  
______________________________________________________________________________________ 17  
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
Chip Information  
Ordering Information (continued)  
PIN-  
PACKAGE  
TOP  
MARK  
TRANSISTOR COUNTS:  
MAX4174: 178  
MAX4175: 178  
MAX4274: 332  
MAX4275: 332  
MAX4281: 178  
MAX4282: 332  
MAX4284: 328  
PART*  
TEMP. RANGE  
MAX4274_EUA  
MAX4274_ESA  
MAX4275_EUA  
MAX4275_ESA  
MAX4281EUK-T  
MAX4281ESA  
MAX4282EUA  
MAX4282ESA  
MAX4284EUD  
MAX4284ESD  
MAX4284EEE  
-40°C to +85°C 8 µMAX  
-40°C to +85°C 8 SO  
-40°C to +85°C 8 µMAX  
ACDR  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
8 SO  
5 SOT23-5  
8 SO  
-40°C to +85°C 8 µMAX  
-40°C to +85°C 8 SO  
-40°C to +85°C 14 TSSOP  
SUBSTRATE CONNECTED TO V  
EE  
-40°C to +85°C  
-40°C to +85°C  
14 SO  
16 QSOP  
Note: Refer to Gain Selection Guide for SOT top marks.  
*Insert the desired gain code (from the Gain Selection Guide) in  
the blank to complete the part number. Refer to Gain Selection  
Guide for a list of preferred gains.  
Selector Guide  
INVERTING GAINS  
AVAILABLE (V/V)  
NONINVERTING  
GAIN  
NO. OF  
AMPS PER  
PACKAGE  
INTERNAL  
RESISTORS  
INTERNAL  
PART*  
PIN-PACKAGE  
V
/2 BIAS  
CC  
(INVERTING, R /R )  
(V/V)  
F
-0.25 to -100  
-0.25 to -100  
-0.25 to -100  
-0.25 to -100  
G
MAX4174_  
MAX4175_  
MAX4274_  
MAX4275_  
+1.25 to +101  
+1.25 to +101  
+1.25 to +101  
+1.25 to +101  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
1
1
2
2
5-pin SOT23  
5-pin SOT23  
75,MAX812/4  
8-pin µMAX/SO  
8-pin µMAX/SO  
Yes  
Open Loop,  
Unity-Gain Stable  
5-pin SOT23,  
8-pin SO  
MAX4281_  
MAX4282_  
MAX4284_  
No  
No  
No  
No  
No  
No  
1
2
4
Open Loop,  
Unity-Gain Stable  
8-pin µMAX/SO  
Open Loop,  
Unity-Gain Stable  
14-pin SO/TSSOP,  
16-pin QSOP  
* Insert the desired gain code (from the Gain Selection Guide) in the blank to complete the part number.  
18 ______________________________________________________________________________________  
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
75,MAX812/4  
Package Information  
______________________________________________________________________________________ 19  
SOT23, Rail-to-Rail, Fixed-Gain  
GainAmps/Open-Loop Op Amps  
Package Information  
75,MAX812/4  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX4175BMEUK

Application Specific Amplifier
MAXIM

MAX4175BMEUK+T

Operational Amplifier, 1 Func, 2000uV Offset-Max, PDSO5, SOT-23, 5 PIN
MAXIM

MAX4175BMEUK-T

Application Specific Amplifier
MAXIM

MAX4175BNEUK

Application Specific Amplifier
MAXIM

MAX4175BNEUK+T

Operational Amplifier, 1 Func, 2000uV Offset-Max, PDSO5, SOT-23, 5 PIN
MAXIM

MAX4175BNEUK-T

Application Specific Amplifier
MAXIM

MAX4175CAEUK

Application Specific Amplifier
MAXIM

MAX4175CAEUK+

ATM/SONET/SDH IC, Bipolar, PDSO5
MAXIM

MAX4175CAEUK+T

Operational Amplifier, 1 Func, 2000uV Offset-Max, BIPolar, PDSO5, SOT-23, 5 PIN
MAXIM

MAX4175CAEUK-T

Application Specific Amplifier
MAXIM

MAX4175_EUK-T

SOT23, Rail-to-Rail, Fixed-Gain GainAmps/Open-Loop Op Amps
MAXIM

MAX4177ESA

Buffer Amplifier, 1 Func, CMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM