MAX4313EUA [MAXIM]

High-Speed, Low-Power, Single-Supply, Multichannel, Video Multiplexer-Amplifiers; 高速,低功耗,单电源,多通道,视频多路复用器 - 放大器
MAX4313EUA
型号: MAX4313EUA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

High-Speed, Low-Power, Single-Supply, Multichannel, Video Multiplexer-Amplifiers
高速,低功耗,单电源,多通道,视频多路复用器 - 放大器

复用器 放大器
文件: 总20页 (文件大小:404K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1379; Rev 1; 4/99  
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
0–MAX4315  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX4310–MAX4315 single-supply mux-amps com-  
bine high-speed operation, low-glitch switching, and excel-  
lent video specifications. The six products in this family are  
differentiated by the number of multiplexer inputs and the  
gain configuration. The MAX4310/MAX4311/MAX4312 inte-  
grate 2-/4-/8-channel multiplexers, respectively, with an  
adjustable gain amplifier optimized for unity-gain stability.  
The MAX4313/MAX4314/MAX4315 integrate 2-/4-/8-chan-  
nel multiplexers, respectively, with a +2V/V fixed-gain  
amplifier. All devices have 40ns channel switching time  
and low 10mVp-p switching transients, making them ideal  
for video-switching applications. They operate from a sin-  
gle +4V to +10.5V supply, or from dual supplies of ±2V to  
±5.25V, and they feature Rail-to-Rail® outputs and an input  
common-mode voltage range that extends to the negative  
supply rail.  
Single-Supply Operation Down to +4V  
345MHz -3dB Bandwidth (MAX4311)  
150MHz -3dB Bandwidth (MAX4313)  
540V/µs Slew Rate (MAX4313)  
Low 6.1mA Quiescent Supply Current  
40ns Channel Switching Time  
Ultra-Low 10mVp-p Switching Transient  
0.06%/0.08° Differential Gain/Phase Error  
Rail-to-Rail Outputs: Drives 150to within  
730mV of the Rails  
Input Common-Mode Range Includes  
Negative Rail  
Low-Power Shutdown Mode  
The MAX4310/MAX4311/MAX4312 have a -3dB bandwidth  
of 280MHz/345MHz/265MHz and up to a 460V/µs slew rate.  
The MAX4313/MAX4314/MAX4315, with 150MHz/127MHz/  
97MHz -3dB bandwidths up to a 540V/µs slew rate, and a  
fixed gain of +2V/V, are ideally suited for driving back-  
terminated cables. Quiescent supply current is as low as  
6.1mA, while low-power shutdown mode reduces supply  
current to as low as 560µA and places the outputs in a  
high-impedance state. The MAX4310–MAX4315s internal  
amplifiers maintain an open-loop output impedance of only  
8over the full output voltage range, minimizing the gain  
error and bandwidth changes under loads typical of most  
rail-to-rail amplifiers. With differential gain and phase errors  
of 0.06% and 0.08°, respectively, these devices are ideal  
for broadcast video applications.  
Available in Space-Saving 8-Pin µMAX and  
16-Pin QSOP Packages  
Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 µMAX  
MAX4310EUA  
MAX4310ESA  
MAX4311EEE  
MAX4311ESD  
MAX4312EEE  
MAX4312ESE  
MAX4313EUA  
MAX4313ESA  
MAX4314EEE  
MAX4314ESD  
MAX4315EEE  
MAX4315ESE  
8 SO  
16 QSOP  
14 Narrow SO  
16 QSOP  
16 Narrow SO  
8 µMAX  
8 SO  
Ap p lic a t io n s  
16 QSOP  
Video Signal Multiplexing  
Video Crosspoint Switching  
Flash ADC Input Buffers  
75Video Cable Drivers  
High-Speed Signal Processing  
Broadcast Video  
Medical Imaging  
Multimedia Products  
14 Narrow SO  
16 QSOP  
16 Narrow SO  
Pin Configurations and Typical Operating Circuit appear at  
end of data sheet.  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
S e le c t o r Gu id e  
NO. OF INPUT  
CHANNELS  
AMPLIFIER GAIN  
PART  
PIN-PACKAGE  
(V/V)  
MAX4310  
MAX4311  
MAX4312  
MAX4313  
MAX4314  
MAX4315  
2
4
8
2
4
8
+1  
+1  
+1  
+2  
8-Pin SO/µMAX  
14-Pin Narrow SO, 16-Pin QSOP  
16-Pin Narrow SO/QSOP  
8-Pin SO/µMAX  
+2  
14-Pin Narrow SO, 16-Pin QSOP  
16-Pin Narrow SO/QSOP  
+2  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V to V )..................................................12V  
14-Pin SO (derate 8.3mW/°C above +70°C).................667mW  
16-Pin SO (derate 8.7mW/°C above +70°C).................696mW  
16-Pin QSOP (derate 8.3mW/°C above +70°C)............667mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
EE  
Input Voltage ....................................(V - 0.3V) to (V + 0.3V)  
EE  
CC  
All Other Pins ...................................(V - 0.3V) to (V + 0.3V)  
EE  
CC  
Output Current................................................................±120mA  
Short-Circuit Duration (V to GND, V or V )....Continuous  
OUT  
CC  
EE  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin SO (derate 5.9mW/°C above +70°C)...................471mW  
8-Pin µMAX (derate 4.1mW/°C above +70°C) ..............330mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= +5V, V = 0, SHDN 4V, R = , V  
= 2.5V, T = T  
to T , unless otherwise noted. Typical values are at  
MAX  
CC  
EE  
L
OUT  
A
MIN  
T
A
= +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
Inferred from PSRR test  
MIN  
TYP  
MAX  
UNITS  
Operating Supply Voltage  
Range  
V
CC  
4.0  
10.5  
V
0–MAX4315  
MAX4310/MAX4311/MAX4312, inferred from  
CMRR test  
0.035  
0.035  
73  
V
- 2.8  
- 2.7  
CC  
Input Voltage Range  
V
MAX4313/MAX4314/1MAX4315, inferred from  
output voltage swing  
V
CC  
Common-Mode Rejection  
Ratio  
CMRR  
0 V 2.2V, MAX4310/MAX4311/MAX4312 only  
95  
dB  
CM  
Input Offset Voltage  
V
±5.0  
±7  
±20  
mV  
OS  
Input Offset Voltage Drift  
TC  
µV/°C  
VOS  
Input Offset Voltage  
Matching  
±1  
mV  
Input Bias Current  
I
I
7
7
14  
14  
2
µA  
µA  
µA  
B
IN_  
Feedback Bias Current  
Input Offset Current  
I
FB  
I , MAX4310/MAX4311/MAX4312 only  
FB  
I
OS  
MAX4310/MAX4311/MAX4312 only  
0.1  
Common-Mode Input  
Resistance  
V
varied over V  
MAX4310/MAX4311/  
IN  
CM,  
R
3
MΩ  
kΩ  
IN  
IN  
MAX4312 only  
Differential Input Resistance  
R
70  
8
Open loop  
MAX4310/MAX4311/  
MAX4312 only  
Output Resistance  
R
R
Closed loop, A = +1V/V  
0.025  
0.025  
35  
OUT  
OUT  
V
MAX4313/MAX4314/MAX4315  
MAX4310/MAX4311/MAX4312, open loop  
MAX4313/MAX4314/MAX4315  
Disabled Output Resistance  
Open-Loop Gain  
kΩ  
dB  
1
MAX4310/MAX4311/MAX4312,  
A
VOL  
50  
59  
R
= 150to GND, 0.25V V  
4.2V  
4.2V  
L
OUT  
MAX4313/MAX4314/MAX4315,  
= 150to GND, 0.25V V  
Voltage Gain  
A
VCL  
1.9  
2.0  
2.1  
V/V  
R
L
OUT  
2
_______________________________________________________________________________________  
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
0–MAX4315  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V, V = 0, SHDN 4V, R = , V  
= 2.5V, T = T  
to T  
, unless otherwise noted. Typical values are at  
MAX  
CC  
EE  
L
OUT  
A
MIN  
T
A
= +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.73  
0.03  
0.25  
0.04  
±95  
63  
MAX  
0.9  
UNITS  
V
CC  
- V  
OH  
R
= 150Ω  
L
V
OL  
- V  
0.06  
0.4  
EE  
Output Voltage Swing  
V
OUT  
V
V
CC  
- V  
OH  
R
R
= 10kΩ  
= 30Ω  
L
L
V
OL  
- V  
0.07  
EE  
Output Current  
I
±75  
52  
mA  
dB  
OUT  
Power-Supply Rejection Ratio  
PSRR  
V
CC  
= 4.0V to 10.5V  
MAX4310/MAX4313  
MAX4311/MAX4314  
MAX4312/MAX4315  
6.1  
7.8  
8.8  
9.4  
750  
Quiescent Supply Current  
I
CC  
6.9  
mA  
µA  
7.4  
Shutdown Supply Current  
560  
SHDN V  
IL  
LOGIC CHARACTERISTICS (SHDN, A0, A1, A2)  
Logic-Low Threshold  
Logic-High Threshold  
Logic-Low Input Current  
Logic-High Input Current  
V
V
EE  
+ 1  
V
V
IL  
V
IH  
V
- 1  
CC  
I
IL  
V
V + 1V  
-500  
-320  
0.3  
µA  
µA  
IL  
EE  
I
IH  
V
IH  
V - 1V  
5
CC  
AC ELECTRICAL CHARACTERISTICS  
(V  
= +5V; V = 0; SHDN 4V; R = 150; V  
= 1.5V; A  
= +1V/V (MAX4310/MAX4311/MAX4312), A = +2V/V  
VCL  
CC  
EE  
L
CM  
VCL  
(MAX4313/MAX4314/MAX4315); T = +25°C; unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
280  
345  
265  
150  
127  
97  
MAX  
UNITS  
MAX4310  
MAX4311  
MAX4312  
MAX4313  
MAX4314  
MAX4315  
MAX4310  
MAX4311  
MAX4312  
MAX4313  
MAX4314  
MAX4315  
-3dB Bandwidth  
BW  
V
= 100mVp-p  
MHz  
MHz  
(-3dB)  
OUT  
60  
40  
35  
-0.1dB Bandwidth  
BW  
V
OUT  
= 100mVp-p  
(-0.1dB)  
40  
78  
46  
_______________________________________________________________________________________  
3
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V; V = 0; SHDN 4V; R = 150; V  
= 1.5V; A  
= +1V/V (MAX4310/MAX4311/MAX4312), A = +2V/V  
CC  
EE  
L
CM  
VCL  
VCL  
(MAX4313/MAX4314/MAX4315); T = +25°C; unless otherwise noted.)  
A
PARAMETER  
SYMBOL CONDITIONS  
CONDITIONS  
MAX4310  
MIN  
TYP  
110  
100  
80  
MAX  
UNIT  
MAX4311  
MAX4312  
Full-Power Bandwidth  
FPBW  
V
OUT  
= 2Vp-p  
MHz  
V/µs  
MAX4313  
40  
MAX4314  
90  
MAX4315  
70  
MAX4310  
460  
430  
345  
540  
430  
310  
42  
MAX4311  
MAX4312  
Slew Rate  
SR  
V
OUT  
= 2Vp-p  
MAX4313  
MAX4314  
0–MAX4315  
MAX4315  
MAX4310/MAX4311/MAX4312  
MAX4313/MAX4314/MAX4315  
Settling Time to 0.1%  
Gain Matching  
t
S
V
OUT  
= 2V step  
ns  
25  
Matching between channels over  
-3dB bandwidth  
0.05  
0.06  
0.09  
0.08  
0.03  
dB  
A
VCL  
= +1V/V,  
R
= 150to  
MAX4310/MAX4311/MAX4312  
MAX4313/MAX4314/MAX4315  
MAX4310/MAX4311/MAX4312  
MAX4313/MAX4314/MAX4315  
L
V
/2  
CC  
Differential Gain Error  
Differential Phase Error  
DG  
DG  
%
R
= 150to  
/2  
L
V
CC  
A
VCL  
= +1V/V,  
= 150to  
/2  
R
L
V
CC  
degrees  
R
= 150to  
L
V
CC  
/2  
f = 3kHz  
-89  
-80  
-47  
-95  
-72  
-47  
-85  
-76  
-88  
-95  
-83  
-76  
MAX4310/  
MAX4311/  
MAX4312  
f = 2MHz  
f = 20MHz  
f = 3kHz  
Spurious-Free Dynamic  
Range  
SFDR  
V
= 2Vp-p  
dBc  
OUT  
MAX4313/  
MAX4314/  
MAX4315  
f = 2MHz  
f = 20MHz  
MAX4310/MAX4311/MAX4312  
MAX4313/MAX4314/MAX4315  
MAX4310/MAX4311/MAX4312  
MAX4313/MAX4314/MAX4315  
MAX4310/MAX4311/MAX4312  
MAX4313/MAX4314/MAX4315  
f = 1MHz,  
= 2Vp-p  
Second Harmonic Distortion  
Third Harmonic Distortion  
Total Harmonic Distortion  
dBc  
dBc  
dB  
V
OUT  
f = 1MHz,  
= 2Vp-p  
V
OUT  
f = 1MHz,  
= 2Vp-p  
THD  
V
OUT  
4
_______________________________________________________________________________________  
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
0–MAX4315  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V; V = 0; SHDN 4V; R = 150; V  
= 1.5V; A  
= +1V/V (MAX4310/MAX4311/MAX4312), A = +2V/V  
CC  
EE  
L
CM  
VCL  
VCL  
(MAX4313/MAX4314/MAX4315); T = +25°C; unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
-95  
-60  
-52  
-82  
3
MAX  
UNITS  
MAX4310/MAX4313  
MAX4311/MAX4314  
MAX4312/MAX4315  
f = 10MHz,  
= 2Vp-p  
All-Hostile Crossstalk  
dB  
V
IN  
Off-Isolation  
dB  
SHDN = 0, f = 10MHz, V = 2Vp-p  
IN  
Output Impedance  
Z
OUT  
f = 10MHz  
Input Capacitance  
C
Channel on or off  
f = 10kHz  
2
pF  
IN  
n
Input Voltage Noise Density  
Input Current Noise Density  
e
i
14  
nV/Hz  
pA/Hz  
f = 10kHz  
1.3  
n
SWITCHING CHARACTERISTICS  
Channel Switching Time  
Enable Time from Shutdown  
Disable Time to Shutdown  
Switching Transient  
t
40  
50  
ns  
ns  
SW  
t
ON  
t
120  
10  
ns  
OFF  
mVp-p  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5V; V = 0; SHDN 4V; R = 150to V /2; V  
= 1.5V; A  
= +1V/V (MAX4310/MAX4311/MAX4312), A  
= +2V/V  
CC  
EE  
L
CC  
CM  
VCL  
VCL  
(MAX4313/MAX4314/MAX4315); T = +25°C; unless otherwise noted.)  
A
MAX4310  
MAX4310  
MAX4310  
SMALL-SIGNAL GAIN vs. FREQUENCY  
GAIN FLATNESS vs. FREQUENCY  
LARGE-SIGNAL GAIN vs. FREQUENCY  
4
0.5  
4
V
OUT  
= 100mVp-p  
V
OUT  
= 100mVp-p  
3
2
0.4  
0.3  
0.2  
0.1  
0
V
OUT  
= 2Vp-p  
3
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-0.1  
-0.2  
-0.3  
-5  
-6  
-0.4  
-0.5  
-5  
-6  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
5
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V; V = 0; SHDN 4V; R = 150to V /2; V  
= 1.5V; A  
= +1V/V (MAX4310/MAX4311/MAX4312), A  
= +2V/V  
CC  
EE  
L
CC  
CM  
VCL  
VCL  
(MAX4313/MAX4314/MAX4315); T = +25°C; unless otherwise noted.)  
A
MAX4311  
MAX4311  
MAX4311  
SMALL-SIGNAL GAIN vs. FREQUENCY  
GAIN FLATNESS vs. FREQUENCY  
LARGE-SIGNAL GAIN vs. FREQUENCY  
2
1
0.2  
0.1  
2
1
V
= 100mVp-p  
V
= 100mVp-p  
V
= 2Vp-p  
OUT  
OUT  
OUT  
0
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
0–MAX4315  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
MAX4312  
MAX4312  
MAX4312  
SMALL-SIGNAL GAIN vs. FREQUENCY  
GAIN FLATNESS vs. FREQUENCY  
LARGE-SIGNAL GAIN vs. FREQUENCY  
2
1
0.2  
0.1  
2
1
V
= 100mVp-p  
V
= 100mVp-p  
V
= 2Vp-p  
OUT  
OUT  
OUT  
0
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
MAX4313  
MAX4313  
MAX4313  
LARGE-SIGNAL GAIN vs. FREQUENCY  
SMALL-SIGNAL GAIN vs. FREQUENCY  
GAIN FLATNESS vs. FREQUENCY  
4
4
0.5  
V = 2Vp-p  
OUT  
V
OUT  
= 100mVp-p  
V
OUT  
= 100mVp-p  
3
2
3
2
0.4  
0.3  
0.2  
0.1  
0
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-0.1  
-0.2  
-0.3  
-5  
-6  
-5  
-6  
-0.4  
-0.5  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6
_______________________________________________________________________________________  
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
0–MAX4315  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V; V = 0; SHDN 4V; R = 150to V /2; V  
= 1.5V; A  
= +1V/V (MAX4310/MAX4311/MAX4312), A  
= +2V/V  
CC  
EE  
L
CC  
CM  
VCL  
VCL  
(MAX4313/MAX4314/MAX4315); T = +25°C; unless otherwise noted.)  
A
MAX4314  
MAX4314  
MAX4314  
LARGE-SIGNAL GAIN vs. FREQUENCY  
SMALL-SIGNAL GAIN vs. FREQUENCY  
GAIN FLATNESS vs. FREQUENCY  
2
1
2
1
0.2  
0.1  
V
OUT  
= 100mVp-p  
V
OUT  
= 2Vp-p  
V
OUT  
= 100mVp-p  
0
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
MAX4315  
MAX4315  
MAX4315  
SMALL-SIGNAL GAIN vs. FREQUENCY  
LARGE-SIGNAL GAIN vs. FREQUENCY  
GAIN FLATNESS vs. FREQUENCY  
2
1
2
1
0.2  
0.1  
V
OUT  
= 100mVp-p  
V
OUT  
= 100mVp-p  
V
OUT  
= 2Vp-p  
0
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
MAX4310/MAX4311/MAX4312  
HARMONIC DISTORTION vs. FREQUENCY  
MAX4313/MAX4314/MAX4315  
HARMONIC DISTORTION vs. FREQUENCY  
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
-20  
-20  
0
V
OUT  
= 2Vp-p  
V
OUT  
= 2Vp-p  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-30  
-40  
-50  
-60  
-70  
-80  
-30  
-40  
-50  
-60  
-70  
-80  
2ND HARMONIC  
2ND HARMONIC  
3RD HARMONIC  
3RD HARMONIC  
-90  
-90  
-90  
-100  
-100  
-100  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
7
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V; V = 0; SHDN 4V; R = 150to V /2; V  
= 1.5V; A  
= +1V/V (MAX4310/MAX4311/MAX4312), A  
= +2V/V  
CC  
EE  
L
CC  
CM  
VCL  
VCL  
(MAX4313/MAX4314/MAX4315); T = +25°C; unless otherwise noted.)  
A
MAX4310/MAX4311/MAX4312  
COMMON-MODE REJECTION vs. FREQUENCY  
MAX4310/MAX4313  
All-HOSTILE CROSSTALK vs. FREQUENCY  
OFF-ISOLATION vs. FREQUENCY  
-10  
0
50  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
30  
10  
-10  
-30  
-50  
-70  
-90  
-110  
-100  
-110  
-90  
-130  
-150  
-100  
0–MAX4315  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
0.1  
1
10  
100  
1000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
MAX4312/MAX4315  
ALL-HOSTILE CROSSTALK vs. FREQUENCY  
MAX4311/MAX4314  
ALL-HOSTILE CROSSTALK vs. FREQUENCY  
OUTPUT IMPEDANCE vs. FREQUENCY  
50  
30  
50  
30  
100  
10  
10  
10  
1
-10  
-30  
-50  
-70  
-90  
-110  
-130  
-150  
-10  
-30  
-50  
-70  
-90  
-110  
-130  
-150  
0.1  
0.01  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
MAX4310  
LARGE-SIGNAL PULSE RESPONSE  
CURRENT-NOISE DENSITY vs.  
FREQUENCY (INPUT REFERRED)  
VOLTAGE-NOISE DENSITY vs.  
FREQUENCY (INPUT REFERRED)  
100  
10  
1
100  
IN  
(1V/div)  
OUT  
(1V/div)  
10  
10ns/div  
10  
100  
1k  
10k 100k 1M 10M  
10  
100  
1k  
10k 100k 1M 10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
8
_______________________________________________________________________________________  
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
0–MAX4315  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V; V = 0; SHDN 4V; R = 150to V /2; V  
= 1.5V; A  
= +1V/V (MAX4310/MAX4311/MAX4312), A  
= +2V/V  
CC  
EE  
L
CC  
CM  
VCL  
VCL  
(MAX4313/MAX4314/MAX4315); T = +25°C; unless otherwise noted.)  
A
MAX4312  
MAX4311  
MAX4313  
LARGE-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
IN  
IN  
(1V/div)  
(500mV/div)  
IN  
(1V/div)  
OUT  
OUT  
(1V/div)  
(1V/div)  
OUT  
(1V/div)  
10ns/div  
10ns/div  
10ns/div  
MAX4310  
MAX4314  
MAX4315  
SMALL-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
IN  
IN  
(500mV/div)  
IN  
(50mV/div)  
(500mV/div)  
OUT  
(50mV/div)  
V
(1V/div)  
OUT  
OUT  
(IV/div)  
10ns/div  
10ns/div  
10ns/div  
MAX4311  
MAX4312  
MAX4313  
SMALL-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
IN  
(50mV/div)  
IN  
IN  
(50mV/div)  
(50mV/div)  
OUT  
OUT  
OUT  
(50mV/div)  
(50mV/div)  
(50mV/div)  
10ns/div  
10ns/div  
10ns/div  
_______________________________________________________________________________________  
9
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V; V = 0; SHDN 4V; R = 150to V /2; V  
= 1.5V; A  
= +1V/V (MAX4310/MAX4311/MAX4312), A  
= +2V/V  
CC  
EE  
L
CC  
CM  
VCL  
VCL  
(MAX4313/MAX4314/MAX4315); T = +25°C; unless otherwise noted.)  
A
MAX4310  
MAX4315  
SMALL-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
MAX4314  
SMALL-SIGNAL PULSE RESPONSE  
(C = 10pF)  
L
IN  
IN  
IN  
(50mV/div)  
(50mV/div)  
(50mV/div)  
OUT  
OUT  
(50mV/div)  
(50mV/div)  
OUT  
(50mV/div)  
10ns/div  
10ns/div  
10ns/div  
0–MAX4315  
MAX4313  
MAX4313  
MAX4310  
SMALL-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
(C = 22pF)  
L
(C = 10pF)  
L
(C = 22pF)  
L
IN  
IN  
IN  
(50mV/div)  
(50mV/div)  
(50mV/div)  
OUT  
(50mV/div)  
OUT  
(50mV/div)  
OUT  
(50mV/div)  
10ns/div  
10ns/div  
10ns/div  
SHUTDOWN RESPONSE TIME  
CHANNEL-SWITCHING TRANSIENT  
SHDN  
(2.0V/div)  
A0  
(2.5V/div)  
OUT  
OUT  
(10mV/div)  
(1V/div)  
100ns/div  
20ns/div  
10 ______________________________________________________________________________________  
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
0–MAX4315  
P in De s c rip t io n  
PIN  
MAX4310  
SO/  
µMAX  
MAX4312  
SO/  
QSOP  
MAX4313  
SO/  
µMAX  
MAX4315  
SO/  
QSOP  
MAX4311  
SO QSOP  
MAX4314  
SO QSOP  
NAME  
FUNCTION  
Channel Address Logic  
Input 0  
1
2
1
2
1
3
2
1
1
2
1
2
1
3
2
1
A0  
A1  
Channel Address Logic  
Input 1  
Channel Address Logic  
Input 2  
A2  
2
12  
4
14  
4
14  
4
2
12  
4
14  
4
14  
4
Shutdown Input  
Positive Power Supply  
Amplifier Input 0  
Amplifier Input 1  
Amplifier Input 2  
Amplifier Input 3  
Amplifier Input 4  
Amplifier Input 5  
Amplifier Input 6  
Amplifier Input 7  
SHDN  
3
3
V
CC  
4
5
5
5
4
5
5
5
IN0  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
5
7
7
6
5
7
7
6
8
10  
12  
7
8
10  
12  
7
10  
8
10  
8
9
9
10  
11  
12  
10  
11  
12  
Negative Power Supply.  
Ground for single-supply  
operation.  
6
11  
13  
13  
6
11  
13  
13  
V
EE  
7
8
13  
14  
15  
16  
15  
16  
7
13  
14  
15  
16  
15  
16  
FB  
Amplifier Feedback Input  
Ground  
GND  
OUT  
8
Amplifier Output  
3, 6,  
8, 9,  
11  
Not connected. Tie to  
ground plane for optimal  
performance.  
3, 6,  
9
3, 6,  
9
3, 6, 8,  
9, 11  
N.C.  
______________________________________________________________________________________ 11  
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
output swings from 30mV above V to within 730mV of  
EE  
_______________De t a ile d De s c rip t io n  
the supply rail. Local feedback around the output stage  
ensures low open-loop output impedance to reduce  
gain sensitivity to load variations. This feedback also  
produces demand-driven bias current to the output  
transistors for ±95mA drive capability while constrain-  
ing total supply current to only 6.1mA.  
The MAX4310/MAX4311/MAX4312 combine 2-channel,  
4-channel, or 8-channel multiplexers, respectively, with  
a n a d jus ta b le -g a in outp ut a mp lifie r op timize d for  
c los e d -loop g a ins of + 1V/V (0d B) or g re a te r. The  
MAX4313/MAX4314/MAX4315 combine 2-channel, 4-  
channel, or 8-channel multiplexers, respectively, with a  
+2V/V (6dB) fixed-gain amplifier, optimized for driving  
back-terminated cables. These devices operate from a  
single supply voltage of +4V to +10.5V, or from dual  
supplies of ±2V to ±5.25V. The outputs may be placed  
in a high-impedance state and the supply current mini-  
mized by forcing the SHDN pin low. The input multi-  
plexers feature short 40ns channel-switching times and  
small 10mVp-p switching transients. The input capaci-  
tance remains constant at 1pF whether the channel is  
on or off, providing a predictable input impedance to  
the signal source. These devices feature single-supply,  
ra il-to-ra il, volta g e -fe e d b a c k outp ut a mp lifie rs tha t  
achieve up to 540V/µs slew rates and up to 345MHz -3dB  
bandwidths. These devices also feature excellent har-  
monic distortion and differential gain/phase perfor-  
mance.  
Fe e d b a c k a n d Ga in Re s is t o r S e le c t io n  
(MAX4 3 1 0 /MAX4 3 1 1 /MAX4 3 1 2 )  
Select the MAX4310/MAX4311/MAX4312 gain-setting  
feedback (R ) and input (R ) resistors to fit your applica-  
F
G
tion. Large resistor values increase voltage noise and  
interact with the amplifiers input and PC board capaci-  
tance. This can generate undesirable poles and zeros,  
and can decrease bandwidth or cause oscillations. For  
example, a noninverting gain of +2V/V configuration (R  
F
= R ) using 1kresistors, combined with 2pF of input  
G
capacitance and 1pF of PC board capacitance, causes  
a pole at 159MHz. Since this pole is within the amplifier  
bandwidth, it jeopardizes stability. Reducing the 1kΩ  
re s is tors to 100e xte nd s the p ole fre q ue nc y to  
1.59GHz, but could limit output swing by adding 200in  
parallel with the amplifiers load resistor.  
0–MAX4315  
Table 1 shows suggested R and R values for the  
F
G
__________Ap p lic a t io n s In fo rm a t io n  
MAX4310/MAX4311/MAX4312 when operating in the  
noninverting configuration (shown in Figure 1). These  
values provide optimal AC response using surface-  
mount resistors and good layout techniques, as dis-  
cussed in the Layout and Power-Supply Bypassing  
section.  
Ra il-t o -Ra il Ou t p u t s , Gro u n d -S e n s in g In p u t  
The input common-mode range extends from the nega-  
tive supply rail to V  
- 2.7V with excellent common-  
CC  
mod e re je c tion. Be yond this ra ng e , multip le xe r  
switching times may increase and the amplifier output  
is a nonlinear function of the input, but does not under-  
go phase reversal or latchup.  
Stray capacitance at the FB pin causes feedback resis-  
tor decoupling and produces peaking in the frequency-  
response curve. Keep the capacitance at FB as low as  
p os s ib le b y us ing s urfa c e -mount re s is tors a nd b y  
avoiding the use of a ground plane beneath or beside  
these resistors and the FB pin. Some capacitance is  
unavoidable; if necessary, its effects can be neutralized  
The output swings to within 250mV of V and 40mV of  
CC  
V
EE  
with a 10kload. With a 150load to ground, the  
by adjusting R . Use 1% resistors to maintain consis-  
tency over a wide range of production lots.  
F
75CABLE  
R
75Ω  
T
4
5
75CABLE  
IN0  
OUT 8  
FB 7  
R
75Ω  
T
Table 1. Bandwidth and Gain with  
Suggested Gain-Setting Resistors  
(MAX4310/MAX4311/MAX4312)  
R
F
R
T
75CABLE  
75Ω  
IN1  
A0  
R
75Ω  
T
GAIN  
(V/V)  
GAIN  
(dB)  
R
()  
R
()  
-3dB BW  
(MHz)  
0.1dB BW  
(MHz)  
F
G
R
G
MAX4310  
500  
120  
56  
1
2
0
6
0
280  
80  
60  
30  
4
1
500  
500  
500  
5
14  
20  
20  
Figure 1. MAX4310 Noninverting Gain Configuration  
10  
10  
2
12 ______________________________________________________________________________________  
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
0–MAX4315  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0
50 100 150 200 250 300 350 400 450 500  
LOGIC-LOW THRESHOLD (mV ABOVE V )  
0
50 100 150 200 250 300 350 400 450 500  
LOGIC-LOW THRESHOLD (mV ABOVE V )  
EE  
EE  
Figure 4. Logic-Low Input Current vs. V with 10kSeries  
Resistor  
IL  
Figure 2. Logic-Low Input Current vs. V (SHDN, A0, A1, A2)  
IL  
For normal operation, drive SHDN high. If the shutdown  
LOGIC INPUT  
function is not used, connect SHDN to V  
.
CC  
La yo u t a n d P o w e r-S u p p ly Byp a s s in g  
The MAX4310–MAX4315 have very high bandwidths  
and consequently require careful board layout, includ-  
ing the possible use of constant-impedance microstrip  
or stripline techniques.  
10k  
IN-  
SHDN, A0, A1, A2  
OUT  
MAX431_  
To realize the full AC performance of these high-speed  
a mp lifie rs , p a y c a re ful a tte ntion to p owe r-s up p ly  
bypassing and board layout. The PC board should  
have at least two layers: a signal and power layer on  
one side, and a large, low-impedance ground plane on  
the other side. The ground plane should be as free of  
voids as possible, with one exception: the feedback  
(FB) should have as low a capacitance to ground as  
possible. Therefore, layers that do not incorporate a  
signal or power trace should not have a ground plane.  
IN+  
Figure 3. Circuit to Reduce Logic-Low Input Current  
Lo w -P o w e r S h u t d o w n Mo d e  
All parts feature a low-power shutdown mode that is  
activated by driving the SHDN input low. Placing the  
amplifier in shutdown mode reduces the quiescent sup-  
ply current to 560µA and places the output into a high-  
impedance state, typically 35k. By tying the outputs  
of several devices together and disabling all but one of  
the paralleled amplifiers outputs, multiple devices may  
be paralleled to construct larger switch matrices.  
Whether or not a constant-impedance board is used, it  
is b e s t to ob s e rve the following g uid e line s whe n  
designing the board:  
1) Do not us e wire -wra p p e d b oa rd s (the y a re too  
inductive) or breadboards (they are too capacitive).  
For MAX4310/MAX4311/MAX4312 application circuits  
operating with a closed-loop gain of +2V/V or greater,  
consider the external-feedback network impedance of  
all devices used in the mux application when calculat-  
ing the total load on the output amplifier of the active  
device. The MAX4313/MAX4314/MAX4315 have a fixed  
gain of +2V/V that is internally set with two 500thin-  
film resistors. The impedance of the internal feedback  
resistors must be taken into account when operating  
multiple MAX4313/MAX4314/MAX4315s in large multi-  
plexer applications.  
2) Do not us e IC s oc ke ts ; the y inc re a s e p a ra s itic  
capacitance and inductance.  
3) Keep signal lines as short and straight as possible.  
Do not make 90° turns; round all corners.  
4) Observe high-frequency bypassing techniques to  
maintain the amplifiers accuracy and stability.  
5) Use surface-mount components. They generally  
have shorter bodies and lower parasitic reactance,  
yielding better high-frequency performance than  
through-hole components.  
______________________________________________________________________________________ 13  
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
30  
75CABLE  
R
75Ω  
T
4
75CABLE  
IN0  
25  
20  
15  
10  
OUT  
OUT 8  
R
T
75Ω  
500Ω  
500Ω  
R
T
75CABLE  
75Ω  
5
IN1  
A0  
R
T
75Ω  
MAX4313  
GND  
1
7
0
50  
100  
150  
200  
250  
CAPACITIVE LOAD (pF)  
Figure 5. Video Line Driver  
Figure 8. Optimal Isolation Resistance vs. Capacitive Load  
4
3
4
3
2
15pF LOAD  
0–MAX4315  
2
120pF LOAD  
47pF LOAD  
10pF LOAD  
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
5pF LOAD  
90pF LOAD  
-2  
-3  
-4  
-5  
V
OUT  
= 100mVp-p  
1M  
V
OUT  
= 100mVp-p  
1M  
-6  
100k  
-6  
100k  
10M  
100M  
1G  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 9. Small-Signal Gain vs. Frequency with Load  
Capacitance and 27Isolation Resistor  
Figure 6. Small-Signal Gain vs. Frequency with Capacitive  
Load and No Isolation Resistor  
The bypass capacitors should include a 100nF, ceram-  
ic surface-mount capacitor between each supply pin  
and the ground plane, located as close to the package  
as possible. Optionally, place a 10µF tantalum capaci-  
tor at the power-supply pins’ point of entry to the PC  
board to ensure the integrity of incoming supplies. The  
power-supply trace should lead directly from the tanta-  
75CABLE  
4
IN0  
R
ISO  
OUT 8  
R
75Ω  
T
500Ω  
500Ω  
75CABLE  
C
L
R
L
5
IN1  
A0  
lum capacitor to the V  
and V pins. To minimize  
CC  
EE  
parasitic inductance, keep PC traces short and use sur-  
face-mount components.  
R
75Ω  
T
MAX4313  
GND  
If input termination resistors and output back-termination  
resistors are used, they should be surface-mount types,  
and should be placed as close to the IC pins as possible.  
1
7
Figure 7. Using an Isolation Resistor (R ) for High  
ISO  
Capacitive Loads  
Vid e o Lin e Drive r  
The MAX4310–MAX4315 are well-suited to drive coaxial  
transmission lines when the cable is terminated at both  
ends, as shown in Figure 5. Cable frequency response  
can cause variations in the signal’s flatness.  
14 ______________________________________________________________________________________  
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
0–MAX4315  
Table 2. Input Control Logic  
MAX4310/MAX4313  
A2 A1  
A0  
X
0
CHANNEL SELECTED  
SHDN  
0
1
1
None, High-Z Output  
0
1
1
MAX4311/MAX4314  
A2 A1  
A0  
X
0
CHANNEL SELECTED  
SHDN  
0
1
1
1
1
X
0
0
1
1
None, High-Z Output  
0
1
2
3
1
0
1
MAX4312/MAX4315  
A2 A1  
A0  
X
0
CHANNEL SELECTED  
SHDN  
Figure 10. High-Speed EV Board Layout—Component Side  
0
1
1
1
1
1
1
1
1
X
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
None, High-Z Output  
0
1
2
3
4
5
6
7
1
0
1
0
1
0
1
forms an L-C resonant circuit with the capacitive load,  
which causes peaking in the frequency response and  
degrades the amplifiers phase margin.  
Although the MAX4310–MAX4315 are optimized for AC  
performance and are not designed to drive highly capaci-  
tive loads, they are capable of driving up to 20pF without  
oscillations. However, some peaking may occur in the fre-  
quency domain (Figure 6). To drive larger capacitive  
loads or to reduce ringing, add an isolation resistor  
between the amplifiers output and the load (Figure 7).  
Figure 11. High-Speed EV Board Layout—Solder Side  
Drivin g Ca p a c it ive Lo a d s  
A correctly terminated transmission line is purely resis-  
tive and presents no capacitive load to the amplifier.  
Reactive loads decrease phase margin and may pro-  
duce excessive ringing and oscillation (see Typical  
Operating Characteristics).  
The value of R  
depends on the circuit’s gain and the  
ISO  
c a p a c itive loa d (Fig ure 8). Fig ure 9 s hows the  
MAX4310–MAX4315 frequency response with the isola-  
tion resistor and a capacitive load. With higher capaci-  
tive values, bandwidth is dominated by the RC network  
formed by R  
and C ; the bandwidth of the amplifier  
ISO  
L
itself is much higher. Also note that the isolation resistor  
forms a divider that decreases the voltage delivered to  
the load.  
Another concern when driving capacitive loads origi-  
nates from the amplifiers output impedance, which  
appears inductive at high frequencies. This inductance  
______________________________________________________________________________________ 15  
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
SMA connectors were used for best high-frequency  
performance. Inputs and outputs do not match a 75Ω  
line, but this does not affect performance since dis-  
tances are extremely short. However, in applications  
that require lead lengths greater than one-quarter of the  
wavelength of the highest frequency of interest, use  
constant-impedance traces.  
Dig it a l In t e rfa c e  
The multiplexer architecture of the MAX4310–MAX4315  
ensures that no two input channels are ever connected  
together. Channel selection is accomplished by apply-  
ing a b ina ry c od e to c ha nne l a d d re s s inp uts . The  
address decoder selects input channels, as shown in  
Table 2. All digital inputs are CMOS compatible.  
Fully assembled evaluation boards are available for the  
MAX4313 in an SO package.  
Hig h -S p e e d Eva lu a t io n Bo a rd  
Figures 10 and 11 show the evaluation board and pre-  
sent a suggested layout for the circuits. This board was  
d e ve lop e d us ing the te c hniq ue s d e s c rib e d in the  
Layout and Power-Supply Bypassing section of this  
data sheet. The smallest available surface-mount resis-  
tors were used for feedback and back-termination to  
minimize their distance from the part, reducing the  
capacitance associated with longer lead lengths.  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 156  
0–MAX4315  
Typ ic a l Op e ra t in g Circ u it  
+4V TO +10.5V  
3
0.1µF  
V
CC  
MAX4313  
5
4
VIDEO  
OUTPUT  
75CABLE  
75Ω  
IN1  
IN0  
A0  
OUT 8  
500Ω  
75Ω  
500Ω  
GND  
V
SHDN  
2
EE  
1
6
7
16 ______________________________________________________________________________________  
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
0–MAX4315  
P in Co n fig u ra t io n s  
TOP VIEW  
MAX4310  
A0  
1
2
3
4
8
7
6
5
OUT  
FB  
+
-
SHDN  
V
CC  
V
EE  
MUX  
IN0  
IN1  
SO/µMAX  
MAX4311  
MUX  
MAX4311  
MAX4312  
MUX  
A1  
A0  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
A1  
A0  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
A2  
A1  
A0  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OUT  
FB  
OUT  
FB  
OUT  
FB  
N.C.  
N.C.  
SHDN  
SHDN  
SHDN  
MUX  
V
CC  
V
CC  
V
CC  
V
EE  
V
EE  
V
EE  
IN0  
N.C.  
IN1  
IN0  
N.C.  
IN1  
IN0  
IN3  
N.C.  
IN2  
IN3  
IN7  
IN6  
IN5  
IN4  
IN1  
IN2  
IN3  
N.C.  
IN2  
8
N.C.  
N.C.  
SO  
QSOP  
SO/QSOP  
MAX4314  
MAX4315  
MAX4314  
MAX4313  
A2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
A1  
A0  
1
2
3
4
5
6
7
14 OUT  
A2  
A1  
A0  
1
16  
15  
14  
13  
12  
11  
10  
9
OUT  
OUT  
500Ω  
500Ω  
500Ω  
500Ω  
500Ω  
A1  
A0  
GND  
13  
2
3
4
5
6
7
8
GND  
SHDN  
GND  
1
2
3
4
8
7
6
5
A0  
OUT  
500Ω  
500Ω  
500Ω  
N.C.  
SHDN  
12  
11  
10  
9
SHDN  
GND  
SHDN  
MUX  
MUX  
MUX  
V
CC  
V
CC  
V
EE  
V
CC  
V
EE  
V
EE  
V
CC  
V
EE  
MUX  
IN0  
IN0  
N.C.  
IN1  
IN3  
N.C.  
IN2  
IN0  
IN7  
IN6  
IN5  
IN4  
IN3  
IN1  
IN0  
IN1  
IN2  
IN3  
N.C.  
IN1  
N.C.  
IN2  
SO/µMAX  
8
N.C.  
N.C.  
SO  
QSOP  
SO/QSOP  
N.C. = NOT INTERNALLY CONNECTED. TIE TO GROUND PLANE  
FOR OPTIMAL PERFORMANCE.  
______________________________________________________________________________________ 17  
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
P a c k a g e In fo rm a t io n  
0–MAX4315  
18 ______________________________________________________________________________________  
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
0–MAX4315  
P a c k a g e In fo rm a t io n (c o n t in u e d )  
______________________________________________________________________________________ 19  
Hig h -S p e e d , Lo w -P o w e r, S in g le -S u p p ly,  
Mu lt ic h a n n e l, Vid e o Mu lt ip le x e r-Am p lifie rs  
P a c k a g e In fo rm a t io n (c o n t in u e d )  
0–MAX4315  
20 ______________________________________________________________________________________  

相关型号:

MAX4313EUA+

Video Multiplexer, 1 Func, 2 Channel, BIPolar, PDSO8, MO-187CAA, MSOP-8
MAXIM

MAX4313EUA+T

Video Multiplexer, 1 Func, 2 Channel, BIPolar, PDSO8, MO-187CAA, MSOP-8
MAXIM

MAX4313EVKIT

+3V.400ksps.4/8 Channel.8-Bit ADCs with 1µ.A Power Down[MAX113/MAX117/MAX113/MAX117/MAX113/MAX117/MAX113C/D/MAX113CAG/MAX113CAG-T/MAX113CNG/MAX113EAG/MAX113EAG-T/MAX113ENG/MAX113MRG/MAX117C/D/MAX117CAI/MAX117CAI-T/MAX117CPI/MAX117EAI/MAX117EAI-T/MAX11
MAXIM

MAX4314

High-Speed, Low-Power, Single-Supply, Multichannel, Video Multiplexer-Amplifiers
MAXIM

MAX4314EEE

High-Speed, Low-Power, Single-Supply, Multichannel, Video Multiplexer-Amplifiers
MAXIM

MAX4314EEE+

Video Multiplexer, 1 Func, 4 Channel, BIPolar, PDSO16, 0.150 INCH, QSOP-16
MAXIM

MAX4314EEE+T

Video Multiplexer, 1 Func, 4 Channel, BIPolar, PDSO16, 0.150 INCH, QSOP-16
MAXIM

MAX4314ESD

High-Speed, Low-Power, Single-Supply, Multichannel, Video Multiplexer-Amplifiers
MAXIM

MAX4314ESD

4-CHANNEL, VIDEO MULTIPLEXER, PDSO14, 0.150 INCH, SOIC-14
ROCHESTER

MAX4314ESD+

暂无描述
MAXIM

MAX4314ESD+T

Video Multiplexer, 1 Func, 4 Channel, BIPolar, PDSO14, 0.150 INCH, SOIC-14
MAXIM

MAX4314ESD-T

暂无描述
MAXIM