MAX4190 [MAXIM]

Single/Triple, Low-Glitch, 250MHz, Current- Feedback Amplifiers with High-Speed Disable; 单/三路,低毛刺, 250MHz的,电流反馈放大器,带有高速禁止
MAX4190
型号: MAX4190
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Single/Triple, Low-Glitch, 250MHz, Current- Feedback Amplifiers with High-Speed Disable
单/三路,低毛刺, 250MHz的,电流反馈放大器,带有高速禁止

放大器
文件: 总20页 (文件大小:215K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1369; Rev 0; 7/98  
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
8/MAX4190  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX4188/MAX4189/MAX4190 a re low-p owe r,  
current-feedback video amplifiers featuring fast dis -  
able/enable times and low switching transients. The  
triple MAX4188 and the single MAX4190 are optimized  
for applications with closed-loop gains of +2V/V (6dB)  
or greater and provide a -3dB bandwidth of 200MHz  
and 185MHz, respectively. The triple MAX4189 is opti-  
mized for closed-loop applications with gains of +1V/V  
(0dB) or greater and provides a 250MHz -3dB band-  
width. These amplifiers feature 0.1dB gain flatness up to  
80MHz with differential gain and phase errors of 0.03%  
and 0.05°. These features make the MAX4188 family  
ideal for video applications.  
Low Supply Current: 1.5mA per Amplifier  
Fast Enable/Disable Times: 120ns/35ns  
Very Low Switching Transient: 45mV  
High Speed  
p-p  
200MHz -3dB Small-Signal Bandwidth  
(MAX4188, A +2)  
VCL  
250MHz -3dB Small-Signal Bandwidth  
(MAX4189, A +1)  
VCL  
185MHz -3dB Small-Signal Bandwidth  
(MAX4190, A +2)  
VCL  
High Slew Rate  
The MAX4188/MAX4189/MAX4190 operate from a +5V  
single supply or from ±2.25V to ±5.5V dual supplies.  
These amplifiers consume only 1.5mA per amplifier and  
are capable of delivering ±55mA of output current, making  
them ideal for portable and battery-powered equipment.  
350V/µs (MAX4188, A  
175V/µs (MAX4189, A  
+2)  
+1)  
VCL  
VCL  
Excellent Video Specifications  
85MHz -0.1dB Gain Flatness (MAX4190)  
30MHz -0.1dB Gain Flatness (MAX4189)  
Differential Gain/Phase Errors  
0.03%/0.05° (MAX4188)  
The MAX4188/MAX4189/MAX4190 have a high-speed  
disable/enable mode that isolates the inputs, places the  
outputs in a high-impedance state, and reduces the  
supply current to 450µA per amplifier. Each amplifier  
can be disabled independently. High off isolation, low  
s witc hing tra ns ie nt, a nd fa s t e na b le /d is a b le time s  
(120ns/35ns) allow these amplifiers to be used in a  
wide range of multiplexer applications. A settling time  
of 22ns to 0.1%, a slew rate of up to 350V/µs, and low  
distortion make these devices useful in many general-  
purpose, high-speed applications.  
Low-Power Disable Mode  
Inputs Isolated, Outputs Placed in High-Z  
Supply Current Reduced to 450µA per Amplifier  
Fast Settling Time of 22ns to 0.1%  
Low Distortion  
70dB SFDR (f = 5MHz, V = 2V , MAX4188)  
c
O
p-p  
The MAX4188/MAX4189 are available in a tiny 16-pin  
QSOP package, and the MAX4190 is available in a  
space-saving 8-pin µMAX package.  
Available in Space-Saving Packages  
16-Pin QSOP (MAX4188/MAX4189)  
8-Pin µMAX (MAX4190)  
Ap p lic a t io n s  
High-Definition Surveillance Video  
Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
14 SO  
High-Speed Switching/Multiplexing  
MAX4188ESD  
MAX4188EEE  
Portable/Battery-Powered Video/Multimedia  
Systems  
16 QSOP  
Ordering Information continued at end of data sheet.  
High-Speed Analog-to-Digital Buffers  
Medical Imaging  
S e le c t o r Gu id e  
High-Speed Signal Processing  
Professional Cameras  
OPTIMIZED  
FOR:  
AMPLIFIERS  
PER PKG.  
PART  
PIN-PACKAGE  
CCD Imaging Systems  
14-pin SO,  
16-pin QSOP  
MAX4188  
A
V
+2V/V  
3
RGB Distribution Amplifiers  
14-pin SO,  
16-pin QSOP  
MAX4189  
MAX4190  
A
+1V/V  
+2V/V  
3
1
V
Pin Configuration appears at end of data sheet.  
A
V
8-pin µMAX/SO  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V to V )................................................+12V  
14-Pin SO (derate 8.3mW/°C above +70°C) ..................667mW  
16-Pin QSOP (derate 8.3mW/°C above +70°C)...............667mW  
Operating Temperature Range............................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
EE  
IN_+, IN_-, DISABLE_ Voltage .........(V - 0.3V) to (V + 0.3V)  
EE  
CC  
Differential Input Voltage (IN_+ to IN_-)..............................±1.5V  
Maximum Current into IN_+ or IN_-..................................±10mA  
Output Short-Circuit Current Duration........................Continuous  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin SO (derate 5.88mW/°C above +70°C)...............471mW  
8-Pin µMAX (derate 4.1mW/°C above +70°C) ............330mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS—Dual Supplies  
(V = +5V; V = -5V; IN+ = 0; DISABLE_ 3.2V; MAX4188: A = +2V/V, R = R = 910for R = 1kand R = R = 560for R  
F
G
CC  
EE  
V
F
G
L
L
= 150; MAX4189: A = +1V/V, R = 1600for R = 1kand R = 1100for R = 150; MAX4190: A = +2V/V, R = R = 1300Ω  
F
L
V
F
L
V
F
G
for R = 1k, R = R = 680for R = 150; T = T  
to T , unless otherwise noted. Typical values are specified at  
MAX  
A
L
F
G
L
MIN  
T
A
= +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
±2.25  
±3.1  
TYP  
MAX  
UNITS  
V
Operating Supply Voltage  
Inferred from PSRR tests  
Guaranteed by CMRR test  
±5.5  
Input Voltage Range  
V
CM  
±3.4  
±1  
V
Input Offset Voltage  
V
OS  
V
= 0 (Note 1)  
±6  
mV  
µV/°C  
mV  
µA  
CM  
Input Offset Voltage Tempco  
Input Offset Voltage Matching  
Input Bias Current (Positive Input)  
Input Bias Current (Negative Input)  
Input Resistance (Positive Input)  
Input Resistance (Negative Input)  
Input Capacitance (Positive Input)  
Common-Mode Rejection Ratio  
TC  
±10  
±1  
VOS  
I
B+  
±1  
±10  
±12  
I
B-  
±2  
µA  
8/MAX4190  
-3.1V V 3.1V,  
V + - V - 1V  
IN IN  
R
100  
350  
300  
2.5  
68  
kΩ  
CM  
IN+  
R
IN-  
C
pF  
IN  
CMRR  
-3.1V V 3.1V  
56  
1
dB  
CM  
-3.1V V  
3.1V, R = 1kΩ  
7
L
OUT  
Open-Loop Transresistance  
Output Voltage Swing  
T
R
MΩ  
-2.8V V  
2.8V, R = 150Ω  
0.3  
2
L
OUT  
R
R
R
= 1kΩ  
±3.5  
±3.0  
±20  
±4.0  
±3.3  
±55  
±60  
0.2  
±0.8  
5
L
L
L
V
SW  
V
= 150Ω  
= 30Ω  
Output Current  
I
mA  
mA  
OUT  
Output Short-Circuit Current  
Output Resistance  
I
SC  
R
OUT  
OUT(OFF)  
Disabled Output Leakage Current  
Disabled Output Capacitance  
DISABLE Low Threshold  
DISABLE High Threshold  
DISABLE Input Current  
I
±5  
µA  
pF  
V
DISABLE_ V , V  
±3.5V (Note 2)  
±3.5V  
IL OUT  
C
DISABLE_ V , V  
OUT(OFF)  
IL OUT  
V
IL  
(Note 3)  
(Note 3)  
V
CC  
- 3  
V
IH  
V
CC  
- 1.8  
V
I
IN  
0.1  
75  
2
µA  
dB  
dB  
mA  
mA  
V
EE  
DISABLE_ V  
CC  
Power-Supply Rejection Ratio (V  
)
PSRR+  
PSRR-  
V
EE  
= -5V, V = 4.5V to 5.5V  
60  
60  
CC  
CC  
Power-Supply Rejection Ratio (V  
)
V
= 5V, V = -4.5V to -5.5V  
CC EE  
73  
EE  
Quiescent Supply Current (per Amplifier)  
Disabled Supply Current (per Amplifier)  
I
S
R
= open  
L
1.5  
0.45  
1.85  
0.65  
I
DISABLE_  V , R = open  
S(OFF)  
IL  
L
2
_______________________________________________________________________________________  
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
8/MAX4190  
DC ELECTRICAL CHARACTERISTICS—Single Supply  
(V = +5V; V = 0; IN+ = 2.5V; DISABLE_ 3.2V; R to V / 2; MAX4188: A = +2V/V, R = R = 1.1kfor R = 1kand R = R  
CC  
EE  
L
CC  
V
F
G
L
F
G
=
= 620for R = 150; MAX4189: A = +1V/V, R = 1500for R = 1kand R = 1600for R = 150; MAX4190: A = +2V/V, R  
L
V
F
L
F
L
V
F
R
G
= 1300for R = 1k, R = R = 680for R = 150; T = T  
to T , unless otherwise noted. Typical values are specified at  
MAX  
A
MIN  
L
F
G
L
T
A
= +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Supply Voltage  
Input Voltage Range  
Input Offset Voltage  
Inferred from PSRR tests  
4.5  
5.5  
V
1.6 to  
3.4  
1.3 to  
3.7  
V
Guaranteed by CMRR test  
V
CM  
V
OS  
V
CM  
= 2.5V (Note 1)  
±1.5  
±10  
±1  
±6.0  
mV  
µV/°C  
mV  
Input Offset Voltage Tempco  
Input Offset Voltage Matching  
TC  
VOS  
Input Bias Current  
(Positive Input)  
I
±1  
±2  
±10  
±12  
µA  
µA  
kΩ  
B+  
Input Bias Current  
(Negative Input)  
I
B-  
Input Resistance  
(Positive Input)  
1.6V V 3.4V,  
V
- V  
1V  
R
IN+  
100  
350  
300  
2.5  
CM  
IN+  
IN-  
Input Resistance  
(Negative Input)  
R
IN-  
Input Capacitance  
(Positive Input)  
C
pF  
dB  
IN  
Common-Mode Rejection Ratio  
Open-Loop Transresistance  
CMRR  
1.5V V 3.5V  
48  
1.0  
0.2  
65  
6.5  
1.0  
CM  
1.3V V  
3.7V, R = 1kΩ  
L
OUT  
T
MΩ  
R
1.45V V  
3.55V, R = 150Ω  
L
OUT  
1.2 to  
3.8  
0.9 to  
4.1  
R
= 1kΩ  
L
Output Voltage Swing  
V
V
SW  
1.4 to  
3.6  
1.15 to  
3.85  
R
R
= 150Ω  
= 30Ω  
L
L
Output Current  
I
±16  
±28  
±50  
0.2  
mA  
mA  
OUT  
Output Short-Circuit Current  
Output Resistance  
I
SC  
R
OUT  
Disabled Output Leakage  
Current  
I
0.8  
5
±5  
- 3  
µA  
DISABLE_ V , 1.2V V  
3.8V (Note 2)  
3.8V  
OUT  
OUT(OFF)  
IL  
OUT  
Disabled Output Capacitance  
DISABLE Low Threshold  
DISABLE High Threshold  
DISABLE Input Current  
C
pF  
V
DISABLE_ V , 1.2V V  
OUT(OFF)  
IL  
V
IL  
(Note 3)  
(Note 3)  
V
CC  
V
IH  
V
CC  
- 1.8  
V
I
IN  
0.1  
75  
2
µA  
0 DISABLE_ V  
CC  
Power-Supply Rejection  
PSRR+  
V
CC  
= 4.5V to 5.5V  
60  
dB  
mA  
mA  
Ratio (V  
)
CC  
Quiescent Supply Current  
(per Amplifier)  
I
S
R
= open  
L
1.5  
1.85  
0.65  
Disabled Supply Current  
(per Amplifier)  
I
0.45  
DISABLE_ V , R = open  
S(OFF)  
IL  
L
_______________________________________________________________________________________  
3
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4188)  
(V  
CC  
= +5V, V = -5V, V = 0, DISABLE_ 3V, A = +2V/V, R = R = 910for R = 1kor R = R = 560for R = 150;  
F
G
EE  
IN  
V
F
G
L
L
T
A
= +25°C, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
200  
160  
0.25  
0.1  
60  
MAX  
UNITS  
R
R
R
R
R
R
= 1kΩ  
L
L
L
L
L
L
Small-Signal -3dB Bandwidth  
Peaking  
BW  
MHz  
-3dB  
= 150Ω  
= 1kΩ  
dB  
= 150Ω  
= 1kΩ  
Bandwidth for 0.1dB Flatness  
Large-Signal -3dB Bandwidth  
BW  
MHz  
MHz  
0.1dB  
= 150Ω  
80  
R
R
= 1kΩ  
100  
100  
350  
280  
22  
L
BW  
V
OUT  
= 2Vp-p  
LS  
= 150Ω  
L
Positive slew  
Negative slew  
V/µs  
V
= 4V step,  
OUT  
Slew Rate  
SR  
R
= 150Ω  
L
Settling Time to 0.1%  
Rise/Fall Time  
t
V
OUT  
= 4V step  
= 4V step  
ns  
ns  
S
Rise time  
Fall time  
10  
V
OUT  
12  
R
R
R
R
R
R
R
R
R
R
= 1kΩ  
70  
L
L
L
L
L
L
L
L
L
L
f
V
= 5MHz,  
C
Spurious-Free Dynamic Range  
Second Harmonic Distortion  
Third Harmonic Distortion  
Differential Phase Error  
SFDR  
dB  
dBc  
dBc  
= 2Vp-p  
OUT  
= 150Ω  
= 1kΩ  
56  
-70  
-66  
-73  
-56  
0.05  
0.32  
0.03  
0.04  
2
f
= 5MHz,  
C
V
= 2Vp-p  
OUT  
= 150Ω  
= 1kΩ  
f
= 5MHz,  
C
V
= 2Vp-p  
OUT  
= 150Ω  
= 1kΩ  
8/MAX4190  
DP  
NTSC  
NTSC  
degrees  
= 150Ω  
= 1kΩ  
Differential Gain Error  
DG  
%
= 150Ω  
Input Noise Voltage Density  
Input Noise Current Density  
e
n
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
Positive input  
Negative input  
4
i
n
5
Output Impedance  
Crosstalk  
Z
f = 10MHz  
4
dB  
OUT  
f = 10MHz, input referred  
f = 10MHz, input referred  
-55  
-65  
100  
All Hostile Off Isolation  
Gain Matching to 0.1dB  
dB  
MHz  
Delay from DISABLE to 90% of V  
,
OUT  
Amplifier Enable Time  
Amplifier Disable Time  
t
120  
35  
ns  
ns  
ON  
V
IN  
= 0.5V  
Delay from DISABLE to 10% of V  
,
OUT  
t
OFF  
V
IN  
= 0.5V  
Positive transient  
Negative transient  
30  
15  
Disable/Enable Switching  
Transient  
mV  
4
_______________________________________________________________________________________  
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
8/MAX4190  
AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4189)  
(V = +5V, V = -5V, V = 0, DISABLE_ 3V, A = +1V/V, R = 1600for R = 1kand R = 1100for R = 150; T = +25°C,  
CC  
EE  
IN  
V
F
L
F
L
A
unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
250  
210  
1.4  
0.15  
7
MAX  
UNITS  
R
R
R
R
R
R
= 1kΩ  
L
L
L
L
L
L
Small-Signal -3dB Bandwidth  
Peaking  
BW  
MHz  
-3dB  
= 150Ω  
= 1kΩ  
dB  
= 150Ω  
= 1kΩ  
Bandwidth for 0.1dB Flatness  
Large-Signal -3dB Bandwidth  
BW  
MHz  
MHz  
0.1dB  
= 150Ω  
30  
R
R
= 1kΩ  
60  
L
BW  
V
OUT  
= 2Vp-p  
LS  
= 150Ω  
55  
L
Positive slew  
Negative slew  
175  
150  
28  
V/µs  
V
= 4V step,  
= 150Ω  
OUT  
Slew Rate  
SR  
R
L
Settling Time to 0.1%  
Rise/Fall Time  
t
V
OUT  
= 4V step  
= 4V step  
ns  
ns  
S
Rise time  
Fall time  
20  
V
OUT  
22  
R
R
R
R
R
R
R
R
R
R
= 1kΩ  
65  
L
L
L
L
L
L
L
L
L
L
f
V
= 5MHz,  
C
Spurious-Free Dynamic Range  
Second Harmonic Distortion  
Third Harmonic Distortion  
Differential Phase Error  
SFDR  
dB  
dBc  
= 2Vp-p  
OUT  
= 150Ω  
= 1kΩ  
51  
-65  
-63  
-70  
-51  
0.02  
0.66  
0.07  
0.18  
2
f
= 5MHz,  
C
V
= 2Vp-p  
OUT  
= 150Ω  
= 1kΩ  
f
= 5MHz,  
C
dBc  
V
= 2Vp-p  
OUT  
= 150Ω  
= 1kΩ  
DP  
NTSC  
NTSC  
degrees  
= 150Ω  
= 1kΩ  
Differential Gain Error  
DG  
%
= 150Ω  
Input Noise Voltage Density  
Input Noise Current Density  
e
n
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
Positive input  
Negative input  
4
i
n
5
Output Impedance  
Crosstalk  
Z
f = 10MHz  
4
dB  
OUT  
f = 10MHz, input referred  
f = 10MHz, input referred  
-57  
-55  
24  
All Hostile Off Isolation  
Gain Matching to 0.1dB  
dB  
MHz  
Delay from DISABLE to 90% of V  
,
OUT  
Amplifier Enable Time  
Amplifier Disable Time  
t
120  
40  
ns  
ns  
ON  
V
IN  
= 0.5V  
Delay from DISABLE to 10% of V  
,
OUT  
t
OFF  
V
IN  
= 0.5V  
Positive transient  
Negative transient  
70  
Disable/Enable Switching  
Transient  
mV  
110  
_______________________________________________________________________________________  
5
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
AC & DYNAMIC PERFORMANCE—Dual Supplies (MAX4190)  
(V  
CC  
= + 5V, V  
= -5V, V = 0, A = + 2V/V; R = R = 1300for R = 1ka nd R = R = 680for R = 150,  
EE  
IN  
V
G
F
L
F
G
L
T
A
= +25°C, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
185  
150  
0.1  
0.1  
85  
MAX  
UNITS  
R
R
R
R
R
R
= 1kΩ  
L
L
L
L
L
L
Small-Signal -3dB Bandwidth  
Peaking  
BW  
MHz  
SS  
= 150Ω  
= 1kΩ  
dB  
= 150Ω  
= 1kΩ  
Bandwidth for 0.1dB Flatness  
Large-Signal -3dB Bandwidth  
BW  
MHz  
MHz  
LS  
= 150kΩ  
75  
R
R
= 1kΩ  
95  
L
L
BW  
V
O
= 2Vp-p  
LS  
= 150Ω  
95  
Positive slew  
Negative slew  
340  
270  
22  
V
= 4V step,  
= 150Ω  
O
Slew Rate  
SR  
V/µs  
ns  
R
L
Settling Time to 0.1%  
Rise/Fall Time  
t
S
V
O
= 2V step  
t
R
Rise time  
Fall time  
10  
V
= 4V step,  
= 150Ω  
O
ns  
R
L
t
12  
F
R
R
R
R
R
R
R
R
R
R
= 1kΩ  
61  
L
L
L
L
L
L
L
L
L
L
f
V
= 5MHz,  
C
Spurious-Free Dynamic Range  
Second Harmonic Distortion  
Third Harmonic Distortion  
Differential Gain Error  
dB  
dBc  
= 2Vp-p  
O
= 150Ω  
= 1kΩ  
55  
-65  
-55  
-73  
-61  
0.03  
0.07  
0.06  
0.45  
4
f
= 5MHz,  
C
V
= 2Vp-p  
= 5MHz,  
O
= 150Ω  
= 1kΩ  
f
C
dBc  
V
= 2Vp-p  
O
= 150Ω  
= 1kΩ  
8/MAX4190  
DG  
DP  
NTSC  
degrees  
degrees  
pA/Hz  
= 150Ω  
= 1kΩ  
Differential Phase Error  
NTSC  
= 150Ω  
Positive input  
Negative input  
Input Noise Current Density  
f = 10kHz  
5
Input Noise Voltage Density  
Output Impedance  
e
n
f = 10kHz  
f = 10MHz  
2
nV/Hz  
Z
4
OUT  
All Hostile Off Isolation  
f = 10MHz, input referred  
-60  
120  
35  
dB  
t
ns  
Turn-On Time from DISABLE  
Turn-Off Time from DISABLE  
ON  
t
ns  
OFF  
Positive transient  
Negative transient  
30  
Disable/Enable Switching  
Transient  
BW  
mV  
LS  
15  
6
_______________________________________________________________________________________  
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
8/MAX4190  
AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4188)  
(V = +5V, V = 0, V = 2.5V, DISABLE_ 3V, R to V / 2, A = +2V/V, R = R = 1.1kfor R = 1kto V / 2 and R = R  
=
CC  
EE  
IN  
L
CC  
V
F
G
L
CC  
F
G
620for R = 150; T = +25°C, unless otherwise noted.)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
185  
145  
0.1  
0.1  
110  
65  
MAX  
UNITS  
R
R
R
R
R
R
= 1kΩ  
L
L
L
L
L
L
Small-Signal -3dB Bandwidth  
BW  
MHz  
-3dB  
= 150Ω  
= 1kΩ  
Peaking  
dB  
= 150Ω  
= 1kΩ  
Bandwidth for 0.1dB Flatness  
Large-Signal -3dB Bandwidth  
BW  
MHz  
MHz  
0.1dB  
= 150Ω  
R
R
= 1kΩ  
80  
L
L
BW  
V
OUT  
= 2Vp-p  
LS  
= 150Ω  
80  
= 2V step,  
= 150Ω  
Positive slew  
Negative slew  
300  
230  
20  
V/µs  
V/µs  
ns  
V
OUT  
Slew Rate  
SR  
R
L
Settling Time to 0.1%  
Rise/Fall Time  
t
S
V
OUT  
= 2V step  
= 2V step  
Rise time  
Fall time  
8
V
OUT  
ns  
9
R
R
R
R
R
R
R
R
R
R
= 1kΩ  
66  
L
L
L
L
L
L
L
L
L
L
f
V
= 5MHz,  
C
Spurious-Free Dynamic Range  
Second Harmonic Distortion  
Third Harmonic Distortion  
Differential Phase Error  
SFDR  
dB  
= 2Vp-p  
OUT  
= 150Ω  
= 1kΩ  
56  
-76  
-59  
-66  
-56  
0.06  
0.34  
0.02  
0.05  
2
f
= 5MHz,  
C
dBc  
dBc  
V
= 2Vp-p  
OUT  
= 150Ω  
= 1kΩ  
f
= 5MHz,  
C
V
= 2Vp-p  
OUT  
= 150Ω  
= 1kΩ  
DP  
NTSC  
NTSC  
degrees  
= 150Ω  
= 1kΩ  
Differential Gain Error  
DG  
%
= 150Ω  
Input Noise Voltage Density  
Input Noise Current Density  
e
n
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
Positive input  
Negative input  
4
i
n
5
Output Impedance  
Crosstalk  
Z
OUT  
f = 10MHz  
4
dB  
f = 10MHz, input referred  
f = 10MHz, input referred  
-55  
-65  
40  
All Hostile Off Isolation  
Gain Matching to 0.1dB  
dB  
MHz  
Delay from DISABLE to 90% of V  
,
OUT  
Amplifier Enable Time  
Amplifier Disable Time  
t
120  
35  
ns  
ns  
ON  
V
IN  
= 3V  
Delay from DISABLE to 10% of V  
,
OUT  
t
OFF  
V
IN  
= 3V  
Positive transient  
Negative transient  
30  
15  
Disable/Enable Switching  
Transient  
mV  
_______________________________________________________________________________________  
7
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4189)  
(V = +5V, V = 0, V = 2.5V, DISABLE_ 3V, R to V / 2, A = +1V/V, R = 1500for R = 1kand R = 1600for R  
=
CC  
EE  
IN  
L
CC  
V
F
L
F
L
150; T = +25°C, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
230  
190  
1.4  
0.15  
7
MAX  
UNITS  
R
R
R
R
R
R
= 1kΩ  
L
L
L
L
L
L
Small-Signal -3dB Bandwidth  
BW  
MHz  
-3dB  
= 150Ω  
= 1kΩ  
Peaking  
dB  
= 150Ω  
= 1kΩ  
Bandwidth for 0.1dB Flatness  
Large-Signal -3dB Bandwidth  
BW  
MHz  
MHz  
0.1dB  
= 150Ω  
40  
R
R
= 1kΩ  
50  
L
BW  
V
OUT  
= 2Vp-p  
LS  
= 150Ω  
45  
L
Positive slew  
Negative slew  
160  
135  
25  
V
= 2V step,  
= 150Ω  
OUT  
Slew Rate  
SR  
V/µs  
ns  
R
L
Settling Time to 0.1%  
Rise/Fall Time  
t
V
OUT  
= 2V step  
= 2V step  
S
Rise time  
Fall time  
12  
V
OUT  
ns  
15  
R
R
R
R
R
R
R
R
R
R
= 1kΩ  
57  
L
L
L
L
L
L
L
L
L
L
f
V
= 5MHz,  
C
Spurious-Free Dynamic Range  
Second Harmonic Distortion  
Third Harmonic Distortion  
Differential Phase Error  
SFDR  
dB  
dBc  
dBc  
= 2Vp-p  
OUT  
= 150Ω  
= 1kΩ  
47  
-58  
-54  
-57  
-47  
0.04  
0.66  
0.06  
0.17  
2
f
= 5MHz,  
C
V
= 2Vp-p  
OUT  
= 150Ω  
= 1kΩ  
f
= 5MHz,  
C
V
= 2Vp-p  
OUT  
= 150Ω  
= 1kΩ  
8/MAX4190  
DP  
NTSC  
NTSC  
degrees  
= 150Ω  
= 1kΩ  
Differential Gain Error  
DG  
%
= 150Ω  
Input Noise Voltage Density  
Input Noise Current Density  
e
n
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
Positive input  
Negative input  
4
i
n
5
Output Impedance  
Crosstalk  
Z
f = 10MHz  
4
dB  
OUT  
f = 10MHz, input referred  
f = 10MHz, input referred  
-57  
-55  
25  
All Hostile Off Isolation  
Gain Matching to 0.1dB  
dB  
MHz  
Delay from DISABLE to 90% of V  
,
OUT  
Amplifier Enable Time  
Amplifier Disable Time  
t
120  
40  
ns  
ns  
ON  
V
IN  
= 3V  
Delay from DISABLE to 10% of V  
,
OUT  
t
OFF  
V
IN  
= 3V  
Positive transient  
Negative transient  
70  
Disable/Enable Switching  
Transient  
mV  
110  
Note 1: Input Offset Voltage does not include the effect of I  
flowing through R /R .  
F G  
BIAS  
Note 2: Does not include current through external feedback network.  
Note 3: Over operating supply-voltage range.  
8
_______________________________________________________________________________________  
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
8/MAX4190  
AC & DYNAMIC PERFORMANCE—Single Supply (MAX4190)  
(V  
CC  
= + 5V, V  
= 0, V = 0, A = + 2V/V; R = R = 1500for R = 1ka nd R = R = 750for R = 150,  
EE  
IN  
V
G
F
L
F
G
L
T
A
= +25°C, unless otherwise noted)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
165  
135  
0.1  
0.1  
70  
MAX  
UNITS  
R
R
R
R
R
R
= 1kΩ  
L
L
L
L
L
L
Small-Signal -3dB Bandwidth  
Peaking  
BW  
MHz  
-3dB  
= 150Ω  
= 1kΩ  
dB  
= 150Ω  
= 1kΩ  
Bandwidth for 0.1dB Flatness  
Large-Signal -3dB Bandwidth  
BW  
MHz  
MHz  
0.1dB  
= 150Ω  
65  
R
R
= 1kΩ  
75  
L
L
BW  
V
O
= 2Vp-p  
LS  
= 150Ω  
75  
Positive slew  
Negative slew  
290  
220  
20  
V
= 2V step,  
= 150Ω  
O
Slew Rate  
SR  
V/µs  
ns  
R
L
Settling Time to 0.1%  
Rise/Fall Time  
t
V
O
= 2V step  
S
Rise time  
Fall time  
8
t
V
= 2V step,  
R
O
ns  
t
F
R
= 150Ω  
L
9
R
R
R
R
R
R
R
R
R
R
= 1kΩ  
59  
L
L
L
L
L
L
L
L
L
L
f
V
= 5MHz,  
C
Spurious-Free Dynamic Range  
Second Harmonic Distortion  
Third Harmonic Distortion  
Differential Gain Error  
dB  
dBc  
dBc  
%
= 2Vp-p  
O
= 150Ω  
= 1kΩ  
55  
-59  
-55  
-68  
-60  
0.02  
0.08  
0.07  
0.43  
2
f
= 5MHz,  
C
V
= 2Vp-p  
= 5MHz,  
O
= 150Ω  
= 1kΩ  
f
C
V
= 2Vp-p  
O
= 150Ω  
= 1kΩ  
DG  
DP  
NTSC  
= 150Ω  
= 1kΩ  
Differential Phase Error  
NTSC  
degrees  
nV/Hz  
pA/Hz  
= 150Ω  
Input Noise Voltage Density  
Input Noise Current Density  
f = 10kHz  
f = 10kHz  
f = 10MHz  
Positive input  
Negative input  
4
i
n
5
Output Impedance  
Z
4
dB  
ns  
OUT  
All Hostile Off Isolation  
Turn-On Time from DISABLE  
Turn-Off Time from DISABLE  
f = 10MHz, input referred, R = 150Ω  
-60  
120  
35  
L
t
ON  
t
ns  
OFF  
Positive transient  
Negative transient  
30  
Disable/Enable Switching  
Transient  
BW  
mV  
LS  
15  
_______________________________________________________________________________________  
9
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5V, V = -5V, T = +25°C, unless otherwise noted.)  
CC  
EE  
A
MAX4188 SMALL-SIGNAL GAIN  
vs. FREQUENCY (DUAL SUPPLIES)  
MAX4188 SMALL-SIGNAL GAIN  
vs. FREQUENCY (SINGLE SUPPLY)  
MAX4188 GAIN FLATNESS  
vs. FREQUENCY (DUAL SUPPLIES)  
10  
10  
9
0.4  
0.3  
0.2  
R = R = 910Ω  
L
F
G
9
8
R = 1kΩ  
R = R = 910kΩ  
R = 1kΩ  
L
R = R = 430Ω  
R = 100Ω  
L
F
G
F
G
8
R = R = 560Ω  
R = 150Ω  
L
F
G
R = R = 1.1kΩ  
R = 1kΩ  
L
F
G
7
6
7
6
0.1  
0
R = R = 620Ω  
L
F
G
5
4
5
4
-0.1  
-0.2  
R = R = 620Ω  
R = 150Ω  
L
F
G
R = 150Ω  
R = R = 390Ω  
R = 100Ω  
L
F
G
R = R = 390Ω  
F
G
3
2
3
2
-0.3  
-0.4  
R = 100Ω  
L
V
= 0V  
EE  
V = 20mVp-p  
IN  
A = +2V/V  
V
= 20mVp-p  
A = +2V/V  
IN  
V = 20mVp-p  
A = +2V/V  
IN  
1
0
1
0
-0.5  
-0.6  
V
V
V
1
1
1
10  
100  
1000  
1000  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
MAX4189 SMALL-SIGNAL GAIN  
vs. FREQUENCY (SINGLE SUPPLY)  
MAX4189 GAIN FLATNESS  
vs. FREQUENCY (DUAL SUPPLIES)  
MAX4189 SMALL-SIGNAL GAIN  
vs. FREQUENCY (DUAL SUPPLIES)  
0.2  
0.1  
0
4
3
2
4
3
2
R = 1.1kΩ  
R = 150Ω  
L
F
R = 1.5kΩ  
R = 1.6kΩ  
F
F
R = 1kΩ  
L
R = 1kΩ  
L
R = 680Ω  
R = 100Ω  
F
L
R = 680Ω  
R = 100Ω  
F
1
0
-0.1  
-0.2  
-0.3  
-0.4  
1
0
L
8/MAX4190  
-1  
-2  
-1  
-2  
R = 1.6kΩ  
R = 150Ω  
F
L
R = 1.1kΩ  
R = 150Ω  
L
-3  
-4  
-5  
-6  
-0.5  
-0.6  
-3  
-4  
F
R = 910Ω  
R = 100Ω  
L
F
V
= 0  
EE  
V = 20mVp-p  
IN  
A = +1V/V  
V
= 20mVp-p  
IN  
V = 20mVp-p  
IN  
-0.7  
-0.8  
-5  
-6  
A = +1V/V  
V
V
A = +1V/V  
V
1
10  
100  
1000  
1
10  
100  
1000  
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
MAX4188 LARGE-SIGNAL GAIN  
vs. FREQUENCY (SINGLE SUPPLY)  
MAX4188 SMALL-SIGNAL GAIN  
MATCHING vs. FREQUENCY  
MAX4188 LARGE-SIGNAL GAIN  
vs. FREQUENCY (DUAL SUPPLIES)  
10  
2.5  
10  
9
9
8
2.0  
1.5  
8
CH1-CH3  
R = R = 620Ω  
F
G
R = R = 560Ω  
7
6
1.0  
0.5  
F
G
7
6
R = 150Ω  
L
R = 150Ω  
L
5
4
0
5
4
R = R = 1.1kΩ  
F
G
-0.5  
R = R = 910Ω  
R = 1kΩ  
R = 1kΩ  
CH2-CH3  
F
G
L
L
3
2
-1.0  
-1.5  
3
2
V = 20mVp-p  
IN  
R = R = 750Ω  
V
EE  
= 0  
F
G
CH1-CH2  
100  
R = 1kΩ  
V = 1Vp-p  
A = +2V/V  
V
L
IN  
V = 1Vp-p  
A = +2V/V  
IN  
1
0
-2.0  
-2.5  
A = +2V/V  
1
0
V
V
1
10  
100  
1000  
1
10  
1000  
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
10 ______________________________________________________________________________________  
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
8/MAX4190  
____________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = -5V, T = +25°C, unless otherwise noted.)  
CC  
EE  
A
MAX4189 LARGE-SIGNAL GAIN  
vs. FREQUENCY (DUAL SUPPLIES)  
MAX4189 LARGE-SIGNAL GAIN  
vs. FREQUENCY (SINGLE SUPPLY)  
MAX4189 SMALL-SIGNAL GAIN  
MATCHING vs. FREQUENCY  
4
2.5  
4
3
2
3
2
2.0  
1.5  
R = 1.5kΩ  
R = 1kΩ  
L
F
CH_1–CH_3  
CH_1–CH_2  
R = 1.6kΩ  
R = 1kΩ  
L
F
1
0
1
0
1.0  
0.5  
-1  
-2  
-1  
-2  
0
R = 1.6kΩ  
R = 150Ω  
L
R = 1.1kΩ  
R = 150Ω  
L
F
F
-0.5  
CH_3–CH_2  
-3  
-4  
-3  
-4  
-1.0  
-1.5  
V = 2Vp-p  
IN  
V
= 0  
R = 1.6kΩ  
EE  
F
V = 2Vp-p  
IN  
V = 2Vp-p  
IN  
R = 1kΩ  
L
-5  
-6  
= 1V/V  
-5  
-6  
-2.0  
-2.5  
A
V
A = +1V/V  
V
A = +1V/V  
V
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
MAX4188 HARMONIC DISTORTION  
vs. FREQUENCY (DUAL SUPPLIES)  
MAX4188 HARMONIC DISTORTION  
vs. FREQUENCY (SINGLE SUPPLY)  
MAX4188 CROSSTALK vs.  
FREQUENCY (DUAL SUPPLIES)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
V
= 2Vp-p  
V
= 2Vp-p  
V
L
= 2Vp-p  
R = 150Ω  
OUT  
OUT  
OUT  
-10  
-20  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-30  
-40  
3RD (R = 150)  
L
3RD (R = 150)  
L
-50  
-60  
2ND (R = 150)  
L
2ND (R = 150)  
L
-70  
-80  
2ND (R = 1k)  
L
3RD (R = 1k)  
L
-90  
2ND (R = 1k)  
3RD (R = 1k)  
L
L
-100  
0.1  
1
10  
100  
0.1  
1
10  
100  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
MAX4189 HARMONIC DISTORTION  
vs. FREQUENCY (DUAL SUPPLIES)  
MAX4189 HARMONIC DISTORTION  
vs. FREQUENCY (SINGLE SUPPLY)  
MAX4189 CROSSTALK vs.  
FREQUENCY (DUAL SUPPLIES)  
0
0
0
V
= 2Vp-p  
V
= 2Vp-p  
V
L
= 2Vp-p  
R = 150Ω  
OUT  
OUT  
OUT  
-10  
-20  
-10  
-20  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-30  
-40  
-30  
-40  
3RD (R = 150)  
L
3RD (R = 150)  
L
-50  
-60  
-50  
-60  
2ND (R = 150)  
L
2ND (R = 150)  
L
2ND (R = 1k)  
L
-70  
-80  
-70  
-80  
2ND (R = 1k)  
L
3RD (R = 1k)  
L
-90  
-90  
3RD (R = 1k)  
L
-100  
-100  
0.1  
1
10  
100  
0.1  
1
10  
100  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
______________________________________________________________________________________ 11  
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
____________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = -5V, T = +25°C, unless otherwise noted.)  
CC  
EE  
A
TOTAL VOLTAGE-NOISE DENSITY  
vs. FREQUENCY (INPUT REFERRED)  
-3dB BANDWIDTH  
vs. INPUT AMPLITUDE  
INPUT VOLTAGE-NOISE  
DENSITY vs. FREQUENCY  
3.4  
350  
28  
24  
20  
16  
12  
8
MAX4189  
MAX4188  
V
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
IN  
300  
250  
200  
150  
V
OUT  
MAX4188  
910k  
DUAL SUPPLIES:  
R = 1k,  
910k  
L
100  
50  
A = +2V/V, R = R = 910Ω  
V
F
G
FOR MAX4188;  
A = +1V/V, R = 1.6kΩ  
V
F
FOR MAX4189  
4
0
100 1k 10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
100 1k 10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
0.02  
0.1  
INPUT AMPLITUDE (Vp-p)  
1
2
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
SUPPLY CURRENT PER AMPLIFIER  
vs. TEMPERATURE  
OUTPUT IMPEDANCE  
vs. FREQUENCY (DUAL SUPPLIES)  
1.6  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
1k  
R = 1k,  
L
A = +2V/V, R = R = 910Ω  
V
F
G
V
= 5V; V = -5V  
EE  
V
(MAX4188)  
CC  
CC  
FOR MAX4188;  
A = +1 V/V, R = 1.6kΩ  
1.5  
100  
10  
1
V
F
FOR MAX4189  
V
(MAX4189)  
CC  
V
= 5V; V = 0  
EE  
CC  
8/MAX4190  
1.4  
1.3  
1.2  
V
(MAX4189)  
EE  
MAX4189  
MAX4188  
100  
V
EE  
(MAX4188)  
1
0.1  
-40 -20  
0
20  
40  
60  
80  
0.1  
10  
100  
1000  
0.1  
1
10  
1000  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
DISABLED SUPPLY CURRENT PER  
AMPLIFIER vs. TEMPERATURE  
INPUT OFFSET VOLTAGE (V  
)
OS  
vs. TEMPERATURE  
5
4
3
2
1
0
0.5  
0.4  
0.3  
0.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
CC  
= ±5V  
V
= ±2.5V  
CC  
I - (POSITIVE INPUT)  
B
I - (NEGATIVE INPUT)  
B
-40 -20  
0
20  
40  
60  
80  
-40 -20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
12 ______________________________________________________________________________________  
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
8/MAX4190  
____________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = -5V, T = +25°C, unless otherwise noted.)  
CC  
EE  
A
MAX4188  
ENABLE/DISABLE RESPONSE  
MAX4189  
POWER-ON RESPONSE  
OUTPUT VOLTAGE SWING  
vs. TEMPERATURE  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
4V  
DISABLE  
0V  
V
- V ; R = 150Ω  
L
10V  
OL EE  
V
CC  
0V  
V
- V ; R = 150Ω  
L
CC OH  
2V  
V
OUT  
OUT  
0V  
2V/div  
0V  
V
- V ; R = 1kΩ  
OL EE  
L
V
- V ; R = 1kΩ  
L
CC OH  
50ns/div  
200ns/div  
-40 -20  
0
20  
40  
60  
80  
A = +2V/V, R = R = 910, R = 1k, V = 1V  
V
F
G
L
IN  
A = +1V/V, R = 1k, R = 1.6k, V = 0  
TEMPERATURE (°C)  
V
L
F
EE  
MAX4188  
SMALL-SIGNAL PULSE RESPONSE  
(WITH C  
MAX4188  
LARGE-SIGNAL PULSE RESPONSE  
MAX4188  
SMALL-SIGNAL PULSE RESPONSE  
)
LOAD  
+1V  
IN  
+25mV  
IN  
+25mV  
IN  
-25mV  
-1V  
-25mV  
+2V  
OUT  
-2V  
+50mV  
+50mV  
OUT  
OUT  
-50mV  
-50mV  
10ns/div  
10ns/div  
10ns/div  
A = +2V/V, R = R = 910, R = 1k, C = 47pF  
A = +2V/V, R = R = 910, R = 1kΩ  
A = +2V/V, R = R = 910, R = 1kΩ  
V
F
G
L
V
F
G
L
V
F
G
L
L
______________________________________________________________________________________ 13  
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
____________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = -5V, T = +25°C, unless otherwise noted.)  
CC  
EE  
A
MAX4189  
MAX4189  
SMALL-SIGNAL PULSE RESPONSE  
MAX4189  
SMALL-SIGNAL PULSE RESPONSE  
(WITH C  
)
LARGE-SIGNAL PULSE RESPONSE  
LOAD  
+50mV  
IN  
+50mV  
IN  
+2V  
IN  
-50mV  
-50mV  
-2V  
+50mV  
OUT  
+50mV  
OUT  
+2V  
OUT  
-2V  
-50mV  
-50mV  
10ns/div  
10ns/div  
10ns/div  
A = +1V/V, R = 1.1k, R = 150Ω  
V
F
L
A = +1V/V, R = 1.1k, R = 150Ω  
A = +1V/V, R = 1.6k, R = 1k, C = 47pF  
V
F
L
L
V
F
L
MAX4189  
SWITCHING TRANSIENT  
MAX4188  
SWITCHING TRANSIENT  
OFF-CHANNEL FEEDTHROUGH  
vs. FREQUENCY (DUAL SUPPLIES)  
-25  
8/MAX4190  
R = 150Ω  
L
3V  
3V  
-35  
-45  
-55  
-65  
-75  
-85  
-95  
DISABLE  
DISABLE  
0V  
0V  
OUT  
0V  
OUT  
100mV/div  
20mV/div  
100ns/div  
100ns/div  
1
10  
100  
1000  
A = +1V/V, R = 1.6k, R = 1k, V = 0  
A = +2V/V, R = 910, R = 1k, V = 0  
V
F
L
IN  
V
F
L
IN  
FREQUENCY (MHz)  
14 ______________________________________________________________________________________  
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
8/MAX4190  
P in De s c rip t io n s  
PIN  
MAX4188/MAX4189  
MAX4190  
SO/µMAX  
NAME  
FUNCTION  
SO  
QSOP  
Disable Control Input for Amplifier 1. Amplifier 1 is enabled when  
DISABLE1 (V - 2V) and disabled when DISABLE1 (V - 3V).  
1
1
DISABLE1  
DISABLE2  
DISABLE3  
CC  
CC  
Disable Control Input for Amplifier 2. Amplifier 2 is enabled when  
DISABLE2 (V - 2V) and disabled when DISABLE2 (V - 3V).  
2
3
2
3
CC  
CC  
Disable Control Input for Amplifier 3. Amplifier 3 is enabled when  
DISABLE3 (V - 2V) and disabled when DISABLE3 (V - 3V).  
CC  
CC  
4
5
4
5
7
1, 5  
V
Positive Power Supply. Connect V to +5V.  
CC  
CC  
IN1+  
IN1-  
Amplifier 1 Noninverting Input  
Amplifier 1 Inverting Input  
Amplifier 1 Output  
6
6
7
7
OUT1  
N.C.  
8
8, 9  
10  
11  
12  
No Connect. Not internally connected.  
Amplifier 3 Output  
OUT3  
IN3-  
9
Amplifier 3 Inverting Input  
Amplifier 3 Noninverting Input  
10  
IN3+  
Negative Power Supply. Connect V to -5V or to ground for single-supply  
EE  
operation.  
11  
13  
4
V
EE  
12  
13  
14  
14  
15  
16  
2
IN2+  
IN2-  
OUT2  
IN-  
Amplifier 2 Noninverting Input  
Amplifier 2 Inverting Input  
Amplifier 2 Output  
Amplifier Inverting Input  
Amplifier Noninverting Input  
Amplifier Output  
3
IN+  
6
OUT  
Disable Control Input. Amplifier is enabled when DISABLE (V - 2V)  
CC  
8
DISABLE  
and disabled when DISABLE (V - 3V).  
CC  
Wide bandwidth, low power, low differential phase/gain  
error, and excellent gain flatness make the MAX4188  
family ideal for use in portable video equipment such  
as video cameras, video switchers, and other battery-  
powered equipment. Their two-stage design provides  
higher gain and lower distortion than conventional sin-  
gle-stage, current-feedback amplifiers. This feature,  
combined with a fast settling time, makes these devices  
suitable for buffering high-speed analog-to-digital con-  
verters.  
De t a ile d De s c rip t io n  
The MAX4188/MAX4189/MAX4190 are very low-power,  
current-feedback amplifiers featuring bandwidths up to  
250MHz, 0.1dB gain flatness to 80MHz, and low differ-  
ential gain (0.03%) and phase (0.05°) errors. These  
amplifiers achieve very high bandwidth-to-power ratios  
while maintaining low distortion, wide signal swing, and  
excellent load-driving capabilities. They are optimized  
for ±5V supplies but are also fully specified for single  
+5V operation. Consuming only 1.5mA per amplifier,  
these devices have ±55mA output current drive capabil-  
ity and achieve low distortion even while driving 150Ω  
loads.  
The MAX4188/MAX4189/MAX4190 have a high-speed,  
low-power disable mode that is activated by driving the  
amplifiersDISABLE input low. In the disable mode, the  
______________________________________________________________________________________ 15  
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
amplifiers achieve very high isolation from input to output  
+5V  
-5V  
(65dB at 10MHz), and the outputs are placed into a high-  
impedance state. These amplifiers achieve low switch-  
ing -tra ns ie nt g litc he s (<45mVp -p ) whe n s witc hing  
between enable and disable modes. Fast enable/disable  
times (120ns/35ns), along with high off-isolation and low  
switching transients, allow these devices to be used as  
high-performance, high-speed multiplexers. This is  
achieved by connecting the outputs of multiple amplifiers  
together and controlling the DISABLE inputs to enable  
one amplifier and disable all others. The disabled ampli-  
fiers present a very light load (1µA leakage current and  
3.5pF capacitance) to the active amplifiers output. The  
feedback network impedance of all the disabled ampli-  
fiers must still be considered when calculating the total  
load on the active amplifier output. Figure 1 shows an  
application circuit using the MAX4188 as a 3:1 video mul-  
tiplexer.  
1.0µF  
0.1µF  
0.1µF  
11  
1.0µF  
4
560Ω  
560Ω  
6
5
7
AMP1  
87Ω  
V 1  
IN  
75Ω  
MAX4188  
AMP2  
560Ω  
75Ω  
CABLE  
560Ω  
87Ω  
13  
12  
V
OUT  
14  
V 2  
IN  
75Ω  
The DISABLE_ logic threshold is typically V  
- 2.5V,  
CC  
75Ω  
independent of V . For a single +5V supply or dual  
EE  
±5V supplies, the disable inputs are CMOS-logic com-  
patible. The amplifiers default to the enabled mode if  
the DISABLE pin is left unconnected. If the DISABLE  
pin is left floating, take proper care to ensure that no  
high-frequency signals are coupled to this pin, as this  
may cause false triggering.  
560Ω  
560Ω  
87Ω  
9
8
AMP3  
10  
V 3  
IN  
75Ω  
Ap p lic a t io n s In fo rm a t io n  
8/MAX4190  
1
2
3
Th e o ry o f Op e ra t io n  
The MAX4188/MAX4189/MAX4190 are current-feedback  
a mp lifie rs , a nd the ir op e n-loop tra ns fe r func tion is  
DISABLE1  
DISABLE2  
DISABLE3  
expressed as a transimpedance, V /I , or TZ. The  
OUT IN  
frequency behavior of the open-loop transimpedance is  
similar to the open-loop gain of a voltage-mode feedback  
amplifier. That is, it has a large DC value and decreases  
at approximately 6dB per octave.  
Figure 1. High-Speed 3:1 Video Multiplexer  
Analyzing the follower with gain, as shown in Figure 2,  
yields the following transfer function:  
R
G
R
F
V
OUT  
/ V = G x [(T (S) / T (s) + G x (R + R )]  
IN Z Z IN F  
where G = A  
= 1 + (R / R ), and R = 1/g  
F G IN M  
VCL  
300.  
R
IN  
At low gains, G x R < R . Therefore, the closed-loop  
+1  
V
OUT  
IN  
F
bandwidth is essentially independent of closed-loop  
gain. Similarly TZ > R at low frequencies, so that:  
T
Z
F
+1  
MAX4188  
MAX4189  
MAX4190  
V
OUT  
= G = 1 + (R / R )  
F
G
V
IN  
V
IN  
Figure 2. Current-Feedback Amplifier  
16 ______________________________________________________________________________________  
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
8/MAX4190  
Adequate bypass capacitance at each supply is very  
important to optimize the high-frequency performance of  
the s e a mp lifie rs . Ina d e q ua te b yp a s s ing will a ls o  
degrade crosstalk rejection, especially with heavier  
loads. Use a 1µF capacitor in parallel with a 0.01µF to  
0.1µF capacitor between each supply pin and ground to  
achieve optimum performance. The bypass capacitors  
should be located as close to the device as possible. A  
10µF low-ESR tantalum capacitor may be required to  
produce the best settling time and lowest distortion  
when large transient currents must be delivered to a  
load.  
La yo u t a n d P o w e r-S u p p ly Byp a s s in g  
As with all wideband amplifiers, a carefully laid out  
p rinte d c irc uit b oa rd a nd a d e q ua te p owe r-s up p ly  
bypassing are essential to realizing the optimum AC  
performance of MAX4188/MAX4189/MAX4190. The PC  
b oa rd s hould ha ve a t le a s t two la ye rs . Sig na l a nd  
power should be on one layer. A large low-impedance  
ground plane, as free of voids as possible, should be  
the othe r la ye r. With multila ye r b oa rd s , loc a te the  
ground plane on a layer that incorporates no signal or  
power traces.  
Do not us e wire -wra p b oa rd s or b re a d b oa rd s a nd  
s oc ke ts . Wire -wra p b oa rd s a re too ind uc tive .  
Breadboards and sockets are too capacitive. Surface-  
mount components have lower parasitic inductance  
a nd c a p a c ita nc e , a nd a re the re fore p re fe ra b le to  
through-hole components. Keep lines as short as pos-  
sible to minimize parasitic inductance, and avoid 90°  
turns. Round all corners. Terminate all unused amplifier  
inputs to ground with a 100or 150resistor.  
Ch o o s in g Fe e d b a c k a n d Ga in Re s is t o rs  
The optimum value of the external-feedback (R ) and  
F
gain-setting (R ) resistors used with the MAX4188/  
G
MAX4189/MAX4190 depends on the closed-loop gain  
and the application circuit’s load. Table 1 lists the opti-  
mum resistor values for some specific gain configura-  
tions. One -p e rc e nt re sistor va lue s a re pre fe rre d to  
maintain consistency over a wide range of production  
lots. Figures 3a and 3b show the standard inverting  
and noninverting configurations. Note that the nonin-  
verting circuit gain (Figure 3b) is 1 plus the magnitude  
of the inverting closed-loop gain. Otherwise, the two  
circuits are identical.  
The MAX4188/MAX4189/MAX4190 a c hie ve a hig h  
d e g re e of off-is ola tion (65d B a t 10MHz) a nd low  
crosstalk (-55dB at 10MHz). The input and output sig-  
nal traces must be kept from overlapping to achieve  
high off-isolation. Coupling between the signal traces of  
different channels will degrade crosstalk. The signal  
traces of each channel should be kept from overlap-  
ping with the signal traces of the other channels.  
V
IN  
R
F
R
G
R
F
R
G
R
S
R
T
V
OUT  
V
OUT  
R
O
R
S
R
O
V
IN  
MAX4188  
MAX4189  
MAX4190  
R
T
MAX4188  
MAX4189  
MAX4190  
V
OUT  
= [1+ (R / R )] V  
F G IN  
V
OUT  
= -(R / R ) (V )  
F G IN  
Figure 3a. Inverting Gain Configuration  
Figure 3b. Noninverting Gain Configuration  
______________________________________________________________________________________ 17  
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
Table 1a. MAX4188 Recommended Component Values  
DUAL SUPPLIES  
SINGLE SUPPLY  
A = +5  
(V/V)  
A = +10  
V
(V/V)  
A
= +5  
V/V  
A = +10  
V
V
V
A
= +2V/V  
A = +2V/V  
V
COMPONENT/  
BW  
V
V/V  
R =  
L
1kΩ  
R =  
L
150Ω  
R =  
L
100Ω  
R =  
L
1kΩ  
R =  
L
1kΩ  
R =  
L
1kΩ  
R =  
L
150Ω  
R =  
L
100Ω  
R =  
L
1kΩ  
R =  
L
1kΩ  
R
()  
()  
910  
910  
200  
560  
560  
160  
390  
390  
145  
470  
120  
70  
470  
51  
1.1k  
1.1k  
185  
620  
620  
145  
430  
430  
130  
470  
120  
70  
470  
51  
F
R
G
-3dB BW (MHz)  
30  
30  
Table 1b. MAX4189 Recommended Component Values  
DUAL SUPPLIES  
COMPONENT/  
SINGLE SUPPLY  
= +1V/V  
A
V
= +1V/V  
A
V
BW  
R = 1kΩ  
L
R = 150Ω  
L
R = 100Ω  
L
R = 1kΩ  
L
R = 150Ω  
L
R = 100Ω  
L
R
()  
1.6k  
250  
1.1k  
210  
680  
185  
1.5k  
230  
1.6k  
190  
910  
165  
G
-3dB BW (MHz)  
Table 1c. MAX4190 Recommended Component Values  
DUAL SUPPLIES  
SINGLE SUPPLY  
A = +5  
V
(V/V)  
A = +10  
V
(V/V)  
A
= +5  
V/V  
A = +10  
V
V
A
V
= +2V/V  
A = +1V/V  
V
COMPONENT/  
BW  
V/V  
8
R =  
L
1kΩ  
R =  
L
150Ω  
R =  
L
100Ω  
R =  
L
1kΩ  
R =  
L
1kΩ  
R =  
L
1kΩ  
R =  
L
150Ω  
R =  
L
100Ω  
R =  
L
1kΩ  
R =  
L
1kΩ  
R
()  
()  
1.3k  
1.3k  
185  
680  
680  
180  
510  
510  
135  
470  
120  
70  
470  
51  
1.5k  
1.5k  
165  
750  
750  
135  
510  
510  
125  
470  
120  
70  
470  
51  
F
R
G
-3dB BW (MHz)  
30  
30  
The equation for the total DC error at the output is:  
DC a n d No is e Erro rs  
Several major error sources must be considered in any  
op a mp . The s e a p p ly e q ua lly to the MAX4188/  
MAX4189/MAX4190. Offset-error terms are given by the  
equation below. Voltage and current-noise errors are  
root-square summed and are therefore computed sep-  
arately. In Figure 4, the total output offset voltage is  
determined by the following factors:  
R
R
F
V
=
I
R
)
+ I  
R || R  
+ V  
OS  
1+  
(
(
)
(
)
OUT  
B+  
S
B−  
F
G
[
]
G
R
F
R
G
The input offset voltage (V ) times the closed-loop  
OS  
gain (1 = R / R ).  
F
G
I -  
B
V
OUT  
The p os itive inp ut b ia s c urre nt (I ) time s the  
B+  
I +  
B
source resistor (R ) (usually 50or 75), plus the  
S
negative input bias current (I ) times the parallel  
B-  
MAX4188  
MAX4189  
MAX4190  
R
S
c omb ina tion of R a nd R . In c urre nt-fe e d b a c k  
G
F
amplifiers, the input bias currents at the IN+ and IN-  
terminals do not track each other and may have  
opposite polarity, so there is no benefit to matching  
the resistance at both inputs.  
Figure 4. Output Offset Voltage  
18 ______________________________________________________________________________________  
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
8/MAX4190  
The total output-referred noise voltage is:  
With a 200MHz system bandwidth, this calculates to  
68µV (approximately 408µVp-p, choosing the six-  
sigma value).  
RMS  
R
F
e
=
1+  
x
n(OUT)  
R
G
Vid e o Lin e Drive r  
2
]
2
]
2
The MAX4188/MAX4189/MAX4190 are well suited to  
drive coaxial transmission lines when the cable is termi-  
na te d a t b oth e nd s (Fig ure 5). Ca b le fre q ue nc y  
response can cause variations in the signal’s flatness.  
i
R
)
+
i
R || R  
+ e  
n
(
(
)
(
)
[
n+  
S
[
n−  
F
G
The MAX4188/MAX4189/MAX4190 have a very low,  
2nV/Hz noise voltage. The current noise at the positive  
See Table 1 for optimum R and R values.  
F
G
input (i ) is 4pA/Hz, and the current noise at the  
n+  
Drivin g Ca p a c it ive Lo a d s  
The MAX4188/MAX4189/MAX4190 are optimized for  
AC performance. Reactive loads decrease phase mar-  
gin and may produce excessive ringing and oscillation.  
Unlike mos t hig h-s p e e d a mp lifie rs , the MAX4188/  
MAX4189/MAX4190 are tolerant of capacitive loads up  
to 50p F. Ca p a c itive loa d s g re a te r tha n 50p F ma y  
cause ringing and oscillation. Figure 6a shows a circuit  
that eliminates this problem. Placing the small (usually  
inverting input is 5pA/Hz.  
An example of the DC error calculations, using the  
MAX4188 typical data and typical operating circuit  
whe re R = R = 560k(R || R = 280), a nd  
F
G
F
G
R = 37.5, gives the following:  
S
1 x 106 x 37.5 + 2 x 106 280  
+ 1.5 x 103  
V
=
x 1+1  
(
)
OUT  
15to 33) isolation resistor, R , before the reactive  
S
load prevents ringing and oscillation. At higher capaci-  
tive loads, the interaction of the load capacitance and  
isolation resistor controls AC performance. Figures 6b  
and 6c show the MAX4188 and MAX4189 frequency  
response with a 100pF capacitive load. Note that in  
each case, gain peaking is substantially reduced when  
the 20resistor is used to isolate the capacitive load  
from the amplifier output.  
V
= 4.1mV  
OUT  
Calculating the total output noise in a similar manner  
yields:  
2
12  
4 x 10  
5 x 10  
x 37.5  
x 280  
+
e
e
= 1+1  
(
)
n(OUT)  
n(OUT)  
2
2
12  
9  
+
2 x 10  
= 4.8nV/ Hz  
R
560Ω  
G
R
F
560Ω  
+5V  
MAX4188  
MAX4189  
MAX4190  
0.1µF  
R
G
R
F
75CABLE  
75Ω  
75Ω  
R
S
MAX4188  
75CABLE  
75Ω  
VIDEO  
OUT  
V
IN  
C
L
R
L
VIDEO  
IN  
0.1µF  
-5V  
Figure 5. Video Line Driver Application  
Figure 6a. Using an Isolation Resistor (R ) for High Capacitive  
S
Loads  
______________________________________________________________________________________ 19  
S in g le /Trip le , Lo w -Glit c h , 2 5 0 MHz, Cu rre n t -  
Fe e d b a c k Am p lifie rs w it h Hig h -S p e e d Dis a b le  
12  
10  
5
4
MAX4188/MAX4190  
A = +2V/V  
MAX4189  
A = +1V/V  
V
V
R = R = 910Ω  
F
G
R = 1.6k  
F
R = 0Ω  
S
8
6
4
2
0
3
2
R = 1k || 100pF  
L
R = 1k || 100pF  
L
R = 0Ω  
S
V = 20mVp-p  
IN  
V = 20mVp-p  
IN  
1
R = 20Ω  
S
0
R = 20Ω  
S
R = 33Ω  
S
-1  
-2  
-4  
-2  
-3  
-4  
-5  
R = 33Ω  
S
-8  
-10  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6c. Normalized Frequency Response with 100pF  
Capacitive Load  
Figure 6b. Normalized Frequency Response with 100pF  
Capacitive Load  
Ch ip In fo rm a t io n  
Ord e rin g In fo rm a t io n (c o n t in u e d )  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
14 SO  
MAX4188/4189  
TRANSISTOR COUNT: 336  
MAX4189ESD  
MAX4189EEE  
MAX4190ESD  
MAX4190EEE  
16 QSOP  
8 SO  
MAX4190  
TRANSISTOR COUNT: 112  
8/MAX4190  
8 µMAX  
SUBSTRATE CONNECTED TO V  
EE  
P in Co n fig u ra t io n s  
TOP VIEW  
DISABLE1  
DISABLE2  
DISABLE3  
1
2
3
4
5
6
7
8
16 OUT2  
15 IN2-  
14 IN2+  
DISABLE1  
DISABLE2  
DISABLE3  
1
2
3
4
5
6
7
14 OUT2  
13 IN2-  
12 IN2+  
N.C.  
IN-  
1
2
8
7
6
5
DISABLE  
V
CC  
MAX4188  
MAX4189  
13 VEE  
V
CC  
MAX4190  
V
CC  
11  
V
EE  
MAX4188  
MAX4189  
IN+  
3
4
OUT  
N.C.  
IN1+  
IN1-  
12 IN3+  
11 IN3-  
10 OUT3  
V
EE  
IN1+  
IN1-  
10 IN3+  
9
8
IN3-  
OUT1  
N.C.  
SO/µMAX  
OUT1  
OUT3  
9
N.C.  
SO  
QSOP  
20 ______________________________________________________________________________________  

相关型号:

MAX4190EEE

OP-AMP|SINGLE|BIPOLAR|TSSOP|8PIN|PLASTIC
MAXIM

MAX4190ESA

Current-Feedback Amplifiers with High-Speed Disable
MAXIM

MAX4190ESA+

Operational Amplifier, 1 Func, 6000uV Offset-Max, BIPolar, PDSO8, 0.150 INCH, MS-012A, SOIC-8
MAXIM

MAX4190ESA+T

Operational Amplifier, 1 Func, 6000uV Offset-Max, BIPolar, PDSO8, 0.150 INCH, MS-012A, SOIC-8
MAXIM

MAX4190ESD

Current-Feedback Operational Amplifier
MAXIM

MAX4190EUA-T

Current-Feedback Amplifiers with High-Speed Disable
MAXIM

MAX4193

CMOS Micropower Step-UP Switching Regulator
MAXIM

MAX4193C

CMOS Micropower Step-UP Switching Regulator
ETC

MAX4193C/D

CMOS Micropower Step-UP Switching Regulator
MAXIM

MAX4193CJA

CMOS Micropower Step-UP Switching Regulator
MAXIM

MAX4193CPA

CMOS Micropower Step-UP Switching Regulator
MAXIM

MAX4193CPA+

Switching Regulator, Voltage-mode, 0.525A, 75kHz Switching Freq-Max, CMOS, PDIP8, PLASTIC, DIP-8
MAXIM