MAX4295_V01 [MAXIM]

Mono, 2W, Switch-Mode (Class D) Audio Power Amplifier;
MAX4295_V01
型号: MAX4295_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Mono, 2W, Switch-Mode (Class D) Audio Power Amplifier

文件: 总15页 (文件大小:537K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1746; Rev 3; 3/05  
Mono, 2W, Switch-Mode (Class D)  
Audio Power Amplifier  
General Description  
Features  
The MAX4295 mono, switch-mode (Class D) audio  
power amplifier operates from a single +2.7V to +5.5V  
supply. The MAX4295 has >85% efficiency and is  
capable of delivering 2W continuous power to a 4  
load, making it ideal for portable multimedia and gener-  
al-purpose high-power audio applications.  
+2.7V to +5.5V Single-Supply Operation  
2W/Channel Output Power at 5V  
0.7W/Channel Output Power at 3V  
87% Efficiency (R = 4, P  
= 2W)  
OUT  
L
0.4% THD+N (R = 4, f  
= 125kHz)  
L
OSC  
The MAX4295 features a total harmonic distortion plus  
Logic-Programmable PWM Frequency Selection  
(125kHz, 250kHz, 500kHz, 1MHz)  
noise (THD+N) of 0.4% (f  
= 125kHz), low quiescent  
OSC  
current of 2.8mA, high efficiency, and clickless power-  
up and shutdown. The SHDN input disables the device  
and limits supply current to <1.5µA. Other features  
include a 1A current limit, thermal protection, and  
undervoltage lockout.  
Low-Power Shutdown Mode  
Clickless Transitions Into and Out of Shutdown  
1A Current Limit and Thermal Protection  
Available in Space-Saving Packages  
16-Pin QSOP or Narrow SO  
The MAX4295 reduces the number of required external  
components. Internal high-speed power-MOS transis-  
tors allow operation as a bridge-tied load (BTL) amplifi-  
er. The BTL configuration eliminates the need for  
isolation capacitors on the output. The frequency-selec-  
table pulse-width modulator (PWM) allows the user to  
optimize the size and cost of the output filter.  
Ordering Information  
The MAX4295 is offered in a space-saving 16-pin  
QSOP or narrow SO package.  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
16 QSOP  
MAX4295EEE  
MAX4295ESE  
Applications  
16 Narrow SO  
Palmtop/Notebook  
Computers  
Boom Boxes  
AC Amplifiers  
PDA Audio  
Battery-Powered Speakers  
Cordless Phones  
Portable Equipment  
Pin Configuration appears at end of data sheet.  
Sound Cards  
Game Cards  
Typical Operating Circuit  
R
F
AOUT  
IN  
OUT+  
OUT-  
C
IN  
R
IN  
AUDIO  
INPUT  
MAX4295  
V
2.7V TO 5.5V  
PV  
CC  
CC  
2.7V TO 5.5V  
PV  
CC  
GND  
GND  
PGND  
PGND  
VCM  
ON  
SHDN  
OFF  
SS  
FS1  
FS2  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Mono, 2W, Switch-Mode (Class D)  
Audio Power Amplifier  
ABSOLUTE MAXIMUM RATINGS  
V
, PV  
to GND or PGND....................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
CC  
CC  
PGND to GND..................................................................... 0.3V  
PV to V ....................................................................... 0.3V  
16-Pin QSOP (derate 8.30mW/°C above +70°C)........667mW  
16-Pin Narrow SO (derate 8.7mW/°C above +70°C)......696mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
CC  
VCM, SS, AOUT, IN to GND.......................-0.3V to (V  
+ 0.3V)  
CC  
SHDN, FS1, FS2 to GND ..........................................-0.3V to +6V  
OUT_ to PGND.........................................-0.3V to (PV  
Op Amp Output Short-Circuit  
+ 0.3V)  
CC  
Duration (AOUT).........Indefinite Short Circuit to Either Supply  
H-Bridge Short-Circuit  
Duration (OUT_) ................Continuous Short Circuit to PGND,  
PV  
or between OUT+ and OUT-  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= PV  
= +5V, SHDN = V , FS1 = GND, FS2 = V  
(f  
= 250kHz), input amplifier gain = -1V/V, T = T  
to T , unless  
MAX  
CC  
CC  
CC  
CC OSC  
A
MIN  
otherwise noted. Typical values are T = +25°C.) (Note 1)  
A
PARAMETER  
GENERAL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
(Note 2)  
2.7  
5.5  
4
V
Quiescent Supply Current  
Output load not connected  
2.8  
1.5  
mA  
Shutdown Supply Current  
SHDN = GND  
8
µA  
0.285 × 0.3 × 0.315 ×  
Voltage at VCM Pin  
V
V
V
V
CC  
CC  
CC  
FS1 = GND, FS2 = GND  
105  
210  
420  
840  
125  
250  
145  
290  
FS1 = GND, FS2 = V  
CC  
PWM Frequency  
kHz  
FS1 = V , FS2 = GND  
500  
580  
CC  
FS1 = V , FS2 = V  
1000  
1160  
CC  
CC  
PWM Frequency Change with  
V
= 2.7V to 5.5V  
1
3
kHz/V  
%
CC  
V
CC  
V
V
V
V
= 0.06 × V  
= 0.30 × V  
= 0.54 × V  
10.2  
49.2  
86.2  
12  
50  
13.8  
50.8  
89.8  
0.15  
0.5  
IN  
IN  
IN  
IN  
CC  
CC  
CC  
Duty Cycle  
88  
Duty Cycle Change with V  
= 0.3 × V , V = 2.7V to 5.5V  
0.02  
0.25  
0.35  
0
%/V  
CC  
CC CC  
V
V
= 5V  
CC  
CC  
Switch On-Resistance  
(each power device)  
I
= 150mA  
OUT  
= 2.7V  
1.0  
H-Bridge Output Leakage  
H-Bridge Current Limit  
SHDN = GND  
5
µA  
A
1
Soft-Start Capacitor Charging  
Current  
V
= 0V  
0.75  
1.8  
1.35  
1.95  
2.6  
µA  
SS  
Undervoltage Lockout  
2.2  
V
Thermal Shutdown Trip Point  
145  
°C  
2
_______________________________________________________________________________________  
Mono, 2W, Switch-Mode (Class D)  
Audio Power Amplifier  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= +5V, SHDN = V , FS1 = GND, FS2 = V  
(f  
= 250kHz), input amplifier gain = -1V/V, T = T  
to T , unless  
MAX  
CC  
CC  
CC  
CC OSC  
A
MIN  
otherwise noted. Typical values are T = +25°C.)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
0 to 0.6  
x V  
MAX  
UNITS  
Input Voltage Range  
V
CC  
R = 8Ω  
0.4  
L
V
V
= +3V, f = 1kHz  
IN  
CC  
CC  
R = 4Ω  
L
0.7  
1.2  
2
Maximum Output Power  
W
R = 8Ω  
L
= +5V, f = 1kHz  
IN  
R = 4Ω  
L
Total Harmonic Distortion Plus  
Noise  
R = 4, f = 1kHz, P = 1W, f = 125kHz  
OSC  
0.4  
87  
%
%
L
IN  
O
Efficiency  
MAX4295, R = 4, f = 1kHz, P = 2W  
L
IN  
O
LOGIC INPUTS (SHDN, FS1, FS2)  
Logic Input Current  
V
= 0 to V  
1
100  
nA  
V
LOGIC  
CC  
0.7 ×  
Logic Input High Voltage  
V
CC  
0.3 ×  
Logic Input Low Voltage  
V
V
CC  
INPUT AMPLIFIER  
Input Offset Voltage  
0.5  
5
4
mV  
µV/°C  
nA  
V
Temp Coefficient  
OS  
Input Bias Current  
(Note 3)  
0.05  
32  
25  
Input Noise-Voltage Density  
Input Capacitance  
f = 10kHz  
nV/Hz  
pF  
2.5  
0.01  
Output Resistance  
AOUT Disabled Mode Leakage  
Current  
SHDN = GND, V  
= 0 to V  
0.1  
1
µA  
AOUT  
CC  
AOUT to GND  
8
Short-Circuit Current  
mA  
dB  
AOUT to V  
65  
CC  
Large-Signal Voltage Gain  
AOUT Voltage Swing  
V
= 0.2V to 4.6V, R  
= 10kΩ  
78  
66  
115  
40  
OUT  
L(OPAMP)  
V
V
- V  
250  
100  
CC  
OL  
OH  
V
10mV,  
DIFF  
mV  
R
= 10kΩ  
L(OPAMP)  
40  
Gain-Bandwidth Product  
Power-Supply Rejection  
Maximum Capacitive Load  
1.25  
90  
MHz  
dB  
V
= +2.7V to +5.5V  
CC  
No sustained oscillations  
200  
pF  
Note 1: All devices are 100% production tested at T = 25°C. All temperature limits are guaranteed by design.  
A
Note 2: Supply Voltage Range guaranteed by PSRR of input amplifier, frequency, duty cycle, and H-bridge on-resistance.  
Note 3: Guaranteed by design, not production tested.  
_______________________________________________________________________________________  
3
Mono, 2W, Switch-Mode (Class D)  
Audio Power Amplifier  
Typical Operating Characteristics  
(V = PV  
= +3V, input amplifier gain = -1, SHDN = V , T = +25°C, unless otherwise noted.)  
CC A  
CC  
CC  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. INPUT FREQUENCY (V = 2.5V  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. INPUT FREQUENCY (V = 2.5V  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. INPUT FREQUENCY (V = 2.5V  
)
P-P  
IN  
)
P-P  
)
P-P  
IN  
IN  
10  
1
10  
1
10  
1
V
= +5V  
CC  
V
= +5V  
V
= +5V  
CC  
L
CC  
R = 8  
L
R = 4Ω  
L
R = 32Ω  
1MHz  
125kHz  
125kHz  
1MHz  
1MHz  
125kHz  
250kHz  
500kHz  
0.1  
0.01  
0.1  
0.01  
0.1  
0.01  
500kHz  
250kHz  
500kHz  
250kHz  
10  
1k  
INPUT FREQUENCY (Hz)  
100k  
10  
1k  
INPUT FREQUENCY (Hz)  
100k  
10  
1k  
INPUT FREQUENCY (Hz)  
100k  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (f = 1kHz)  
vs. OUTPUT POWER (f = 1kHz)  
vs. OUTPUT POWER (f = 1kHz)  
IN  
IN  
IN  
100  
10  
1
100  
10  
1
100  
10  
1
V
= +5V  
V
= +5V  
CC  
CC  
V
= +5V  
CC  
R = 32Ω  
L
R = 4Ω  
L
R = 8Ω  
L
1MHz  
500kHz  
125kHz  
1MHz  
250kHz  
1MHz  
250kHz  
125kHz  
500kHz  
0.1  
0.1  
0.1  
250kHz  
1.2  
500kHz  
0.9  
125kHz  
0.10  
0.10  
0.10  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.3  
0.6  
1.5  
1.8  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (f = 20kHz)  
vs. OUTPUT POWER (f = 20kHz)  
vs. OUTPUT POWER (f = 20kHz)  
IN  
IN  
IN  
100  
10  
1
100  
10  
1
10  
V
= +5V  
V
= +5V  
CC  
L
V
= +5V  
CC  
L
CC  
R = 4Ω  
R = 32Ω  
R = 8Ω  
L
1MHz  
1MHz  
1
1MHz  
125kHz  
125kHz  
125kHz  
250kHz  
0.1  
0.01  
250kHz  
500kHz  
0.1  
0.1  
250kHz  
1.5  
500kHz  
500kHz  
0.10  
0.10  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.3  
0.6  
0.9  
1.2  
1.8  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
4
_______________________________________________________________________________________  
Mono, 2W, Switch-Mode (Class D)  
Audio Power Amplifier  
Typical Operating Characteristics (continued)  
(V = PV  
= +3V, input amplifier gain = -1, SHDN = V , T = +25°C, unless otherwise noted.)  
CC A  
CC  
CC  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. INPUT FREQUENCY (V = 1.5V  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. INPUT FREQUENCY (V = 1.5V  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. INPUT FREQUENCY (V = 1.5V  
)
)
)
P-P  
IN  
P-P  
IN  
P-P  
IN  
10  
1
10  
10  
1
V
= +3V  
V
= +3V  
V
= +3V  
CC  
CC  
CC  
R = 8Ω  
L
R = 4Ω  
L
R = 32Ω  
L
1MHz  
1MHz  
125kHz  
500kHz  
1MHz  
125kHz  
125kHz  
500kHz  
1
0.1  
0.01  
0.1  
0.01  
0.1  
0.01  
250kHz  
250kHz  
500kHz  
250kHz  
10  
1k  
INPUT FREQUENCY (Hz)  
100k  
10  
1k  
INPUT FREQUENCY (Hz)  
100k  
10  
1k  
INPUT FREQUENCY (Hz)  
100k  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (f = 1kHz)  
vs. OUTPUT POWER (f = 1kHz)  
vs. OUTPUT POWER (f = 1kHz)  
IN  
IN  
IN  
100  
10  
1
100  
10  
1
100  
10  
1
V
= +3V  
V
= +3V  
CC  
CC  
V
= +3V  
CC  
R = 4Ω  
L
R = 8Ω  
L
R = 32Ω  
L
1MHz  
1MHz  
1MHz  
500kHz  
500kHz  
250kHz  
125kHz  
500kHz  
125kHz  
250kHz  
0.1  
0.1  
250kHz  
125kHz  
0.1  
0.10  
0.10  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
OUTPUT POWER (W)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
OUTPUT POWER (W)  
0
0.05  
0.10  
0.15  
0.20  
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (f = 20kHz)  
IN  
vs. OUTPUT POWER (f = 20kHz)  
vs. OUTPUT POWER (f = 20kHz)  
IN  
IN  
100  
10  
1
100  
10  
1
100  
10  
1
V
= +3V  
V
= +3V  
V
= +3V  
CC  
CC  
L
CC  
R = 4Ω  
L
R = 8Ω  
R = 32Ω  
L
1MHz  
1MHz  
1MHz  
250kHz  
125kHz  
125kHz  
500kHz  
500kHz  
250kHz  
0.1  
0.1  
0.1  
125kHz  
250kHz  
500kHz  
0.10  
0.10  
0.10  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
OUTPUT POWER (W)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
OUTPUT POWER (W)  
0
0.05  
0.10  
0.15  
0.20  
OUTPUT POWER (W)  
_______________________________________________________________________________________  
5
Mono, 2W, Switch-Mode (Class D)  
Audio Power Amplifier  
Typical Operating Characteristics (continued)  
(V = PV  
CC  
= +3V, input amplifier gain = -1, SHDN = V , T = +25°C, unless otherwise noted.)  
CC A  
CC  
EFFICIENCY  
vs. OUTPUT POWER (f = 1kHz)  
EFFICIENCY  
vs. OUTPUT POWER (f = 1kHz)  
EFFICIENCY  
vs. OUTPUT POWER (f = 1kHz)  
IN  
IN  
IN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
250kHz  
500kHz  
500kHz  
250kHz  
1MHz  
250kHz  
1MHz  
500kHz  
1MHz  
125kHz  
125kHz  
125kHz  
V
= +5V  
V
CC  
= +5V  
CC  
V
= +5V  
CC  
R = 4Ω  
R = 32Ω  
L
L
R = 8Ω  
L
0
0
0.5  
2.5  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
0
0.1  
0.2  
0.3  
0.4  
0.5  
1.0  
1.5  
2.0  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
EFFICIENCY  
EFFICIENCY  
vs. OUTPUT POWER (f = 1kHz)  
vs. OUTPUT POWER (f = 1kHz)  
IN  
IN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
500kHz  
500kHz  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
250kHz  
1MHz  
250kHz  
1MHz  
125kHz  
125kHz  
V
= +3V  
CC  
V
CC  
= +3V  
R = 4Ω  
L
R = 8Ω  
L
0
0.2  
0.4  
0.6  
0.8  
0
0.2  
0.4  
0.6  
0.8  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
EFFICIENCY  
vs. OUTPUT POWER (f = 1kHz)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
IN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
8
A: f  
= 125kHz  
OSC  
OSC  
OSC  
OSC  
250kHz  
D
B: f  
C: f  
D: f  
= 250kHz  
= 500kHz  
= 1MHz  
500kHz  
1MHz  
6
4
C
B
125kHz  
2
0
V
= +3V  
CC  
A
R = 32Ω  
L
2
0
0.05  
0.10  
0.15  
0.20  
0
1
3
4
5
OUTPUT POWER (W)  
SUPPLY VOLTAGE (V)  
6
_______________________________________________________________________________________  
Mono, 2W, Switch-Mode (Class D)  
Audio Power Amplifier  
Typical Operating Characteristics (continued)  
(V = PV  
= +3V, input amplifier gain = -1, SHDN = V , T = +25°C, unless otherwise noted.)  
CC A  
CC  
CC  
OSCILLATOR FREQUENCY DEVIATION  
vs. SUPPLY VOLTAGE  
STARTUP/SHUTDOWN  
WAVEFORM  
MAX4295 toc27  
0.015  
0.010  
0.005  
0
125kHz  
4V/div  
V
OUT  
-0.005  
-0.010  
-0.015  
-0.020  
-0.025  
250kHz  
500kHz  
R = 4Ω  
OSC  
2.5V/div  
SHDN  
L
f
f
= 250kHz  
= 10kHz  
IN  
1MHz  
C
SS  
= 560pF  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
400µs/div  
SUPPLY VOLTAGE (V)  
Pin Description  
PIN  
NAME  
GND  
PV  
FUNCTION  
1, 12  
2, 15  
3
Analog Ground  
H-Bridge Power Supply  
Positive H-Bridge Output  
Power Ground  
CC  
OUT+  
PGND  
4, 13  
5
V
Analog Power Supply  
CC  
6
VCM  
Audio Input Common-Mode Voltage. Do not connect. Minimize parasitic coupling to this pin.  
7
8
IN  
Audio Input  
AOUT  
Input Amplifier Output  
9
SHDN  
Active-Low Shutdown Input. Connect to V  
for normal operation. Do not leave floating.  
CC  
10  
11  
14  
16  
FS1  
FS2  
OUT-  
SS  
Frequency Select Input 1  
Frequency Select Input 2  
Negative H-Bridge Output  
Soft-Start  
_______________________________________________________________________________________  
7
Mono, 2W, Switch-Mode (Class D)  
Audio Power Amplifier  
AOUT  
PV  
CC  
MAX4295  
IN  
OUT+  
GATE  
DRIVE  
PGND  
0.3  
V
CC  
(VCM)  
PV  
CC  
GATE  
DRIVE  
OUT-  
FS1  
FS2  
PWM  
OSC  
V
CC  
SS  
PGND  
POWER MANAGEMENT  
AND PROTECTION  
GND  
CSS  
Figure 1. Functional Diagram  
mum input frequencies so that intermodulation products  
are outside the input signal bandwidth. Higher switching  
frequencies also simplify the filtering requirements.  
Detailed Description  
The MAX4295 switch-mode, Class D audio power  
amplifier is intended for portable multimedia and gener-  
al-purpose audio applications. Linear amplifiers in the  
1W to 2W output range are inefficient; they overheat  
when operated near rated output power levels. The effi-  
ciency of linear amplifiers is <50% when the output  
voltage is equal to 1/2 the supply. The MAX4295 Class  
D amplifier achieves efficiencies of 87% or greater and  
is capable of delivering up to 2W of continuous maxi-  
mum power to a 4load. The lost power is due mainly  
to the on-resistance of the power switches and ripple  
current in the output.  
The MAX4295 consists of an inverting input operational  
amplifier, a PWM ramp oscillator, a controller that con-  
verts the analog input to a variable pulse-width signal,  
and a MOSFET H-bridge power stage (Figure 1). The  
control signal is generated by the PWM comparator; its  
pulse width is proportional to the input voltage. Ideally  
the pulse width varies linearly between 0% for a 0V  
input signal and 100% for full-scale input voltages  
(Figure 2). This signal controls the H-bridge. The  
switches work in pairs to reverse the polarity of the sig-  
nal in the load. Break-before-make switching of the H-  
bridge MOSFETs by the driver circuit keeps supply  
current glitches and crowbar current in the MOSFETs at  
a low level. The output swing of the H-bridge is a direct  
function of the supply voltage. Varying the oscillator  
swing in proportion to the supply voltage maintains  
constant gain with varying supply voltage.  
In a Class D amplifier, a PWM controller converts the  
analog input to a variable pulse-width signal. The pulse  
width is proportional to the input voltage, ideally 0% for  
a 0V input signal and 100% for full-scale input voltages.  
A passive lowpass LC network filters the PWM output  
waveform to reconstruct the analog signal. The switch-  
ing frequency is selected much higher than the maxi-  
8
_______________________________________________________________________________________  
Mono, 2W, Switch-Mode (Class D)  
Audio Power Amplifier  
bridge transistors. The H-bridge transistors are  
enabled after the IC’s junction temperature cools by  
10°C. This results in a pulsating output under continu-  
ous thermal overload conditions. Junction temperature  
does not exceed the thermal overload trip point in nor-  
mal operation, but only in the event of fault conditions,  
such as when the H-bridge outputs are short circuited.  
Undervoltage Lockout  
At low supply voltages, the MOSFETs in the H-bridge  
V
IN  
may have inadequate gate drive thus dissipating  
excessive power. The undervoltage lockout circuit pre-  
vents the device from operating at supply voltages  
below +2.2V.  
V
RAMP  
Low-Power Shutdown Mode  
The MAX4295 has a shutdown mode that reduces  
power consumption and extends battery life. Driving  
SHDN low disables the H-bridge, turns off the circuit,  
and places the MAX4295 in a low-power shutdown  
+5V  
V
OUT  
0V  
Figure 2. PWM Waveforms  
mode. Connect SHDN to V  
for normal operation.  
CC  
Applications Information  
FS1 and FS2 program the oscillator to a frequency of  
125kHz, 250kHz, 500kHz, and 1MHz. The sawtooth  
Component Selection  
oscillator swings between GND and 0.6  
V
. The  
CC  
Gain Setting  
input signal is typically AC-coupled to the internal input  
op amp, whose gain can be controlled through exter-  
nal feedback components. The common-mode voltage  
External feedback components set the gain of the  
MAX4295. Resistors R and R set the gain of the  
F
IN  
input amplifier to -(R /R ). The amplifier’s noninverting  
F
IN  
of the input amplifier is 0.3  
V
and is internally gen-  
CC  
input is connected to the internally generated 0.3  
(VCM) that sets the amplifier’s common-mode voltage.  
V
CC  
erated from the same resistive divider used to generate  
the 0.6  
V
reference for the PWM oscillator.  
CC  
The amplifier’s input bias current is low, 50pA, and  
does not affect the choice of feedback resistors. The  
Current Limit  
A current-limiting circuit in the H-bridge monitors the  
current in the H-bridge transistors and disables the H-  
bridge if the current in any of the H-bridge transistors  
exceeds 1A. The H-bridge is enabled after a period of  
100µs. A continuous short circuit at the output results  
in a pulsating output.  
noise in the circuit increases as the value of R  
increases.  
F
The optimum impedance seen by the inverting input is  
between 5kand 20k. The effective impedance is  
given by (R  
R )/(R + R ). For values of R >  
IN F IN F  
F
50k, a small capacitor (3pF) connected across R  
F
compensates for the pole formed by the input capaci-  
Thermal Overload Protection  
Thermal overload protection limits total power dissipa-  
tion in the MAX4295. When the junction temperature  
exceeds +145°C, the thermal detection disables the H-  
tance and the effective resistance at the inverting input.  
_______________________________________________________________________________________  
9
Mono, 2W, Switch-Mode (Class D)  
Audio Power Amplifier  
Soft-Start (Clickless Startup)  
The H-bridge is disabled under any of the following  
conditions:  
Frequency Selection  
The MAX4295 has an internal logic-programmable  
oscillator controlled by FS1 and FS2 (Table 1). The  
oscillator can be programmed to frequencies of  
125kHz, 250kHz, 500kHz, and 1MHz. The frequency  
should be chosen to best fit the application. As a rule of  
SHDN low  
• H-bridge current exceeds the 1A current limit  
• Thermal overload  
thumb, choose f  
to be 10 times the audio band-  
OSC  
• Undervoltage lockout  
width. A lower switching frequency offers higher ampli-  
fier efficiency and lower THD but requires larger  
external filter components. A higher switching frequen-  
cy reduces the size and cost of the filter components at  
the expense of THD and efficiency. In most applica-  
The circuit re-enters normal operation if none of the  
above conditions are present. A soft-start function pre-  
vents an audible pop on restart. An external capacitor  
connected to SS is charged by an internal 1.2µA cur-  
rent source and controls the soft-start rate. V is held  
SS  
tions, the optimal f  
is 250kHz.  
OSC  
low while the H-bridge is disabled and allowed to ramp  
up to begin a soft-start. Until V reaches 0.3  
V
,
CC  
SS  
the H-bridge output is limited to a 50% duty cycle,  
independent of the input voltage. The H-bridge duty  
cycle is then gradually allowed to track the input signal  
at a rate determined by the ramp on SS. The soft-start  
Table 1. Frequency Select Logic  
FS1  
1
FS2  
1
FREQUENCY (Hz)  
1M  
cycle is complete after V reaches 0.6  
V
. If the  
CC  
SS  
0
1
500k  
250k  
125k  
soft-start capacitor is omitted, the device starts up in  
approximately 100µs.  
1
0
0
0
Input Filter  
High-fidelity audio applications require gain flatness  
between 20Hz to 20kHz. Set the low-frequency cutoff  
point with an AC-coupling capacitor in series with the  
input resistor of the amplifier, creating a highpass filter  
(Figure 3). Assuming the input node of the amplifier is a  
virtual ground, the -3dB point of the highpass filter is  
R
F
AOUT  
C
IN  
INPUT  
R
IN  
IN  
determined by: f  
= 1/(2π  
R
C ), where R is  
IN IN  
IN  
LO  
the input resistor, and C is the AC-coupling capaci-  
IN  
tor. Choose R as described in the Gain Setting sec-  
IN  
VCM  
tion. Choose C such that the corner frequency is  
IN  
below 20Hz.  
Figure 3. Input Amplifier Configuration  
10 ______________________________________________________________________________________  
Mono, 2W, Switch-Mode (Class D)  
Audio Power Amplifier  
• Balanced 2-Pole (Figure 4b):  
Output Filter  
A balanced 2-pole filter does not have the common-  
mode swing problem of the single-ended filter.  
An output filter is required to attenuate the PWM switch-  
ing frequency. Without the filter, the ripple in the load  
can substantially degrade efficiency and may cause  
interference problems with other electronic equipment.  
C = 2 / (2  
R
L
ω ), L = (2 R )/(2 ω ); choosing  
o L o  
f = 30kHz and R = 4, C1a = C1b = 2.0µF, L1a =  
L1b = 15µH.  
o
L
A Butterworth lowpass filter is chosen for its flat  
passband and nice phase response, though other filter  
implementations may also be used. Three examples  
are presented below. The filter parameters for bal-  
anced 2-pole (Figure 4b) and 4-pole (Figure 4d)  
Butterworth filters are taken from Electronic Filter  
Design Handbook by Arthur B. Williams, McGraw Hill,  
Inc. These filter designs assume that the load is purely  
resistive and load impedance is constant over frequen-  
cy. Calculation of filter component values should  
include the DC resistance of the inductors and take into  
account the worst-case load scenario:  
A single capacitor connected across R , with a value of  
L
C = 1/(2  
L
R
ω ), can be used in place of C1a and  
L
o
C1b. However, the configuration as shown gives an  
improved rejection to common-mode signal compo-  
nents of OUT+_ and OUT-_. If the single capacitor  
scheme is used, additional capacitors (Ca and Cb) can  
be added from each side of R , providing a high-fre-  
L
quency short to ground (Figure 4c). These capacitors  
should be approximately 0.2 C .  
L
• Balanced 4-Pole Filter (Figure 4d)  
A balanced 4-pole filter is more effective in suppress-  
ing the switching frequency and its harmonics.  
• Single Ended 2-Pole Filter (Figure 4a)  
C = 1 / (2  
R
f
ω ), L = 2 R / ω  
o L o  
L
For the 4-pole Butterworth filter, the normalized values  
where ω = 2  
π
(f = filter cutoff frequency);  
o
o
o
are: L1 = 1.5307, L2 = 1.0824, C1 = 1.5772, C2 =  
N
N
N
N
choosing f = 30kHz and R = 4, C = 0.937µF, L =  
o
L
0.3827.  
30µH.  
The actual inductance and capacitance values for f  
=
O
A single-ended 2-pole filter uses the minimum number  
of external components, but the load (speaker) sees  
the large common-mode switching voltage, which can  
increase power dissipation and cause EMI problems.  
30kHz and a bridge-tied load of R = 4are given by:  
L
L1 = (L1  
R ) / (2 ω ) = 16.24µH, L2 = (L2  
R ) /  
L
N
L
o
N
(2 ω ) = 11.5µH, C1 = C1 / (R  
ω ) = 2.1µF, C2a =  
o
N
L
o
C2b = (2 C2 ) / (R  
N
ω ) = 1.0µF.  
o
L
L1  
L
OUT+  
OUT-  
OUT+  
Ca  
Cb  
C
L
R
L
R
L
C
OUT-  
L2  
Figure 4c. Alternate Balanced 2-Pole Filter  
Figure 4a. Single-Ended 2-Pole Filter  
L2a  
L1a  
L1  
OUT+  
OUT+  
C2a  
C2b  
C1a  
C1b  
C1  
R
R
L
L
OUT-  
OUT-  
L1b  
L2b  
L2  
Figure 4d. Balanced 4-Pole Filter  
Figure 4b. Balanced 2-Pole Filter  
______________________________________________________________________________________ 11  
Mono, 2W, Switch-Mode (Class D)  
Audio Power Amplifier  
Filter Components  
Total Harmonic Distortion  
The MAX4295 exhibits typical THD+N of <1% for input  
frequencies <10kHz. The PWM frequency affects THD  
performance. THD can be reduced by limiting the input  
bandwidth through the input highpass filter, choosing  
The inductor current rating should be higher than the  
peak current for a given output power requirement and  
should have relatively constant inductance over tem-  
perature and frequency. Typically, an open-core induc-  
tor is desirable since these types of inductors are more  
linear. Toroidal inductors without an air gap are not rec-  
ommended. Q-shielded inductors may be required if  
the amplifier is placed in an EMI-sensitive system. The  
series resistance of the inductors will reduce the atten-  
uation of the switching frequency and reduce efficiency  
due to the ripple current in the inductor.  
the lowest f  
possible, and carefully selecting the  
OSC  
output filter and its components.  
Bypassing and Layout Considerations  
Distortion caused by supply ripple due to H-bridge  
switching can be reduced through proper bypassing of  
PV . For optimal performance, a 330µF, low-ESR  
CC  
POSCAP capacitor to PGND and a 1µF ceramic capac-  
The capacitors should have a voltage rating 2 to 3  
times the maximum expected RMS voltage—allowing  
for high peak voltages and transient spikes—and be  
stable over temperature. Good quality capacitors with  
low equivalent series resistance (ESR) and equivalent  
series inductance (ESL) are necessary to achieve opti-  
mum performance. Low-ESR capacitors will decrease  
power dissipation. High ESL will shift the cutoff frequen-  
cy, and high ESR will reduce filter rolloff.  
itor to GND at each PV  
input is suggested. Place the  
CC  
1µF capacitor close to the PV  
pin. Bypass V  
with  
CC  
CC  
a 10µF capacitor in parallel with a 1µF capacitor to  
GND. Ceramic capacitors are recommended due to  
their low ESR.  
Good PC board layout techniques optimize perfor-  
mance by decreasing the amount of stray capacitance  
at the amplifier’s inputs and outputs. To decrease stray  
capacitance, minimize trace lengths by placing exter-  
nal components as close as possible to the amplifier.  
Surface-mount components are recommended.  
Bridge-Tied Load/Single-Ended  
Configuration  
The MAX4295 can be used as either a BTL or single-  
ended configured amplifier. The BTL configuration offers  
several advantages over a single-ended configuration.  
By driving the load differentially, the output voltage swing  
is doubled and the output power is quadrupled in com-  
parison to a single-ended configuration. Because the dif-  
ferential outputs are biased at half supply, there is no DC  
voltage across the load, eliminating the need for large  
DC-blocking capacitors at the output.  
The MAX4295 requires two separate ground planes to  
prevent switching noise from the MOSFETs in the H-  
bridge from coupling into the rest of the circuit. PGND,  
the power ground, is utilized by the H-bridge and any  
external output components, while GND is used by the  
rest of the circuit. Connect the PGND and GND planes  
at only one point, as close to the power supply as pos-  
sible. Any external components associated with the  
output of the MAX4295 must be connected to the  
PGND plane where applicable. Use the Typical  
Operating Circuit diagram as a reference. Refer to the  
evaluation kit manual for suggested component values,  
component suppliers, and layout.  
The MAX4295 can be configured as a single-ended  
amplifier. In such a case, the load must be capacitively  
coupled to the filter to block the half-supply DC voltage  
from the load. The unused output pin must also be left  
open (Figure 5). Do not connect the unused output pin  
to ground.  
C
c
L1a  
1
OUT+  
OUT-  
C1  
R
L
MAX4295  
16  
Figure 5. MAX4295 Single-Ended Configuration  
12 ______________________________________________________________________________________  
Mono, 2W, Switch-Mode (Class D)  
Audio Power Amplifier  
Pin Configuration  
Chip Information  
TRANSISTOR COUNT: 846  
PROCESS: BiCMOS  
TOP VIEW  
GND  
1
2
3
4
5
6
7
8
16 SS  
15 PV  
PV  
CC  
CC  
OUT+  
14 OUT-  
13 PGND  
12 GND  
11 FS2  
PGND  
MAX4295  
V
CC  
VCM  
IN  
10 FS1  
AOUT  
9
SHDN  
SO/QSOP  
______________________________________________________________________________________ 13  
Mono, 2W, Switch-Mode (Class D)  
Audio Power Amplifier  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, QSOP .150", .025" LEAD PITCH  
1
21-0055  
E
1
14 ______________________________________________________________________________________  
Mono, 2W, Switch-Mode (Class D)  
Audio Power Amplifier  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
INCHES  
MILLIMETERS  
DIM  
A
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
MIN  
1.35  
0.10  
0.35  
0.19  
MAX  
1.75  
0.25  
0.49  
0.25  
0.053  
0.004  
0.014  
0.007  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.228  
0.016  
0.157  
0.244  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
DIM  
D
MIN  
MAX  
0.197  
0.344  
0.394  
MIN  
4.80  
8.55  
9.80  
MAX  
5.00  
N
8
MS012  
AA  
TOP VIEW  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
B
0-8∞  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX4297

Mono/Stereo 2W Switch-Mode (Class-D) Audio Power Amplifiers
MAXIM

MAX4297EAG

Mono/Stereo 2W Switch-Mode (Class-D) Audio Power Amplifiers
MAXIM

MAX4297EAG+

暂无描述
MAXIM

MAX4297EAG+T

Audio Amplifier, 2W, 2 Channel(s), 1 Func, BICMOS, PDSO24, 5.30 MM, MO-150, SSOP-24
MAXIM

MAX4297EAG-T

Audio Amplifier, 2W, 2 Channel(s), 1 Func, BICMOS, PDSO24, 5.30 MM, MO-150, SSOP-24
MAXIM

MAX4297EVKIT

Evaluation Kit for the MAX4297
MAXIM

MAX4297EWG

Mono/Stereo 2W Switch-Mode (Class-D) Audio Power Amplifiers
MAXIM

MAX4297EWG+

Audio Amplifier, 2W, 2 Channel(s), 1 Func, BICMOS, PDSO24, 0.300 INCH, MS-013AD, SOIC-24
MAXIM

MAX4297EWG-T

Audio Amplifier, 2W, 2 Channel(s), 1 Func, BICMOS, PDSO24, 0.300 INCH, MS-013AD, SOIC-24
MAXIM

MAX4298

Ultra-High PSRR Stereo Drivers + Microphone Amp + 100mA Linear Regulator
MAXIM

MAX4298ESD

Ultra-High PSRR Stereo Drivers + Microphone Amp + 100mA Linear Regulator
MAXIM

MAX4298ESD+

Consumer Circuit, BICMOS, PDSO14, 0.150 INCH, MS-012, SOIC-14
MAXIM