MAX4206ETE [MAXIM]

Precision Transimpedance Logarithmic Amplifier with Over 5 Decades of Dynamic Range; 精密阻对数放大器大于10 5的动态范围
MAX4206ETE
型号: MAX4206ETE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Precision Transimpedance Logarithmic Amplifier with Over 5 Decades of Dynamic Range
精密阻对数放大器大于10 5的动态范围

缓冲放大器 放大器电路 信息通信管理
文件: 总17页 (文件大小:1233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3071; Rev 0; 12/03  
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
General Description  
Features  
The MAX4206 logarithmic amplifier computes the log  
ratio of an input current relative to a reference current  
(externally or internally generated) and provides a cor-  
responding voltage output with a default 0.25V/decade  
scale factor. The device operates from a single +2.7V  
to +11V supply or from dual 2.7V to 5.5V supplies  
and is capable of measuring five decades of input cur-  
rent across a 10nA to 1mA range.  
+2.7V to +11V Single-Supply Operation  
±2.7V to ±5.5V Dual-Supply Operation  
5 Decades of Dynamic Range (10nA to 1mA)  
Monotonic Over a 1nA to 1mA Range  
0.25V/Decade Internally Trimmed Output Scale  
Factor  
The MAX4206’s uncommitted op amp can be used for  
a variety of purposes, including filtering noise, adding  
offset, and adding additional gain. A 0.5V reference is  
also included to generate an optional precision current  
reference using an external resistor, which adjusts the  
log intercept of the MAX4206. The output-offset voltage  
and the adjustable scale factor are also set using exter-  
nal resistors.  
Adjustable Output Scale Factor  
Adjustable Output Offset Voltage  
Internal 10nA to 10µA Reference Current Source  
0.5V Input Common-Mode Voltage  
Small 16-Pin Thin QFN Package (4mm x 4mm x  
0.8mm)  
The MAX4206 is available in a space-saving 16-pin thin  
QFN package (4mm x 4mm x 0.8mm), and is specified  
for operation over the -40°C to +85°C extended temper-  
ature range.  
-40°C to +85°C Operating Temperature Range  
Evaluation Kit Available  
Ordering Information  
Applications  
Photodiode Current Monitoring  
Portable Instrumentation  
Medical Instrumentation  
Analog Signal Processing  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX4206ETE  
-40°C to +85°C  
16 Thin QFN-EP*  
*EP = Exposed Paddle.  
Typical Operating Circuit  
V
CC  
Pin Configuration  
I
IN  
0.1µF  
TOP VIEW  
(LEADS ON BOTTOM)  
V
CC  
V
OUT  
LOGV2  
SCALE  
LOGIIN  
R2  
C
COMP  
16 15 14 13  
REFIOUT  
REFIIN  
R
COMP  
C
COMP  
N.C.  
REFVOUT  
GND  
1
2
3
4
12 CMVOUT  
11 REFISET  
R1  
MAX4206  
R
COMP  
MAX4206  
10  
9
V
CC  
CMVIN  
CMVOUT  
LOGV1  
0.1µF  
V
EE  
N.C.  
REFVOUT  
REFISET  
0.1µF  
R
OS  
5
6
7
8
OSADJ  
GND  
V
EE  
R
SET  
THIN QFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND, unless otherwise noted.)  
CMVIN............................................................(V - 0.3V) to +1V  
EE  
Continuous Current (REFIIN, LOGIIN) ................................10mA  
V
V
.........................................................................-0.3V to +12V  
............................................................................-6V to +0.3V  
CC  
EE  
Continuous Power Dissipation (T = +70°C)  
A
Supply Voltage (V  
REFVOUT....................................................(V - 0.3V) to +3.0V  
OSADJ, SCALE, REFISET...........................(V - 0.3V) to +5.5V  
REFIIN, LOGIIN ........................................(V - 0.3V) to V  
to V ) .............................................. +12V  
16-Pin Thin QFN (derate 16.9mW/°C above +70°C) ....1349mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature .....................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
EE  
EE  
EE  
EE  
CMVIN  
LOGV1, LOGV2, CMVOUT,  
REFIOUT ......................................(V - 0.3V) to (V  
+ 0.3V)  
CC  
EE  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS—Single-Supply Operation  
(V  
= +5V, V = GND = 0V, I  
= -40°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
= 1µA, I  
= 10µA, LOGV2 = SCALE, LOGV1 = OSADJ, CMVIN = CMVOUT, R > 1M,  
CC  
EE  
REF  
LOG  
SET  
T
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
11.0  
5
UNITS  
Supply Voltage  
V
(Note 2)  
2.7  
V
CC  
T
A
T
A
= +25°C  
3.9  
Supply Current  
I
mA  
CC  
= -40°C to +85°C  
7
Minimum  
Maximum  
Minimum  
Maximum  
10  
10  
nA  
mA  
nA  
LOGIIN Current Range (Notes 3, 4)  
REFIIN Current Range (Notes 3, 4)  
Common-Mode Voltage  
I
LOG  
1
I
REF  
1
mA  
V
480  
0.5  
500  
520  
mV  
V
CMVOUT  
Common-Mode Voltage Input  
Range  
V
1.0  
5
CMVIN  
I
I
= 10nA,  
= 10nA to 1mA,  
REF  
T
T
= +25°C  
2
A
LOG  
Log Conformity Error  
V
mV  
LC  
K = 0.25V/decade  
(Note 4)  
= -40°C to +85°C  
10  
A
T
T
= +25°C  
237.5  
250  
262.5  
A
mV/  
decade  
Logarithmic Slope (Scale Factor)  
K
= -40°C to +85°C (Note 4)  
231.25  
268.75  
A
µV/  
decade/  
°C  
Logarithmic Slope (Scale Factor)  
Temperature Drift  
T
= -40°C to +85°C  
80  
1
A
T
A
= +25°C, |V  
- V  
|,  
CMVIN  
REFIIN  
Input Offset Voltage  
V
5
mV  
IO  
|V  
|V  
- V |  
LOGIIN  
CMVIN  
Input Offset Voltage Temperature  
Drift  
V
- V  
REFIIN  
|, |V  
- V |  
LOGIIN  
6
µV/°C  
IOS  
CMVIN  
CMVIN  
T
T
= +25°C  
1.218  
1.195  
1.238  
1.258  
1.275  
A
Voltage Reference Output  
V
V
REFVOUT  
= -40°C to +85°C (Note 4)  
A
Voltage Reference Output Current  
Current Reference Output Voltage  
I
1
mA  
mV  
REFVOUT  
T
T
= +25°C  
490  
482  
500  
510  
518  
A
V
REFISET  
= -40°C to +85°C (Note 4)  
A
2
_______________________________________________________________________________________  
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
DC ELECTRICAL CHARACTERISTICS—Single-Supply Operation (continued)  
(V  
= +5V, V = GND = 0V, I  
= -40°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
= 1µA, I  
= 10µA, LOGV2 = SCALE, LOGV1 = OSADJ, CMVIN = CMVOUT, R > 1M,  
CC  
EE  
REF  
LOG  
SET  
T
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.4  
MAX  
UNITS  
LOGV2 BUFFER  
Input Offset Voltage  
Input Bias Current  
T
T
= +25°C  
2
6
1
A
V
I
mV  
nA  
IO  
= -40°C to +85°C (Note 4)  
A
(Note 4)  
0.01  
B
V
0.2  
-
V
0.3  
-
CC  
CC  
V
R to GND = 2k  
L
OH  
Output Voltage Range  
V
V
R to GND = 2kΩ  
0.2  
0.08  
34  
58  
12  
5
OL  
L
I
Sourcing  
Sinking  
OUT+  
Output Short-Circuit Current  
mA  
I
OUT-  
Slew Rate  
SR  
V/µs  
MHz  
Unity-Gain Bandwidth  
GBW  
AC ELECTRICAL CHARACTERISTICS—Single-Supply Operation  
(V  
= +5V, V = GND = 0, I  
= +25°C, unless otherwise noted.)  
= 1µA, I  
= 10µA, LOGV2 = SCALE, LOGV1 = OSADJ, CMVIN = CMVOUT, R > 1M,  
CC  
EE  
REF  
LOG  
SET  
T
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
0.1Hz to 10Hz, total output-referred noise,  
LOGV2 Total Noise  
17  
µV  
RMS  
I
= 10nA, I  
= 100nA  
REF  
LOG  
LOGV2 Spot Noise Density  
REFVOUT Total Noise  
f = 5kHz, I  
= 10nA, I  
= 100nA  
0.8  
3.3  
µV/Hz  
µV  
REF  
LOG  
1Hz to 10Hz, total output-referred noise  
f = 5kHz  
RMS  
REFVOUT Spot Noise Density  
REFISET Total Noise  
266  
0.67  
23  
nV/Hz  
µV  
1Hz to 10Hz, total output-referred noise  
f = 5kHz  
RMS  
REFISET Spot Noise Density  
nV/Hz  
Small-Signal Unity-Gain  
Bandwidth  
I
C
= 1µA, I  
= 10µA, R  
= 300,  
REF  
LOG  
COMP  
1
MHz  
= 32pF  
COMP  
DC ELECTRICAL CHARACTERISTICS—Dual-Supply Operation  
(V  
= +5V, V = -5V, GND = 0, I  
= -40°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
= 1µA, I  
= 10µA, LOGV2 = SCALE, LOGV1 = OSADJ, CMVIN = CMVOUT, R > 1M,  
CC  
EE  
REF  
LOG  
SET  
T
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
2.7  
TYP  
MAX  
5.5  
-5.5  
6
UNITS  
V
CC  
Supply Voltage (Note 2)  
Supply Current  
V
V
-2.7  
EE  
T
T
= +25°C  
5
A
I
mA  
CC  
= -40°C to +85°C  
7.5  
A
Minimum  
Maximum  
Minimum  
Maximum  
10  
10  
nA  
mA  
nA  
LOGIIN Current Range (Notes 3, 4)  
I
LOG  
1
REFIIN Current Range (Notes 3, 4)  
Common-Mode Voltage  
I
REF  
1
mA  
V
480  
500  
520  
mV  
CMVOUT  
_______________________________________________________________________________________  
3
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
DC ELECTRICAL CHARACTERISTICS—Dual-Supply Operation (continued)  
(V  
= +5V, V = -5V, GND = 0, I  
= -40°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
= 1µA, I  
= 10µA, LOGV2 = SCALE, LOGV1 = OSADJ, CMVIN = CMVOUT, R > 1M,  
CC  
EE  
REF  
LOG  
SET  
T
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
2
MAX  
UNITS  
Common-Mode Voltage Input  
Range  
V
0.5  
1.0  
V
CMVIN  
I
I
= 10nA,  
REF  
T
T
= +25°C  
5
A
= 10nA to 1mA,  
K = 0.25V/decade  
(Note 4)  
LOG  
Log Conformity Error  
V
mV  
LC  
= -40°C to +85°C  
10  
A
T
T
= +25°C  
237.5  
250  
262.5  
A
mV/  
decade  
Logarithmic Slope (Scale Factor)  
K
= -40°C to +85°C  
231.25  
268.75  
A
µV/  
decade/  
°C  
Logarithmic Slope (Scale Factor)  
Temperature Drift  
T
= -40°C to +85°C  
80  
1
A
T
= +25°C, |V  
- V  
|,  
A
CMVIN  
REFIIN  
Input Offset Voltage  
V
5
mV  
µV/°C  
V
IO  
|V  
|V  
- V |  
LOGIIN  
CMVIN  
Input Offset Voltage  
Temperature Drift  
V
- V  
REFIIN  
|, |V  
- V |  
LOGIIN  
6
IOS  
CMVIN  
CMVIN  
T
T
= +25°C  
1.218  
1.195  
1.238  
1.258  
1.275  
A
Voltage Reference Output  
V
REFVOUT  
= -40°C to +85°C (Note 4)  
A
Voltage Reference Output  
Current  
I
1
mA  
mV  
REFVOUT  
T
T
= +25°C  
490  
482  
500  
510  
518  
A
Current Reference Output  
Voltage  
V
REFISET  
= -40°C to +85°C (Note 4)  
A
LOGV2 BUFFER  
Input Offset Voltage  
Input Bias Current  
T
T
= +25°C  
0.4  
2
6
1
A
V
I
mV  
nA  
IO  
= -40°C to +85°C (Note 4)  
A
(Note 4)  
0.01  
B
V
0.2  
-
V
0.3  
-
CC  
CC  
V
R to GND = 2k  
L
OH  
Output Voltage Range  
V
V
+
0.2  
V
+
EE  
EE  
V
R to GND = 2kΩ  
OL  
L
0.08  
34  
58  
12  
5
I
Sourcing  
Sinking  
OUT+  
Output Short-Circuit Current  
mA  
I
OUT-  
SR  
Slew Rate  
V/µs  
MHz  
Unity-Gain Bandwidth  
GBW  
4
_______________________________________________________________________________________  
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
AC ELECTRICAL CHARACTERISTICS—Dual-Supply Operation  
(V  
= +5V, V = -5V, GND = 0, I  
= +25°C, unless otherwise noted.)  
= 1µA, I  
= 10µA, LOGV2 = SCALE, LOGV1 = OSADJ, CMVIN = CMVOUT, R > 1M,  
CC  
EE  
REF  
LOG  
SET  
T
A
PARAMETER  
SYMBOL  
CONDITIONS  
0.1Hz to 10Hz, total output-referred noise,  
= 10nA, I = 100nA  
MIN  
TYP  
MAX  
UNITS  
LOGV2 Total Noise  
17  
µV  
RMS  
I
REF  
LOG  
LOGV2 Spot Noise Density  
REFVOUT Total Noise  
f = 5kHz, I  
= 10nA, I  
= 100nA  
0.8  
3.3  
µV/Hz  
µV  
REF  
LOG  
1Hz to 10Hz, total output-referred noise  
f = 5kHz  
RMS  
REFVOUT Spot Noise Density  
REFISET Total Noise  
266  
0.67  
23  
nV/Hz  
µV  
1Hz to 10Hz, total output-referred noise  
f = 5kHz  
RMS  
REFISET Spot Noise Density  
nV/Hz  
Small-Signal Unity-Gain  
Bandwidth  
I
C
= 1µA, I  
= 10µA, R  
= 300,  
REF  
LOG  
COMP  
1
MHz  
= 32pF  
COMP  
Note 1: All devices are 100% production tested at T = +25°C. All temperature limits are guaranteed by design.  
A
Note 2: Guaranteed and functionally verified.  
Note 3: Log conformity error less than 5mV with scale factor = 0.25V/decade.  
Note 4: Guaranteed by design.  
Typical Operating Characteristics  
(V  
= +5V, V = GND = 0V, I  
= 1µA, I  
= 10µA, LOGV2 = SCALE, LOGV1 = OSADJ, CMVIN = CMVOUT, R  
> 1M,  
CC  
EE  
REF  
LOG  
SET  
T
A
= +25°C, unless otherwise noted.)  
V
vs. I  
LOG  
LOGV1  
V
vs. I  
LOGV1 LOG  
V
vs. I  
LOG  
LOGV1  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
I
T
V
V
= 10nA  
= -40 C TO +85 C  
= +5V  
I
T
V
V
= 10nA  
= -40 C TO +85 C  
= +5V  
REF  
A
CC  
EE  
I
T
V
V
= 10nA  
= -40 C TO +85 C  
= +2.7V  
REF  
A
CC  
EE  
REF  
A
CC  
EE  
°
°
°
°
°
°
= GND  
= -5V  
= GND  
-0.25  
-0.25  
-0.25  
10n 100n  
1µ  
10µ 100µ 1m  
10m  
1n 10n 100n 1µ 10µ 100µ 1m 10m  
(A)  
10n  
100n  
1µ  
10µ 100µ  
1m  
10m  
I
(A)  
I
LOG  
I
(A)  
LOG  
LOG  
_______________________________________________________________________________________  
5
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
Typical Operating Characteristics (continued)  
(V  
= +5V, V = GND = 0V, I  
= 1µA, I  
= 10µA, LOGV2 = SCALE, LOGV1 = OSADJ, CMVIN = CMVOUT, R  
> 1M,  
CC  
EE  
REF  
LOG  
SET  
T
A
= +25°C, unless otherwise noted.)  
V
REF  
vs. I  
LOG  
= 10nA TO 1mA)  
NORMALIZED LOG CONFORMANCE  
V
LOG  
vs. I  
REF  
= 10nA TO 1mA)  
LOGV1  
LOGV1  
(I  
ERROR vs. I  
(I  
LOG  
2.00  
2.0  
1.8  
1.5  
1.3  
1.0  
0.8  
0.5  
0.3  
0
20  
15  
10  
5
I
T
V
V
= 10nA  
= -40 C TO +85 C  
= +5V  
= GND  
REF  
A
CC  
EE  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
° °  
1mA  
100µA  
10µA  
1µA  
100nA  
10nA  
0
-5  
1mA  
-10  
-15  
-20  
10nA  
10µA 100µA  
100nA 1µA  
-0.25  
-0.50  
-0.3  
-0.5  
10n 100n  
1µ  
10µ 100µ 1m  
(A)  
10m  
1n  
10n 100n  
1µ  
(A)  
10µ 100µ 1m  
10n 100n  
1µ  
10µ 100µ 1m  
I (A)  
LOG  
10m  
I
LOG  
I
REF  
NORMALIZED LOG CONFORMANCE  
NORMALIZED LOG CONFORMANCE  
NORMALIZED LOG CONFORMANCE  
ERROR vs. I  
ERROR vs. I  
ERROR vs. I  
LOG  
LOG  
LOG  
20  
15  
10  
5
20  
15  
10  
5
20  
15  
10  
5
I
T
V
V
= 10nA  
= -40 C TO +85 C  
= +2.7V  
I
= 10nA  
I
T
V
V
= 10nA  
= -40 C TO +85 C  
= +5V  
REF  
A
CC  
EE  
REF  
REF  
A
CC  
EE  
°
°
°
°
SINGLE SUPPLY: V = +2.7V, +5V, 11V,  
V = GND  
EE  
DUAL SUPPLY: V = +5V  
V
CC  
= GND  
= -5V  
CC  
= -5V  
EE  
0
0
0
-5  
-5  
-5  
-10  
-15  
-20  
°
-10  
-15  
-20  
-10  
-15  
-20  
T
A
= -40 C  
°
T = -40 C  
A
1n 10n 100n 1µ 10µ 100µ 1m 10m  
10n 100n  
1µ  
10µ 100µ 1m  
(A)  
10m  
10n 100n  
1µ  
10µ 100µ 1m  
I (A)  
LOG  
10m  
I
(A)  
I
LOG  
LOG  
V
VOLTAGE-NOISE DENSITY  
vs. FREQUENCY  
TOTAL WIDEBAND VOLTAGE NOISE  
AT V vs. I  
LOGV2  
V
- V  
vs. I  
CMVIN LOG  
LOGIIN  
LOGV2  
LOG  
10  
1
5
4
3
2
1
0
5
I
= 10nA  
10nA  
REF  
I
= I  
REF LOG  
4
3
2
f = 1Hz TO 1MHz  
100nA  
1µA  
1
0
10µA  
-1  
-2  
-3  
-4  
-5  
0.1  
0.01  
I
= I  
REF LOG  
1
10 100 1k  
10k 100k 1M 10M  
10n  
100n  
1µ  
10µ  
(A)  
100µ  
1m  
1n 10n 100n 1µ 10µ 100µ 1m 10m  
(A)  
FREQUENCY (Hz)  
I
I
LOG  
LOG  
6
_______________________________________________________________________________________  
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
Typical Operating Characteristics (continued)  
(V  
= +5V, V = GND = 0V, I  
= 1µA, I  
= 10µA, LOGV2 = SCALE, LOGV1 = OSADJ, CMVIN = CMVOUT, R  
> 1M,  
CC  
EE  
REF  
LOG  
SET  
T
A
= +25°C, unless otherwise noted.)  
I
PULSE RESPONSE  
I
PULSE RESPONSE  
LOG  
LOG  
(I  
= 100nA,  
(I  
= 100nA,  
REF  
REF  
V
= 5V, V = GND)  
V
= 5V, V = -5V)  
CC EE  
CC  
EE  
MAX4206 toc13  
MAX4206 toc14  
1.0V  
0.75V  
0.75V  
0.50V  
0.50V  
0.25V  
0.25V  
0
1.0V  
0.75V  
0.75V  
0.50V  
0.50V  
0.25V  
0.25V  
0
100µA TO 1mA  
10µA TO 100µA  
100µA TO 1mA  
10µA TO 100µA  
1µA TO 10µA  
100nA TO 1µA  
1µA TO 10µA  
100nA TO 1µA  
20µs/div  
20µs/div  
I
PULSE RESPONSE  
REF  
(I  
= 1mA)  
LOGARITHMIC SLOPE DISTRIBUTION  
LOG  
MAX4206 toc15  
30  
25  
20  
15  
10  
5
1.0V  
0.75V  
0.75V  
0.50V  
0.50V  
0.25V  
0.25V  
0
1µA TO 100nA  
10µA TO 1µA  
100µA TO 10µA  
1mA TO 100µA  
0
260  
240  
245  
250  
255  
SLOPE (mV/decade)  
20µs/div  
V
DISTRIBUTION  
REFVOUT  
INPUT OFFSET VOLTAGE DISTRIBUTION  
25  
20  
15  
16  
14  
12  
10  
8
R = 100k  
L
INPUT OFFSET VOLTAGE = V  
- V  
CMVIN  
LOGIIN  
10  
5
6
4
2
0
0
1.244  
1.232 1.234 1.236 1.238 1.240 1.242  
3.0  
-1.0 -0.5  
0
0.5 1.0 1.5 2.0 2.5  
V
(V)  
REFVOUT  
INPUT OFFSET VOLTAGE (mV)  
_______________________________________________________________________________________  
7
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
Typical Operating Characteristics (continued)  
(V  
= +5V, V = GND = 0V, I  
= 1µA, I  
= 10µA, LOGV2 = SCALE, LOGV1 = OSADJ, CMVIN = CMVOUT, R  
> 1M,  
CC  
EE  
REF  
LOG  
SET  
T
A
= +25°C, unless otherwise noted.)  
REFERENCE OUTPUT VOLTAGE (V  
vs. TEMPERATURE  
)
REFERENCE OUTPUT VOLTAGE (V  
vs. LOAD CURRENT  
)
REFERENCE OUTPUT VOLTAGE (V  
)
REFVOUT  
REFVOUT  
REFVOUT  
vs. SUPPLY VOLTAGE  
1.30  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.50  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
-50  
-25  
0
25  
50  
75  
100  
-1.0  
-0.5  
0
0.5  
1.0  
2
3
4
5
6
°
TEMPERATURE ( C)  
LOAD CURRENT (mA)  
SUPPLY VOLTAGE (V)  
REFERENCE POWER-SUPPLY  
REJECTION RATIO vs. FREQUENCY  
REFERENCE LINE-TRANSIENT RESPONSE  
MAX4206 toc23  
0
C
= 0.1µF  
REFVOUT  
REFVOUT  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
I
= 1mA  
V
CC  
2V/div  
0V  
V
REFVOUT  
200mV/div  
1.238V  
C
= 0F  
REFVOUT  
10  
100  
1k  
10k  
100k  
1M  
10µs/div  
FREQUENCY (Hz)  
REFERENCE LOAD-TRANSIENT RESPONSE  
REFERENCE TURN-ON TRANSIENT RESPONSE  
MAX4206 toc25  
MAX4206 toc24  
C
= 0F  
REFVOUT  
I
V
CC  
2.5V/div  
REFVOUT  
0mA  
1mA/div  
0V  
0V  
V
V
REFVOUT  
500mV/div  
REFVOUT  
1.238V  
100mV/div  
100µs/div  
10µs/div  
8
_______________________________________________________________________________________  
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
Typical Operating Characteristics (continued)  
(V  
= +5V, V = GND = 0V, I  
= 1µA, I  
= 10µA, LOGV2 = SCALE, LOGV1 = OSADJ, CMVIN = CMVOUT, R  
> 1M,  
CC  
EE  
REF  
LOG  
SET  
T
A
= +25°C, unless otherwise noted.)  
SMALL-SIGNAL AC RESPONSE  
OF BUFFER  
SMALL-SIGNAL AC RESPONSE  
SMALL-SIGNAL AC RESPONSE  
I
TO V  
I
TO V  
LOG  
LOGV1  
LOG  
LOGV1  
10  
0
3
0
10  
0
I
= 1mA  
LOG  
I
= 100µA  
LOG  
A
V
= 1V/V  
I
= 1mA  
I
= 100µA  
LOG  
LOG  
-10  
-20  
-30  
-40  
-50  
-60  
-10  
-20  
-30  
-40  
-50  
-60  
A
= 2V/V  
V
I
= 10µA  
LOG  
-3  
I
= 10µA  
= 1µA  
LOG  
I
= 1µA  
LOG  
A
= 4V/V  
V
-6  
I
LOG  
I
= 100nA  
LOG  
I
= 100nA  
LOG  
-9  
C
R
= 33pF  
= 330Ω  
C
R
= 100pF  
= 1kΩ  
COMP  
COMP  
COMP  
COMP  
-12  
100  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Pin Description  
PIN  
1, 9  
2
NAME  
N.C.  
FUNCTION  
No Connection. Not internally connected.  
REFVOUT  
GND  
1.238V Reference Voltage Output. Bypass REFVOUT to GND with a 0 to 1µF capacitor (optional).  
Ground  
3
4
V
Negative Power Supply. Bypass V to GND with a 0.1µF capacitor.  
EE  
EE  
5
LOGV1  
Logarithmic Amplifier Voltage Output 1. The output scale factor of LOGV1 is 0.25V/decade.  
Offset Adjust Input. When operating from a single power supply, current applied to OSADJ adjusts  
the output offset voltage (see the Output Offset section).  
6
7
OSADJ  
Scale Factor Input. Adjust the output scale factor for LOGV2 using a resistive divider (see the Scale  
Factor section).  
SCALE  
LOGV2  
Logarithmic Amplifier Voltage Output 2. Adjust the output scale factor for LOGV2 using a resistive  
divider (see the Scale Factor section).  
8
10  
11  
V
Positive Power Supply. Bypass V  
to GND with a 0.1µF capacitor.  
CC  
CC  
Current Reference Adjust Input. A resistor, R , from REFISET to GND adjusts the current at  
SET  
REFIOUT (see the Adjusting the Logarithmic Intercept section).  
REFISET  
12  
13  
CMVOUT  
REFIOUT  
0.5V Common-Mode Voltage Reference Output. Bypass CMVOUT to GND with a 0.1µF capacitor.  
Current Reference Output. The internal current reference output is available at REFIOUT.  
Current Reference Input. Apply an external reference current at REFIIN. I  
current used by the logarithmic amplifier when generating LOGV1.  
is the reference  
REFIIN  
14  
15  
16  
REFIIN  
LOGIIN  
CMVIN  
Current Input to Logarithmic Amplifier. LOGIIN is typically connected to a photodiode anode or other  
external current source.  
Common-Mode Voltage Input. V  
is the common-mode voltage for the input and reference  
CMVIN  
amplifiers (see the Common Mode section).  
_______________________________________________________________________________________  
9
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
REFVOUT  
1.238V  
CMVOUT  
V
CC  
CURRENT MIRROR  
REFIOUT  
V
CC  
CURRENT  
CORRECTION  
V
CC  
LOGIIN  
CMVIN  
0.5V  
V
EE  
REFISET  
LOGV2  
V
CC  
V
CC  
REFIIN  
SUMMING  
AMPLIFIER  
SCALE  
AND  
TEMPERATURE  
COMPENSATION  
OSADJ  
LOGV1  
V
EE  
V
EE  
GND  
MAX4206  
Figure 1. Functional Diagram  
dencies of a logarithmic amplifier relate to the thermal  
Detailed Description  
voltage, (KT/q), and I . Matched transistors eliminate  
S
Theory  
Figure 2 shows a simplified model of a logarithmic  
amplifier. Two transistors convert the currents applied  
at LOGIIN and REFIIN to logarithmic voltages accord-  
ing to the following equation:  
the I temperature dependence of the amplifier in the  
S
following manner:  
V
= V  
V  
OUT  
BE1 BE2  
I
REF  
kT  
q
I
kT  
q
LOG  
=
=
=
=
ln  
ln  
kT  
q
I
C
I
I
S
S
V
=
ln  
BE  
I
S
I
REF  
kT  
q
I
LOG  
ln  
ln  
I
I
S
S
where:  
V
BE  
= base-emitter voltage of a bipolar transistor  
k = 1.381 x 10-23 J/K  
kT  
q
I
LOG  
ln  
I
REF  
T = absolute temperature (K)  
kT  
q
I
LOG  
q = 1.602 x 10 –19  
C
ln(10) log  
(
)
10  
I
REF  
I = collector current  
C
I
I
LOG  
I = reverse saturation current  
S
=K × log  
(see Figure 3)  
10  
REF  
The logarithmic amplifier compares V  
to the refer-  
BE1  
ence voltage V  
, which is a logarithmic voltage for a  
BE2  
known reference current, I . The temperature depen-  
REF  
10 ______________________________________________________________________________________  
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
IDEAL TRANSFER FUNCTION  
V
BE1  
WITH VARYING K  
V
CC  
I
LOG  
4
3
LOGIIN  
CMVIN  
K = 1  
K = 0.5  
K = 0.25  
V
OUT  
= K LOG (I /I  
)
LOG REF  
2
1
V
EE  
0
-1  
-2  
-3  
V
BE2  
V
CC  
I
REF  
REFIIN  
-4  
0.001  
0.1  
10  
1000  
V
EE  
CURRENT RATIO (I /I  
)
LOG REF  
Figure 2. Simplified Model of a Logarithmic Amplifier  
Figure 3. Ideal Transfer Function with Varying K  
where:  
Referred-to-Input and Referred-to-Output Errors  
The log nature of the MAX4206 insures that any addi-  
tive error at LOGV1 corresponds to multiplicative error  
at the input, regardless of input level.  
K = scale factor (V/decade)  
I
= the input current at LOGIIN  
LOG  
REF  
I
= the reference current at REFIIN  
Total Error  
The MAX4206 uses internal temperature compensation  
to virtually eliminate the effects of the thermal voltage,  
(kT/q), on the amplifier’s scale factor, maintaining a  
constant slope over temperature.  
Total error, TE, is defined as the deviation of the output  
voltage, V  
, from the ideal transfer function (see  
LOGV1  
the Ideal Transfer Function section):  
V
= V ± TE  
LOGV1  
IDEAL  
Definitions  
Transfer Function  
The ideal logarithmic amplifier transfer function is:  
Total error is a combination of the associated gain,  
input offset current, input bias current, output offset  
voltage, and transfer characteristic nonlinearity (log  
conformity) errors:  
I
I
LOG  
V
=K × log  
10  
IDEAL  
REF  
I
I  
I  
LOG BIAS1  
V
=K(1± K) log  
± 4 ±V ± V  
LC OSOUT  
(
)
LOGV2  
10  
I
Adjust K (see the Scale Factor section) to increase the  
REF BIAS2  
transfer-function slope as illustrated in Figure 3. Adjust  
I
using REFISET (see the Adjusting the Logarithmic  
where V and V  
are the log conformity and out-  
OSOUT  
REF  
LC  
Intercept section) to shift the logarithmic intercept to the  
put offset voltages, respectively. Output offset is  
defined as the offset occurring at the output of the  
left or right as illustrated in Figure 4.  
MAX4206 when equal currents are presented to I  
LOG  
Log Conformity  
Log conformity is the maximum deviation of the  
MAX4206’s output from the best-fit straight line of the  
) curve. It is expressed as  
a percent of the full-scale output or an output voltage.  
and I  
. Because the MAX4206 is configured with  
REF  
a gain of K = 0.25V/decade, a 4 should multiply the  
( V ) term, if V and V were derived  
V
LC  
OSOUT  
LC  
OSOUT  
V
versus log (I  
/I  
LOGV1  
LOG REF  
from this default configuration.  
______________________________________________________________________________________ 11  
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
I
and I  
are currents on the order of 20pA,  
BIAS2  
BIAS1  
significantly smaller than I  
fore be eliminated:  
and I  
, and can there-  
REF  
LOG  
IDEAL TRANSFER FUNCTION  
WITH VARYING I  
REF  
I
I
LOG  
1.5  
1.0  
0.5  
0
V
K(1± K) log  
±4 ±V ±V  
(
)
LOGV2  
10  
LC  
OSOUT  
REF  
I
= 10nA  
REF  
Expanding this expression:  
I
I
LOG  
LOG  
V
Klog  
±KKlog  
10  
LOGV2  
10  
I
I
REF  
REF  
± 4K(1± K) ±V ±V  
(
)
-0.5  
-1.0  
LC  
OSOUT  
I
= 100µA  
100µ  
REF  
I
= 1µA  
REF  
The first term of this expression is the ideal component  
of V . The remainder of the expression is the total  
LOGV1  
error, TE:  
-1.5  
1n  
10n 100n  
1µ  
10µ  
1m  
I
(A)  
I
I
LOG  
LOG  
TE ±KKlog  
± 4K(1± K) ±V ±V  
OSOUT  
(
)
10  
LC  
REF  
In the second term, one can generally remove the  
products relating to K, because K is generally much  
less than 1. Hence, a good approximation for TE is  
given by:  
Figure 4. Ideal Transfer Function with Varying I  
REF  
tributing to total error. For further accuracy, consider tem-  
perature monitoring as part of the calibration process.  
I
I
Applications Information  
Input Current Range  
Five decades of input current across a 10nA to 1mA  
LOG  
TE ±K Klog  
± 4 ±V ±V  
LC OSOUT  
(
)
10  
REF  
As an example, consider the following situation:  
Full-scale input = 5V  
range are acceptable for I  
and I  
LOG  
. The effects of  
REF  
LOG  
leakage currents increase as I  
and I  
fall below  
REF  
10nA. Bandwidth decreases at low I  
values (see  
LOG  
I
I
= 100µA  
= 100nA  
LOG  
REF  
the Frequency Response and Noise Considerations  
section). As I and I increase to 1mA or higher,  
LOG  
REF  
K = 1 5% V/decade (note that the uncommitted ampli-  
fier is configured for a gain of 4)  
transistors become less logarithmic in nature. The  
MAX4206 incorporates leakage current compensation  
and high-current correction circuits to compensate for  
these errors.  
V
=
5mV (obtained from the Electrical Character-  
istics table)  
LC  
V
= 2mV (typ)  
OSOUT  
Frequency Compensation  
The MAX4206’s frequency response is a function of the  
input current magnitude and the selected compensation  
network at LOGIIN and REFIIN. The compensation net-  
T = +25°C  
A
Substituting into the total error approximation,  
TE ≅  
(1V/decade)(0.05log10 (100µA/100nA)  
4 ( 5mV 2mV) = ꢀ0.15V 4( 7mV)ꢁ  
work comprised of C  
and R  
ensures stability  
COMP  
COMP  
over the specified range of input currents by introducing  
an additional pole/zero to the system. For the typical  
As a worst case, one finds TE 178mV or 3.6% of  
full scale.  
application, select C  
= 100pF and R  
= 100.  
COMP  
COMP  
Where high bandwidth at low current is required, C  
COMP  
When expressed as a voltage, TE increases in proportion  
with an increase in gain as the contributing errors are  
defined at a specific gain. Calibration using a look-up  
table eliminates the effects of gain and output offset  
errors, leaving conformity error as the only factor con-  
= 32pF and R  
sation values.  
= 330are suitable compen-  
COMP  
12 ______________________________________________________________________________________  
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
Frequency Response and Noise Considerations  
The MAX4206 bandwidth is proportional to the magni-  
Select R1 between 1kand 100k, with an ideal value  
of 10k. The noninverting amplifier ensures that the  
overall scale factor is greater than or equal to  
0.25V/decade for single-supply operation.  
tude of the I  
and I  
currents, whereas the noise is  
LOG  
REF  
inversely proportional to I  
and I  
currents.  
LOG  
REF  
Common Mode  
, of 0.5V is  
Design Example  
A common-mode input voltage, V  
Desired:  
CMVOUT  
available at CMVOUT and can be used to bias the log-  
ging and reference amplifier inputs by connecting  
CMVOUT to CMVIN. An external voltage between 0.5V  
and 1V can be applied to CMVIN to bias the logging  
and reference transistor collectors and to optimize the  
performance required for both single- and dual-supply  
operation.  
Single-Supply Operation  
Logarithmic intercept: 100nA  
Overall scale factor = 1V/decade  
Because there is no offset current applied to the circuit  
(R  
= 0), the reference current, I  
, equals the log  
REF  
OS  
intercept of 100µA. Therefore,  
Adjusting the Logarithmic Intercept  
0.5V  
10×100nA  
R
=
= 500kΩ  
SET  
Adjust the logarithmic intercept by changing the refer-  
ence current, I  
. A resistor from REFISET to GND  
REF  
Select R = 10k:  
(see Figures 5 and 6) adjusts the reference current,  
according to the following equation:  
1
1V/V  
0.25  
R2 =10kΩ  
1 = 30kΩ  
V
10×I  
REFISET  
R
=
SET  
REF  
Dual-Supply Operation  
When operating from dual 2.7 to 5.5V supplies, it is  
not required that I be greater than I . A positive  
where V  
is 0.5V. Select R  
between 5kand  
REFISET  
SET  
5M. REFIOUT current range is 10nA to 10µA only.  
LOG  
REF  
output voltage results at LOGV1 when I  
exceeds  
LOG  
Single-Supply Operation  
I
I
. A negative output voltage results at LOGV1 when  
REF  
LOG  
When operating from a single +2.7V to +11V supply,  
is less than I  
. Bias the log and reference  
REF  
I
must be greater than I  
, resulting in a positive  
REF  
LOG  
amplifiers by connecting CMVOUT to CMVIN or con-  
nect an external 0.5V to 1V reference to CMVIN. For  
dual-supply operation with CMVIN < 0.5V, refer to the  
MAX4207 data sheet.  
slope of the log output voltages, LOGV1 and LOGV2.  
Bias the log and reference amplifiers by connecting  
CMVOUT to CMVIN or connecting an external voltage  
reference between 0.5V and 1V to CMVIN. For single-  
supply operation, connect V to GND.  
EE  
Output Offset  
The uncommitted amplifier in the inverting configuration  
utilized by the MAX4206 facilitates large output-offset  
voltage adjustments when operated with dual supplies.  
The magnitude of the offset voltage is given by the fol-  
lowing equation:  
Output Offset  
to adjust the output offset voltage  
Select R  
and I  
OS  
OS  
(see Figure 5). The magnitude of the offset voltage is  
given by:  
V
OS  
= R  
I  
OS OSADJ  
Scale Factor  
R
R
2
V
= V  
1+  
OS  
OSADJ  
The scale factor, K, is the slope of the logarithmic out-  
put. For the LOGV1 amplifier, K = 0.25V/decade. When  
operating in a single-supply configuration, adjust the  
overall scale factor for the MAX4206 using the uncom-  
mitted LOGV2 amplifier and the following equation,  
which refers to Figure 5:  
1
A resistive divider between REFVOUT, OSADJ, and  
GND can be used to adjust V  
(see Figure 6).  
OSADJ  
R
4
V
= V  
REFOUT  
OSADJ  
R +R  
3
4
K
0.25  
R2 =R1  
1  
______________________________________________________________________________________ 13  
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
V
CC  
V
CC  
CC  
I
IN  
I
IN  
0.1µF  
V
CC  
V
OUT  
0.1µF  
V
LOGV2  
SCALE  
V
OUT  
LOGV2  
SCALE  
LOGIIN  
R2  
40kΩ  
LOGIIN  
C
COMP  
100pF  
R2  
30kΩ  
C
100pF  
COMP  
REFIOUT  
REFIIN  
R
COMP  
REFIOUT  
REFIIN  
100Ω  
R
COMP  
C
COMP  
100pF  
100Ω  
R1  
10kΩ  
C
100pF  
COMP  
R1  
10kΩ  
MAX4206  
R
COMP  
LOGV1  
MAX4206  
100Ω  
R
COMP  
100Ω  
REFVOUT  
CMVIN  
CMVOUT  
LOGV1  
0.1µF  
CMVIN  
R3  
R4  
REFVOUT  
REFISET  
0.1µF  
CMVOUT  
0.1µF  
OSADJ  
R
0Ω  
OS  
REFISET  
OSADJ  
GND  
V
V
EE  
R
SET  
GND  
V
EE  
50kΩ  
R
SET  
500kΩ  
0.1µF  
EE  
Figure 5. Single-Supply Typical Operating Circuit  
Figure 6. Dual-Supply Typical Operating Circuit  
Scale Factor  
The scale factor, K, is the slope of the logarithmic output.  
For the LOGV1 amplifier, K = 0.25V/decade. When oper-  
ating from dual supplies, adjust the overall scale factor  
for the MAX4206 using the uncommitted LOGV2 amplifi-  
er and the following equation, which refers to Figure 6:  
Measuring Optical Absorbance  
A photodiode provides a convenient means of measur-  
ing optical power, as diode current is proportional to  
the incident optical power. Measure absolute optical  
power using a single photodiode connected at LOGIIN,  
with the MAX4206’s internal current reference driving  
REFIIN. Alternatively, connect a photodiode to each of  
the MAX4206’s logging inputs, LOGIIN and REFIIN, to  
measure relative optical power (Figure 7).  
K
R =R  
2
1
0.25  
In absorbance measurement instrumentation, a refer-  
ence light source is split into two paths. The unfiltered  
path is incident upon the photodiode of the reference  
channel, REFIIN. The other path passes through a sam-  
ple of interest, with the resulting filtered light incident on  
the photodiode of the second channel, LOGIIN. The  
MAX4206 outputs provide voltages proportional to the  
log ratio of the two optical powers—an indicator of the  
optical absorbance of the sample.  
Select R between 1kand 100k.  
2
Design Example  
Desired:  
Dual-Supply Operation  
Logarithmic intercept: 1µA  
Overall scale factor = 1V/decade  
0.5V  
In wavelength-locking applications, often found in  
fiberoptic communication modules, two photodiode cur-  
rents provide a means of determining whether a given  
optical channel is tuned to the desired optical frequency.  
In this application, two bandpass optical filters with over-  
lapping “skirts” precede each photodiode. With proper fil-  
ter selection, the MAX4206 output can vary monotonically  
(ideally linearly) with optical frequency.  
R
=
= 50kΩ  
SET  
10×1µA  
Select R = 10k:  
1
1V/decade  
0.25  
R2 =10k×  
= 40kΩ  
14 ______________________________________________________________________________________  
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
Photodiode Current Monitoring  
V
CC  
Figure 8 shows the MAX4206 in a single-supply, optical-  
power measurement circuit, common in fiberoptic  
applications. The MAX4007 current monitor converts  
the sensed APD current to an output current that drives  
the MAX4206 LOGIIN input (APD current is scaled by  
0.1). The MAX4007 also buffers the high-voltage APD  
voltages from the lower MAX4206 voltages. The  
MAX4206’s internal current reference sources 10nA  
0.1µF  
V
CC  
CMVIN  
0.1µF  
REFISET  
REFIIN  
CMVOUT  
REFVOUT  
LOGV2  
100pF  
0.1µF  
V
CC  
(R  
= 5M) to the REFIIN input. This configuration  
SET  
R
R
2
MAX4206  
100Ω  
sets the logarithmic intercept to 10nA, corresponding to  
an APD current of 100nA. The unity-gain configuration  
of the output buffer maintains the 0.25V/decade gain  
present at the LOGV1 output.  
SCALE  
LOGV1  
R
1
LOGIIN  
3
Capacitive Loads  
The MAX4206 drives capacitive loads of up to 50pF.  
Reactive loads decrease phase margin and can pro-  
duce excessive ringing and oscillation. Use an isolation  
resistor in series with LOGV1 or LOGV2 to reduce the  
effect of large capacitive loads. Recall that the combi-  
nation of the capacitive load and the small isolation  
resistor limits AC performance.  
100pF  
OSADJ  
REFIOUT  
100Ω  
R
4
V
EE  
GND  
Figure 7. Measuring Optical Absorbance  
Power Dissipation  
The LOGV1 and LOGV2 amplifiers are capable of  
sourcing or sinking in excess of 30mA. Ensure that the  
continuous power dissipation rating for the MAX4206 is  
not exceeded.  
noise immunity and a clean reference current. For low-  
current operation, it is recommended to use metal  
guard rings around LOGIIN, REFIIN, and REFISET.  
Connect this guard ring to CMVOUT.  
TQFN Package  
The 16-lead thin QFN package has an exposed paddle  
that provides a heat-removal path, as well as excellent  
electrical grounding to the PC board. The MAX4206’s  
Evaluation Kit  
An evaluation kit is available for the MAX4206. The kit is  
flexible and can be configured for either single-supply or  
dual-supply operation. The scale factor and reference  
current are selectable. Refer to the MAX4206 Evaluation  
Kit data sheet for more information.  
exposed pad is internally connected to V , and can  
EE  
either be connected to the PC board V plane or left  
EE  
unconnected. Ensure that only V  
under the exposed paddle.  
traces are routed  
EE  
Chip Information  
TRANSISTOR COUNT: 754  
Layout and Bypassing  
Bypass V  
and V  
to GND with ceramic 0.1µF  
EE  
CC  
capacitors. Place the capacitors as close to the device  
as possible. Bypass REFVOUT and/or CMVOUT to  
GND with a 0.1µF ceramic capacitor for increased  
PROCESS: BiCMOS  
______________________________________________________________________________________ 15  
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
V
CC  
2.2µH  
2.2µF  
+2.7V TO +76V  
PHOTODIODE BIAS  
0.22µF  
0.1µF  
0.1µF  
V
CC  
BIAS  
CLAMP  
OUTPUT  
REFVOUT  
REFIOUT  
REFIIN  
LOGV2  
SCALE  
MAX4007  
MAX4206  
100pF  
LOGV1  
OSADJ  
100Ω  
REFISET  
I /10  
APD  
I
APD  
5MΩ  
REF  
OUT  
100pF  
CMVOUT  
CMVIN  
GND  
TIA  
100Ω  
0.1µF  
FIBER CABLE  
APD  
GND  
V
EE  
TO LIMITING  
AMPLIFIER  
HIGH-SPEED DATA PATH  
Figure 8. Logarithmic Current-Sensing Amplifier with Sourcing Input  
16 ______________________________________________________________________________________  
Precision Transimpedance Logarithmic  
Amplifier with Over 5 Decades of Dynamic Range  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
12,16,20,24L QFN THIN, 4x4x0.8 mm  
1
21-0139  
B
2
PACKAGE OUTLINE  
12,16,20,24L QFN THIN, 4x4x0.8 mm  
2
21-0139  
B
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX4206ETE+

Buffer Amplifier, 1 Func, BICMOS, 4 X 4 MM, 0.8 MM HEIGHT, MO-220-WGGC, TQFN-16
MAXIM

MAX4206ETE+T

Buffer Amplifier, 1 Func, BICMOS, 4 X 4 MM, 0.8 MM HEIGHT, MO-220-WGGC, TQFN-16
MAXIM

MAX4206ETE-T

Buffer Amplifier, 1 Func, BICMOS, 4 X 4 MM, 0.8 MM HEIGHT, MO-220-WGGC, TQFN-16
MAXIM

MAX4206EUK-T

Buffer Amplifier, 1 Func, PDSO5, SOT-23, 5 PIN
MAXIM

MAX4207

Precision Transimpedance Logarithmic Amplifier with Over 5 Decades of Dynamic Range
MAXIM

MAX4207ESA

Buffer Amplifier, 1 Func, PDSO8, SO-8
MAXIM

MAX4207ETE

Precision Transimpedance Logarithmic Amplifier with Over 5 Decades of Dynamic Range
MAXIM

MAX4207ETE+

Log Or Antilog Amplifier, 1 Func, BICMOS, 4 X 4 MM, 0.8 MM HEIGHT, MO-220-WGGC, TQFN-16
MAXIM

MAX4207ETE+T

Log Or Antilog Amplifier, 1 Func, BICMOS, 4 X 4 MM, 0.8 MM HEIGHT, MO-220-WGGC, TQFN-16
MAXIM

MAX4207ETE-T

Log Or Antilog Amplifier, 1 Func, BICMOS, 4 X 4 MM, 0.8 MM HEIGHT, MO-220-WGGC, TQFN-16
MAXIM

MAX4207EUK-T

暂无描述
MAXIM

MAX4208

Ultra-Low Offset/Drift, Precision Instrumentation Amplifiers with REF Buffer
MAXIM