MAX4367EUA+ [MAXIM]

Audio Amplifier, 0.33W, 1 Channel(s), 1 Func, Bipolar, PDSO8, MICRO, MAX-8;
MAX4367EUA+
型号: MAX4367EUA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Audio Amplifier, 0.33W, 1 Channel(s), 1 Func, Bipolar, PDSO8, MICRO, MAX-8

光电二极管
文件: 总18页 (文件大小:600K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2338; Rev 4; 11/05  
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
General Description  
Features  
Drives 330mW into 32(200mW into 16)  
0.02% THD+N at 1kHz (120mW into 32)  
Internal Bridged Configuration  
The MAX4366/MAX4367/MAX4368 are bridged audio  
power amplifiers intended for devices with internal  
speakers and headsets. The MAX4366/MAX4367/  
MAX4368 are capable of delivering 330mW of continu-  
ous power into a 32load, or 200mW into a 16load  
with 1% THD+N from a single 5V supply.  
No Output-Coupling Capacitors  
2.3V to 5.5V Single-Supply Operation  
2mA Supply Current  
The MAX4366/MAX4367/MAX4368 bridged outputs elimi-  
nate the need for output-coupling capacitors minimizing  
external component count. The MAX4366/MAX4367/  
MAX4368 also feature a low-power shutdown mode,  
clickless power-up/power-down and internal DC bias  
generation. The MAX4366 is a unity-gain stable, program-  
mable gain amplifier. The MAX4367/MAX4368 feature  
internally preset gains of 2V/V and 3V/V, respectively.  
Low-Power Shutdown Mode  
Clickless Power-Up and Shutdown  
Thermal Overload Protection  
Available in SOT23, TDFN, µMAX, and UCSP  
Packages  
All devices are available in space-saving 8-pin SOT23,  
Ordering Information  
®
TDFN, and µMAX packages, and an 8-bump chip-  
PIN/BUMP-  
PACKAGE  
TOP  
MARK  
scale package (UCSP™).  
PART  
TEMP RANGE  
Applications  
MAX4366EBL-T -40°C to +85°C 8 UCSP-8  
AAK  
AAIO  
Cellular Phones  
Two-Way Radios  
PDAs  
MAX4366EKA-T -40°C to +85°C 8 SOT23-8  
MAX4366EUA  
-40°C to +85°C 8 µMAX  
MAX4366ETA-T -40°C to +85°C 8 TDFN-8-EP*  
MAX4366ETA+T -40°C to +85°C 8 TDFN-8-EP*  
AFZ  
+AFZ  
Headphones  
Headsets  
*EP = Exposed paddle.  
+Denotes lead-free package.  
General-Purpose Audio  
Ordering Information continued at end of data sheet.  
Selector Guide and Functional Diagrams appear at end of  
data sheet.  
Typical Operating Circuit  
Pin Configurations  
TOP VIEW  
(BUMP SIDE  
DOWN)  
V
CC  
1
2
3
V
CC  
SHDN  
OUT-  
CLICKLESS/POPLESS  
SHUTDOWNCONTROL  
A
OUT+  
IN-  
IN+  
BIAS  
B
MAX4366  
MAX4367  
MAX4368  
V
GND  
BIAS  
CC  
IN+  
IN-  
AUDIO  
INPUT  
OUT+  
GND  
C
OUT-  
SHDN  
MAX4367  
MAX4368  
UCSP  
Pin Configurations continued at end of data sheet.  
UCSP is a trademark and µMAX is a registered trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
ABSOLUTE MAXIMUM RATINGS  
CC  
IN+, IN-, BIAS, SHDN to GND....................-0.3V to (V  
V
to GND..............................................................-0.3V to +6V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Bump Temperature (soldering) (Note 2)  
+ 0.3V)  
CC  
Output Short Circuit to V  
or GND (Note 1).............Continuous  
CC  
Output Short Circuit (OUT+ to OUT-) (Note 1)...........Continuous  
Continuous Power Dissipation (T = +70°C)  
A
8-Bump UCSP (derate 4.7mW/°C above +70°C)..........379mW  
8-Pin SOT23 (derate 9.7mW/°C above +70°C).............777mW  
8-Pin µMAX (derate 4.5mW/°C above +70°C)..............362mW  
8-Pin TDFN (derate 24.4mW°C above +70°C) ...........1951mW  
Infrared (15s) ................................................................+220°C  
Vapor Phase (60s) ........................................................+215°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 5V, R = , R = R = 30k, C  
= 1µF to GND, SHDN = GND, IN+ = BIAS, T = T  
to T  
, unless otherwise noted.  
CC  
L
IN  
F
BIAS  
A
MIN  
MAX  
Typical values are at T = +25°C.) (Note 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Inferred from PSRR test  
MIN  
TYP  
MAX  
5.5  
UNITS  
V
Supply Voltage Range  
Supply Current  
V
2.3  
1.8  
CC  
CC  
I
(Note 4)  
2
4.3  
mA  
µA  
Shutdown Supply Current  
I
SHDN = V  
35  
100  
SHDN  
CC  
V
IH  
SHDN Threshold  
V
nA  
V
V
0.8  
IL  
SHDN Input Bias Current  
Common-Mode Bias Voltage  
-400  
V
/2  
CC  
V
/2  
CC  
V
(Note 5)  
V
/2  
CC  
BIAS  
- 5%  
+ 5%  
MAX4366, R = ∞  
5
5
15  
15  
15  
IN  
Output Offset Voltage  
V
mV  
MAX4367, IN- = open  
MAX4368, IN- = open  
OS  
5
7.5  
100  
2
MAX4366 (open loop)  
MAX4367 (internally set)  
MAX4368 (internally set)  
dB  
Differential Voltage Gain  
A
(Note 6)  
V
V/V  
3
V
1.0  
-
CC  
Input Common-Mode Range  
V
0.3  
V
CM  
Differential Input Resistance  
Input Resistance  
R
MAX4366, V  
- V = 10mV  
500  
20  
kΩ  
kΩ  
IN(DIFF)  
IN+  
IN-  
V
- = 0V to V  
(MAX4367/MAX4368)  
IN  
CC  
T
T
= +25°C  
70  
66  
80  
A
A
V
5.5V  
= 2.3V to  
CC  
Power-Supply Rejection Ratio  
Common-Mode Rejection Ratio  
PSRR  
dB  
dB  
= T  
to T  
MAX  
MIN  
CMRR  
0V V  
V  
- 1.0V (MAX4366)  
80  
CM  
CC  
2.7V V  
0.6V V  
5.5V,  
CC  
87  
125  
V  
- 0.6V  
- 0.6V  
OUT  
CC  
Output Source/Sink Current  
Output Power  
I
(Note 7)  
mA  
OUT  
2.3V V  
0.6V V  
2.7V,  
CC  
115  
V  
OUT  
CC  
f = 1kHz,  
THD+N <1%  
(Note 8)  
R = 16Ω  
L
60  
200  
330  
P
mW  
O
R = 32Ω  
L
120  
2
_______________________________________________________________________________________  
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 5V, R = , R = R = 30k, C  
= 1µF to GND, SHDN = GND, IN+ = BIAS, T = T  
to T  
, unless otherwise noted.  
CC  
L
IN  
F
BIAS  
A
MIN  
MAX  
Typical values are at T = +25°C.) (Note 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
A = -2V/V, f = 1kHz  
THD+N (MAX4366)  
(Notes 9 and 10)  
V
P
P
= 60mW, R = 16Ω  
0.04  
0.02  
O
O
L
Total Harmonic Distortion Plus  
Noise  
%
= 120mW, R = 32Ω  
0.15  
L
Noise  
f = 10kHz, referred to input  
To V  
20  
185  
215  
165  
10  
nV/Hz  
CC  
Short-Circuit Current  
I
t
mA  
SC  
To GND  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
Power-Up Time  
°C  
°C  
60  
ms  
ms  
ms  
PU  
Shutdown Time  
t
20  
SHDN  
Enable Time from Shutdown  
t
60  
ENABLE  
Note 1: Continuous power dissipation must also be observed.  
Note 2: This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device  
can be exposed to during board-level solder attach and rework. This limit permits only the use of the solder profiles recom-  
mended in the industry-standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and convection reflow.  
Preheating is required. Hand or wave soldering is not allowed.  
Note 3: All specifications are 100% tested at T = +25°C; temperature limits are guaranteed by design.  
A
Note 4: Quiescent power-supply current is specified and tested with no load on the outputs. Quiescent power-supply current  
depends on the offset voltage when a practical load is connected to the amplifier.  
Note 5: Common-mode bias voltage is the voltage on BIAS and is nominally V /2.  
CC  
Note 6: Differential voltage gain for the MAX4366 is specified as an open-loop parameter because external resistors are used to set  
the closed-loop gain. The MAX4367/MAX4368 contain internal feedback resistors that preset the differential voltage gain.  
Differential voltage gain is defined as (V  
- V  
) / (V - V  
). All gains are specified over an output voltage range of  
BIAS  
OUT+  
OUT-  
IN  
0.6V V  
4.4V.  
OUT  
Note 7: Specification applies to either output. An amplifier peak output current of 87mA is required to support an output load power  
of 60mW for a 16load, or 120mW for a 32load.  
Note 8: Output power specifications are inferred from the output current test. For 60mW into a 16load, I  
is 87mA and  
is 2.77V per amplifier.  
OUT(PEAK)  
V
is 1.39V per amplifier. For 120mW into a 32load, I  
is 87mA and V  
OUT(P-P)  
OUT(PEAK)  
OUT(P-P)  
Note 9: Guaranteed by design. Not production tested.  
Note 10: Measurement bandwidth for THD+N is 20Hz to 20kHz.  
Note 11: Power-up and shutdown times are for the output to reach 90% of full scale with C  
= 1µF.  
BIAS  
_______________________________________________________________________________________  
3
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
Typical Operating Characteristics  
(Bridge-Tied Load, THD+N Bandwidth = 22Hz to 22kHz, C  
= 1µF.)  
BIAS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
1
1
1
V
= 5V  
= 2V/V  
CC  
V
= 5V  
= 3V/V  
CC  
A
V
A
V
R = 16Ω  
L
P
OUT  
= 10mW  
R = 16Ω  
L
P
= 10mW  
OUT  
P
OUT  
= 10mW  
0.1  
0.1  
0.1  
P
OUT  
= 25mW  
P
OUT  
= 25mW  
P
= 60mW  
P
= 25mW  
OUT  
OUT  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
P
OUT  
= 60mW  
P
= 60mW  
100  
OUT  
V
CC  
= 5V  
A
= 4V/V  
V
R = 16Ω  
L
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
1
V
= 5V  
= 2V/V  
CC  
V
= 5V  
CC  
A
V
A = 3V/V  
V
R = 32Ω  
L
R = 32Ω  
L
P
= 10mW  
OUT  
0.1  
0.1  
0.1  
P
= 25mW  
OUT  
P
= 60mW  
OUT  
P
= 50mW  
OUT  
P
= 50mW  
OUT  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
P
= 75mW  
OUT  
P
= 75mW  
OUT  
V
= 5V  
CC  
P
= 120mW  
P
= 120mW  
1k  
A
= 20V/V  
OUT  
OUT  
V
R = 16Ω  
L
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
10k  
100k  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
1
V
= 3V  
= 2V/V  
V
= 5V  
= 4V/V  
CC  
CC  
P
= 50mW  
A
OUT  
A
V
V
R = 16Ω  
L
R = 32Ω  
L
P
= 50mW  
OUT  
0.1  
0.1  
0.1  
P
OUT  
= 10mW  
P
OUT  
= 75mW  
P
= 75mW  
OUT  
P
OUT  
= 120mW  
P
= 25mW  
OUT  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
P
= 120mW  
P
= 60mW  
OUT  
OUT  
V
= 5V  
CC  
A
= 20V/V  
V
R = 32Ω  
L
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
4
_______________________________________________________________________________________  
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
Typical Operating Characteristics (continued)  
(Bridge-Tied Load, THD+N Bandwidth = 22Hz to 22kHz, C  
= 1µF.)  
BIAS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
1
1
1
V
= 3V  
CC  
A
= 3V/V  
P
OUT  
= 10mW  
V
L
R = 16Ω  
P
= 60mW  
OUT  
P
OUT  
= 25mW  
0.1  
P
OUT  
= 10mW  
0.1  
0.1  
P
= 10mW  
OUT  
P
= 25mW  
OUT  
P
= 60mW  
OUT  
P
OUT  
= 25mW  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
P
= 60mW  
OUT  
V
= 3V  
= 4V/V  
V
CC  
= 3V  
CC  
A
A = 20V/V  
V
V
R = 16Ω  
L
R = 16Ω  
L
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
1
V
= 3V  
= 2V/V  
V
= 3V  
CC  
V
= 3V  
= 4V/V  
CC  
CC  
A
A = 3V/V  
A
V
V
V
R = 32Ω  
L
R = 32Ω  
L
R = 32Ω  
L
P
OUT  
= 10mW  
P
= 10mW  
OUT  
P
OUT  
= 10mW  
0.1  
0.1  
0.1  
P
OUT  
= 25mW  
P
OUT  
= 25mW  
P
= 25mW  
OUT  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
P
= 50mW  
OUT  
P
= 50mW  
OUT  
100  
P
= 50mW  
OUT  
10  
100  
1k  
10k  
100k  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
1
100  
100  
P
= 10mW  
OUT  
P
= 25mW  
OUT  
10  
10  
f = 10kHz  
0.1  
0.01  
1
1
f = 10kHz  
P
= 50mW  
OUT  
f = 1kHz  
0.1  
0.1  
V
= 3V  
V
= 5V  
= 2V/V  
V
= 5V  
= 4V/V  
0.01  
0.001  
CC  
0.01  
0.001  
CC  
CC  
f = 1kHz  
A
= 20V/V  
A
A
V
V
V
R = 32Ω  
L
R = 16Ω  
L
R = 16Ω  
L
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
100  
200  
300  
400  
0
100  
200  
300  
400  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
_______________________________________________________________________________________  
5
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
Typical Operating Characteristics (continued)  
(Bridge-Tied Load, THD+N Bandwidth = 22Hz to 22kHz, C  
= 1µF.)  
BIAS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
100  
100  
100  
V
CC  
= 5V  
V
= 3V  
= 2V/V  
CC  
A
= 2V/V  
V
L
A
V
R = 32Ω  
10  
10  
10  
R = 16Ω  
L
1
1
1
f = 10kHz  
f = 10kHz  
0.1  
0.1  
0.1  
f = 10kHz  
f = 1kHz  
V
= 5V  
= 4V/V  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
CC  
f = 1kHz  
100  
A
V
f = 1kHz  
75  
R = 32Ω  
L
0
100  
200  
300  
400  
0
200  
300  
400  
0
150  
225  
300  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
100  
100  
100  
V
= 3V  
CC  
A
= 2V/V  
V
L
f = 10kHz  
10  
10  
10  
R = 32Ω  
f = 10kHz  
1
1
1
f = 10kHz  
0.1  
0.1  
0.1  
V
= 3V  
= 4V/V  
V
= 3V  
CC  
0.01  
0.001  
f = 1kHz  
0.01  
0.001  
0.01  
0.001  
CC  
f = 1kHz  
A
A = 4V/V  
V
V
f = 1kHz  
R = 16Ω  
L
R = 32Ω  
L
0
75  
150  
225  
300  
0
75  
150  
225  
300  
0
75  
150  
225  
300  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER vs. SUPPLY VOLTAGE  
OUTPUT POWER vs. SUPPLY VOLTAGE  
500  
400  
300  
200  
100  
0
600  
R = 32Ω  
L
R = 16Ω  
L
500  
400  
THD+N = 10%  
THD+N = 10%  
300  
200  
100  
0
THD+N = 1%  
THD+N = 1%  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6
_______________________________________________________________________________________  
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
Typical Operating Characteristics (continued)  
(Bridge-Tied Load, THD+N Bandwidth = 22Hz to 22kHz, C  
= 1µF.)  
BIAS  
OUTPUT POWER vs. LOAD  
OUTPUT POWER vs. LOAD  
450  
250  
200  
150  
100  
50  
400  
THD+N = 10%  
THD+N = 10%  
A
= 20V/V  
A
= 20V/V  
V
V
350  
300  
250  
200  
150  
100  
50  
THD+N = 1%  
THD+N = 1%  
= 2V/V  
A
= 2V/V  
V
A
V
V
= 5V  
V
CC  
= 3V  
CC  
f = 1kHz  
f = 1kHz  
0
0
10  
100  
1k  
10k  
10  
100  
1k  
10k  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
POWER DISSIPATION vs. OUTPUT POWER  
POWER DISSIPATION vs. OUTPUT POWER  
500  
400  
300  
200  
100  
0
200  
150  
V
A
= 5V  
= 2V/V  
V
A
= 3V  
= 2V/V  
CC  
V
CC  
V
R = 16Ω  
L
R = 16Ω  
L
100  
R = 32Ω  
50  
0
L
R = 32Ω  
L
0
50  
100  
150  
200  
0
20  
40  
60  
80  
100  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
POWER DISSIPATION vs. OUTPUT POWER  
GAIN AND PHASE vs. FREQUENCY  
200  
150  
100  
50  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
V
A
= 5V  
= 2V/V  
CC  
V
GAIN  
SINGLE ENDED  
R = 16Ω  
L
PHASE  
V
A
= 5V  
= 1000V/V  
CC  
V
R = 32Ω  
L
SINGLE ENDED  
NO LOAD  
0
0
10  
20  
30  
40  
50  
100  
1k  
10k  
100k  
1M  
10M 100M  
OUTPUT POWER (mW)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
7
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
Typical Operating Characteristics (continued)  
(Bridge-Tied Load, THD+N Bandwidth = 22Hz to 22kHz, C  
= 1µF.)  
BIAS  
DIFFERENTIAL POWER-SUPPLY  
REJECTION RATIO vs. FREQUENCY  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
-10  
-20  
-30  
-40  
V
= 3V  
CC  
-50  
-60  
-70  
-80  
V
= 5V  
CC  
0
1
2
3
4
5
10  
100  
1k  
10k  
100k  
1M  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
45  
40  
35  
30  
25  
20  
15  
10  
5
V
CC  
= 5V  
V
= 3V  
CC  
0
-40  
-15  
10  
35  
60  
85  
0
1
2
3
4
5
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
CC  
= 5V  
V
= 3V  
CC  
0
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
Pin Description  
PIN/BUMP  
NAME  
FUNCTION  
SOT23/  
µMAX  
TDFN  
UCSP  
C3  
1
1
2
SHDN  
BIAS  
Active-High Shutdown. Connect SHDN to GND for normal operation.  
DC Bias Bypass. See BIAS Capacitor section for capacitor selection. Connect  
2
C1  
C
capacitor from BIAS to GND.  
BIAS  
3
4
3
4
A3  
A1  
A2  
B3  
B1  
C2  
IN+  
IN-  
Noninverting Input  
Inverting Input  
5
5
OUT+  
Bridged Amplifier Positive Output  
Power Supply  
6
6
V
CC  
7
7
GND  
OUT-  
EP  
Ground  
8
8
Bridged Amplifier Negative Output  
Exposed Paddle. Connect exposed pad to GND.  
EP  
Detailed Description  
The MAX4366/MAX4367/MAX4368 bridged audio  
power amplifiers can deliver 330mW into a 32load, or  
200mW into a 16load, while operating from a single  
5V supply. These devices consist of two high-output-  
current op amps configured as a bridge-tied load (BTL)  
amplifier (see Functional Diagram). The closed-loop  
gain of the input op amp sets the single-ended gain of  
the device. Two external resistors set the gain of the  
MAX4366 (see Gain-Setting Resistors section). The  
MAX4367/MAX4368 feature internally fixed gains of  
2V/V and 3V/V, respectively. The output of the first  
amplifier serves as the input to the second amplifier,  
which is configured as an inverting unity-gain follower  
in all three devices. This results in two outputs, identical  
in magnitude, but 180° out of phase.  
OUT+  
+1  
-1  
RL  
2 x OUT  
OUT-  
Figure 1. Bridge-Tied Load Configuration  
high disables the device’s bias circuitry and drives  
OUT+, OUT-, and BIAS to GND. Connect SHDN to  
GND for normal operation.  
Applications Information  
BIAS  
The MAX4366/MAX4367/MAX4368 feature an internally  
Bridge-Tied Load  
The MAX4366/MAX4367/MAX4368 are designed to  
drive a load differentially, a configuration referred to as  
bridge-tied load (BTL). The BTL configuration (Figure 1)  
offers advantages over the single-ended configuration,  
where one side of the load is connected to ground.  
Driving the load differentially doubles the output volt-  
age compared to a single-ended amplifier under similar  
conditions. The differential gain of the device is twice  
the closed-loop gain of the input amplifier. The effective  
gain of the MAX4366 is given by:  
generated common-mode bias voltage of V /2 refer-  
CC  
enced to GND. BIAS provides both click-and-pop sup-  
pression and the DC bias level for the audio signal.  
BIAS is internally connected to the noninverting input of  
one amplifier, and should be connected to the nonin-  
verting input of the other amplifier for proper signal  
biasing (Typical Application Circuit). Choose the value  
of the bypass capacitor as described in the BIAS  
Capacitor section.  
Shutdown  
The MAX4366/MAX4367/MAX4368 feature a 35µA, low-  
power shutdown mode that reduces quiescent current  
consumption and extends battery life. Pulling SHDN  
RF  
AVD = 2 ×  
R
IN  
_______________________________________________________________________________________  
9
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
The effective gains of the MAX4367 and MAX4368 are  
= 2V/V and A = 3V/V respectively. Substituting 2  
In single-ended mode, the load must be capacitively  
coupled to the device output to block the half-supply  
DC voltage from the load (see Output Coupling  
Capacitor section). Leave the unused output floating.  
A
VD  
x V  
VD  
for V  
into the following equations  
OUT(P-P)  
OUT(P-P)  
yields four times the output power due to doubling of  
the output voltage.  
Power Dissipation  
Under normal operating conditions, linear power ampli-  
fiers like the MAX4366/MAX4367/MAX4368 can dissi-  
pate a significant amount of power. The maximum  
power dissipation for each package is given in the  
Absolute Maximum Ratings section under Continuous  
Power Dissipation or can be calculated by the following  
equation:  
V
OUT(PP)  
V
=
=
RMS  
2 2  
2
V
RMS  
P
OUT  
R
L
Since the differential outputs are biased at midsupply,  
there is no net DC voltage across the load. This elimi-  
nates the need for DC-blocking capacitors required for  
single-ended amplifiers. These capacitors can be  
large, expensive, consume board space, and degrade  
low-frequency performance.  
T
J(MAX) -TA  
PDISS(MAX)  
=
ΘJA  
where T  
is +150°C and T is the reciprocal of the  
J(MAX)  
A
derating factor in °C/W as specified in the Absolute  
Single-Ended Configuration  
The MAX4366/MAX4367/MAX4368 can be used as sin-  
gle-ended amplifiers (Figure 2). The gain of the device  
in single-ended mode is 1/2 the gain in BTL configura-  
tion and the output power is reduced by a factor of 4.  
The single-ended gains of the MAX4367 and MAX4368  
are 1V/V and 1.5V/V, respectively. Set the MAX4366  
gain according to the Gain-Setting Resistors section.  
5
OUT+  
COUT  
RL  
MAX4367  
8
OUT-  
Figure 2. MAX4367 Single-Ended Configuration  
V
CC  
6
CLICKLESS/  
V
CC  
SHDN  
OUT-  
1
8
POPLESS  
SHUTDOWN  
CONTROL  
50kΩ  
BIAS  
2
C
BIAS  
50kΩ  
10kΩ  
3
4
IN+  
IN-  
10kΩ  
OUT+  
GND  
5
7
C
IN  
R
IN  
AUDIO INPUT  
MAX4366  
R
F
Figure 3. MAX4366 Typical Application Circuit  
10 ______________________________________________________________________________________  
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
V
CC  
6
CLICKLESS/  
POPLESS  
SHUTDOWN  
CONTROL  
V
CC  
SHDN  
OUT-  
1
8
50kΩ  
50kΩ  
2
BIAS  
C
BIAS  
10kΩ  
3
4
IN+  
IN-  
10kΩ  
OUT+  
GND  
5
7
C
IN  
R
IN  
AUDIO  
INPUT  
MAX4367  
MAX4368  
R
F
MAX4367: R = R = 20kΩ  
IN  
F
MAX4368: R = 20kΩ, R = 30kΩ  
IN  
F
PIN NUMBERS REFER TO SOT23, TDFN, AND µMAX PACKAGES  
Figure 4. MAX4367/MAX4368 Typical Application Circuit  
Maximum Ratings section. For example, Θ of a µMAX  
Component Selection  
JA  
package is 222°C/W.  
Gain-Setting Resistors  
The increase in power delivered by the BTL configura-  
tion directly results in an increase in internal power dis-  
sipation over the single-ended configuration. If the  
power dissipation exceeds the maximum allowed for a  
External feedback components set the gain of the  
MAX4366. Resistors R and R (Figure 3) set the gain  
F
IN  
of the input amplifier as follows:  
given package, either reduce V , increase load  
CC  
R
F
A
= 2  
VD  
impedance, decrease the ambient temperature, or add  
heat sinking to the device. Large output, supply, and  
ground traces improve the maximum power dissipation  
in the package.  
R
IN  
The gain of the device in a single-ended configuration  
is half the gain of the BTL case. Choose R between  
F
Thermal overload protection limits total power dissipa-  
tion in the MAX4366/MAX4367/MAX4368. When the  
junction temperature exceeds +165°C, the thermal pro-  
tection circuitry disables the amplifier output stage. The  
amplifiers are re-enabled once the junction temperature  
cools by +10°C. This results in a pulsing output under  
continuous thermal overload conditions avoiding dam-  
age to the port.  
10kand 50k. The gains of the MAX4367/MAX4368  
are set internally (Figure 4).  
Input Filter  
The input capacitor (C ), in conjunction with R forms  
IN  
IN  
a highpass filter that removes the DC bias from an  
incoming signal. The AC-coupling capacitor allows the  
amplifier to bias the signal to an optimum DC level.  
Assuming zero source impedance, the -3dB point of  
the highpass filter is given by:  
1
f
=
-3dB  
2πR C  
IN IN  
______________________________________________________________________________________ 11  
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
Choose R according to the Gain-Setting Resistors  
IN  
section. Choose the C such that f  
the lowest frequency of interest. Setting f  
affects the low-frequency response of the system.  
is well below  
-3dB  
IN  
-3dB  
too high  
TIP  
(SIGNAL)  
SLEEVE  
(GND)  
Other considerations when designing the input filter  
include the constraints of the overall system, the actual  
frequency band of interest and click-and-pop suppres-  
sion. Although high-fidelity audio calls for a flat-gain  
response between 20Hz and 20kHz, portable voice-  
reproduction devices such as cellular phones and two-  
way radios need only concentrate on the frequency  
range of the spoken human voice (typically 300Hz to  
3.5kHz). In addition, speakers used in portable devices  
typically have a poor response below 150Hz. Taking  
these two factors into consideration, the input filter may  
not need to be designed for a 20Hz to 20kHz response,  
saving both board space and cost due to the use of  
smaller capacitors.  
Figure 5. Typical 2-Wire Headphone Plug  
In addition to click-and-pop suppression and frequency  
band considerations, the load impedance is another  
concern when choosing C  
. Load impedance can  
OUT  
vary, changing the -3dB point of the output filter. A  
lower impedance increases the corner frequency,  
BIAS Capacitor  
The BIAS bypass capacitor, C  
improves power-  
BIAS  
degrading low-frequency response. Select C  
such  
OUT  
supply rejection ratio and THD+N by reducing power-  
supply noise at the common-mode bias node, and  
serves as the primary click-and-pop suppression  
that the worst-case load/C  
adequate response.  
combination yields an  
OUT  
mechanism. C  
is fed from an internal 25ksource,  
BIAS  
Clickless/Popless Operation  
Proper selection of AC-coupling capacitors and C  
and controls the rate at which the common-mode bias  
voltage rises at startup and falls during shutdown. For  
optimum click-and-pop suppression, ensure that the  
BIAS  
achieves clickless/popless shutdown and startup. The  
value of C determines the rate at which the mid-rail  
BIAS  
input capacitor (C ) is fully charged (ten time con-  
IN  
bias voltage rises on startup and falls when entering  
shutdown. The size of the input capacitor also affects  
stants) before C  
. The value of C  
BIAS  
for best click-  
BIAS  
and-pop suppression is given by:  
clickless/popless operation. On startup, C is charged  
IN  
to its quiescent DC voltage through the feedback resis-  
C R  
25kΩ  
IN IN  
tor (R ) from the output. This current creates a voltage  
F
C
10  
BIAS  
transient at the amplifier’s output, which can result in an  
audible pop. Minimizing the size of C reduces this  
IN  
In addition, a larger C  
value yields higher PSRR,  
especially in single-ended applications.  
BIAS  
effect, improving click-and-pop suppression.  
Supply Bypassing  
Proper supply bypassing ensures low-noise, low-distor-  
tion performance. Place a 0.1µF ceramic capacitor in par-  
Output-Coupling Capacitor  
The MAX4366/MAX4367/MAX4368 require output-cou-  
pling capacitors only when configured as a single-  
ended amplifier. The output capacitor blocks the DC  
component of the amplifier output, preventing DC cur-  
rent flowing to the load. The output capacitor and the  
load impedance form a highpass filter with the -3dB  
point determined by:  
allel with a 10µF capacitor from V  
to GND. Locate the  
CC  
bypass capacitors as close to the device as possible.  
Headphone Applications  
The MAX4366/MAX4368 can drive a mono headphone  
when configured as a single-ended amplifier. Typical 2-  
wire headphone plugs consist of a tip and sleeve. The tip  
is the signal carrier while the sleeve is the ground con-  
nection (Figure 5). Figure 6 shows the device configured  
to drive headphones. OUT+ is connected to the tip,  
delivering the signal to the headphone, while OUT-  
remains unconnected.  
1
f
=
-3dB  
2πR C  
L
OUT  
As with the input capacitor, choose the output capacitor  
(C ) such that f is well below the lowest frequen-  
OUT  
-3dB  
cy of interest. Setting f  
too high affects the low-  
-3dB  
frequency response of the system.  
12 ______________________________________________________________________________________  
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
OUT+  
C
EARBUD SPEAKER  
JACK  
OUT  
5
8
MAX4366  
MAX4367  
MAX4368  
HEADPHONE JACK  
OUT+  
OUT-  
COUT  
MAX4366  
MAX4367  
MAX4368  
OUT-  
INTERNAL  
LOUDSPEAKER  
Figure 7. Headset with Internal Speaker Application Circuit  
Figure 6. MAX4367 Headphone Application Circuit  
tion passes the audio signal unattenuated. Setting the  
wiper to the lowest position fully attenuates the input.  
Use the 100kversion of the MAX5160.  
Layout Considerations  
Good layout improves performance by decreasing the  
amount of stray capacitance and noise at the amplifi-  
er’s inputs and outputs. Decrease stray capacitance by  
minimizing PC board trace lengths, using surface-  
mount components and placing external components  
as close to the device as possible.  
MAX5160  
3 H  
6 L  
AUDIO  
INPUT  
5
8
OUT+  
OUT-  
W
5
4
IN-  
MAX4367  
MAX4368  
CIN  
UCSP Considerations  
For general UCSP information and PC layout considera-  
tions, please refer to the Maxim Application Note:  
UCSP–A Wafer-Level Chip-Scale Package.  
Figure 8. MAX4367/MAX5160 Volume Control Circuit  
Wireless-Phone Headset Application  
Many wireless telephones feature an earbud speaker/in-  
line microphone combination for hands-free use. One  
common solution is to use a BTL amplifier that drives the  
internal speaker and an earplug jack that mutes the inter-  
nal speaker by physically disconnecting OUT- when a  
headset is plugged in (Figure 7). The headset is driven  
single-endedly, requiring an output-coupling capacitor,  
C , and resulting in a 4x reduction in output power.  
OUT  
Adding Volume Control  
The addition of a digital potentiometer provides simple  
volume control. Figure 8 shows the MAX4367/MAX4368  
with the MAX5160 digital potentiometer used as an  
input attenuator. Connect the high terminal of the  
MAX5160 to the audio input, the low terminal to ground  
and the wiper to C . Setting the wiper to the top posi-  
IN  
______________________________________________________________________________________ 13  
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
Ordering Information (continued)  
Pin Configurations (continued)  
PIN/BUMP-  
PACKAGE  
TOP  
MARK  
PART  
TEMP RANGE  
TOP VIEW  
MAX4367EBL-T -40°C to +85°C 8 UCSP-8  
AAL  
AAIP  
MAX4367EKA-T -40°C to +85°C 8 SOT23-8  
8
7
6
5
SHDN  
BIAS  
IN+  
1
2
3
4
8
7
6
5
OUT-  
GND  
MAX4367EUA  
-40°C to +85°C 8 µMAX  
MAX4367ETA-T -40°C to +85°C 8 TDFN-8-EP*  
MAX4367ETA+T -40°C to +85°C 8 TDFN-8-EP*  
MAX4368EBL-T -40°C to +85°C 8 UCSP-8  
MAX4368EKA-T -40°C to +85°C 8 SOT23-8  
AGA  
+AGA  
AAM  
AAIQ  
MAX4366  
MAX4367  
MAX4368  
MAX4366  
MAX4367  
MAX4368  
V
CC  
*EXPOSED PAD.  
CONNECT TO GND.  
IN-  
OUT+  
2
3
1
4
MAX4368EUA  
-40°C to +85°C 8 µMAX  
SOT23/µMAX  
MAX4368ETA-T -40°C to +85°C 8 TDFN-8-EP*  
MAX4368ETA+T -40°C to +85°C 8 TDFN-8-EP*  
AGB  
+AGB  
TDFN  
(3mm x 3mm x 0.8mm)  
*EP = Exposed paddle.  
+Denotes lead-free package.  
Selector Guide  
PART  
GAIN  
External  
2V/V  
MAX4366  
MAX4367  
MAX4368  
3V/V  
14 ______________________________________________________________________________________  
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
Functional Diagrams  
V
CC  
V
CC  
50kΩ  
50kΩ  
MAX4367  
MAX4368  
50kΩ  
50kΩ  
MAX4366  
BIAS  
BIAS  
OUT-  
OUT+  
CLICKLESS/  
POPLESS  
OUT-  
OUT+  
SHDN  
CLICKLESS/  
POPLESS  
SHUTDOWN  
CONTROL  
SHUTDOWN  
CONTROL  
SHDN  
10kΩ  
IN+  
IN-  
10kΩ  
10kΩ  
IN+  
IN-  
10kΩ  
20kΩ  
R *  
F
GND  
*R = 30k(MAX4368)  
F
F
GND  
R = 20k(MAX4367)  
Chip Information  
TRANSISTOR COUNT: 669  
PROCESS: Bipolar  
______________________________________________________________________________________ 15  
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
SEE DETAIL "A"  
SYMBOL  
MIN  
MAX  
e
b
A
0.90  
0.00  
0.90  
0.28  
0.09  
2.80  
2.60  
1.50  
0.30  
1.45  
0.15  
1.30  
0.45  
0.20  
3.00  
3.00  
1.75  
0.60  
C
L
A1  
A2  
b
C
D
E
C
C
L
E1  
L
E
E1  
L
0.25 BSC.  
L2  
e
PIN 1  
I.D. DOT  
(SEE NOTE 6)  
0.65 BSC.  
1.95 REF.  
0  
e1  
0
8∞  
e1  
D
C
C
L
L2  
A2  
A
GAUGE PLANE  
A1  
SEATING PLANE  
C
0
L
NOTE:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. FOOT LENGTH MEASURED FROM LEAD TIP TO UPPER RADIUS OF  
HEEL OF THE LEAD PARALLEL TO SEATING PLANE C.  
DETAIL "A"  
3. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR.  
4. PACKAGE OUTLINE INCLUSIVE OF SOLDER PLATING.  
5. COPLANARITY 4 MILS. MAX.  
6. PIN 1 I.D. DOT IS 0.3 MM ÿ MIN. LOCATED ABOVE PIN 1.  
PROPRIETARY INFORMATION  
TITLE:  
7. SOLDER THICKNESS MEASURED AT FLAT SECTION OF LEAD  
BETWEEN 0.08mm AND 0.15mm FROM LEAD TIP.  
PACKAGE OUTLINE, SOT-23, 8L BODY  
8. MEETS JEDEC MO178.  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0078  
D
1
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MIN  
-
MAX  
0.043  
0.006  
0.037  
-
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
0.014  
0.007  
0.120  
E
H
Ø0.50±0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.6±0.1  
E
H
0.116  
0.188  
0.016  
0°  
0.120  
2.95  
4.78  
0.41  
0°  
3.05  
5.03  
0.66  
6°  
0.198  
0.026  
6°  
L
1
1
α
S
0.6±0.1  
0.0207 BSC  
0.5250 BSC  
D
BOTTOM VIEW  
TOP VIEW  
A1  
A2  
A
c
α
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
16 ______________________________________________________________________________________  
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
A2  
PIN 1 ID  
N
0.35x0.35  
b
[(N/2)-1] x e  
REF.  
PIN 1  
INDEX  
AREA  
E
E2  
DETAIL A  
e
A1  
k
C
C
L
L
A
L
L
e
e
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
-DRAWING NOT TO SCALE-  
21-0137  
G
2
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
0.80  
3.10  
3.10  
0.05  
0.40  
A
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
DOWNBONDS  
ALLOWED  
PKG. CODE  
T633-1  
N
6
D2  
E2  
e
JEDEC SPEC  
b
[(N/2)-1] x e  
1.90 REF  
1.90 REF  
1.95 REF  
1.95 REF  
1.95 REF  
2.00 REF  
2.40 REF  
2.40 REF  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
MO229 / WEEA  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEEC  
0.40±0.05  
0.40±0.05  
0.30±0.05  
0.30±0.05  
0.30±0.05  
NO  
NO  
T633-2  
6
T833-1  
8
NO  
T833-2  
8
NO  
T833-3  
8
YES  
NO  
T1033-1  
T1433-1  
T1433-2  
10  
14  
14  
1.50±0.10 2.30±0.10 0.50 BSC MO229 / WEED-3 0.25±0.05  
1.70±0.10 2.30±0.10 0.40 BSC  
1.70±0.10 2.30±0.10 0.40 BSC  
- - - -  
- - - -  
0.20±0.05  
0.20±0.05  
YES  
NO  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
-DRAWING NOT TO SCALE-  
21-0137  
G
2
Note: MAX4366/MAX4367/MAX4368 Package Code: T833-1  
______________________________________________________________________________________ 17  
330mW, Ultra-Small, Audio Power Amplifiers  
with Shutdown  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 3x3 UCSP  
1
21-0093  
J
1
Note: Bump B2 is not present.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX4367EUA+T

Audio Amplifier, 0.33W, 1 Channel(s), 1 Func, Bipolar, PDSO8, MO-187C-AA, MICRO MAX PACKAGE-8
MAXIM

MAX4368

330mW, Ultra-Small, Audio Power Amplifiers with Shutdown
MAXIM

MAX4368EBL-T

暂无描述
MAXIM

MAX4368EGA

Audio Amplifier, 0.33W, 1 Channel(s), 1 Func, Bipolar, CQCC8, 3 X 3 MM, EXPOSED PAD, QFN-8
MAXIM

MAX4368EKA-T

Audio Amplifier, 0.33W, 1 Channel(s), 1 Func, Bipolar, PDSO8, MO-178, SOT-23, 8 PIN
MAXIM

MAX4368ETA

Amplifier. Other
MAXIM

MAX4368ETA+

暂无描述
MAXIM

MAX4368ETA-T

Audio Amplifier, 0.33W, 1 Channel(s), 1 Func, Bipolar, PDSO8, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEEC, TDFN-8
MAXIM

MAX4368EUA

0.33 W, 1 CHANNEL, AUDIO AMPLIFIER, PDSO8, MO-187C-AA, MICRO MAX PACKAGE-8
ROCHESTER

MAX4368EUA

Audio Amplifier, 0.33W, 1 Channel(s), 1 Func, Bipolar, PDSO8, MO-187C-AA, MICRO MAX PACKAGE-8
MAXIM

MAX4368EUA+

Audio Amplifier, 0.33W, 1 Channel(s), 1 Func, Bipolar, PDSO8, MICRO, MAX-8
MAXIM

MAX4368EUA+T

Audio Amplifier, 0.33W, 1 Channel(s), 1 Func, Bipolar, PDSO8, MICRO, MAX-8
MAXIM