MAX4410EUD-T [MAXIM]

Audio Amplifier, 0.08W, 2 Channel(s), 1 Func, BICMOS, PDSO14, 4.40 MM, TSSOP-14;
MAX4410EUD-T
型号: MAX4410EUD-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Audio Amplifier, 0.08W, 2 Channel(s), 1 Func, BICMOS, PDSO14, 4.40 MM, TSSOP-14

放大器 信息通信管理 光电二极管 商用集成电路
文件: 总18页 (文件大小:592K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2386; Rev 0; 4/02  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
General Description  
Features  
The MAX4410 stereo headphone driver is designed for  
portable equipment where board space is at a  
premium. The MAX4410 uses a unique, patented,  
DirectDrive architecture to produce a ground-refer-  
enced output from a single supply, eliminating the need  
for large DC-blocking capacitors, saving cost, board  
space, and component height.  
No Bulky DC-Blocking Capacitors Required  
Ground-Referenced Outputs Eliminate DC-Bias  
Voltages on Headphone Ground Pin  
No Degradation of Low-Frequency Response Due  
to Output Capacitors  
80mW Per Channel into 16  
The MAX4410 delivers up to 80mW per channel into a  
16load and has low 0.005% THD + N. A high power-  
supply rejection ratio (90dB at 1kHz) allows this device  
to operate from noisy digital supplies without an addi-  
tional linear regulator, and includes 8kV ESD protection.  
Comprehensive click-and-pop circuitry suppresses  
audible clicks and pops on startup and shutdown.  
Independent left/right, low-power shutdown controls  
make it possible to optimize power savings in mixed  
mode, mono/stereo applications.  
Low 0.005% THD + N  
High PSRR (90dB at 1kHz)  
Integrated Click-and-Pop Suppression  
1.8V to 3.6V Single-Supply Operation  
Low Quiescent Current  
Independent Left/Right, Low-Power  
Shutdown Controls  
Short-Circuit and Thermal Overload Protection  
The MAX4410 operates from a single 1.8V to 3.6V supply,  
consumes only 7mA of supply current, has short-circuit  
and thermal overload protection, and is specified over the  
extended -40°C to +85°C temperature range. The  
MAX4410 is available in a tiny (2mm x 2mm), 16-bump  
ultra chip-scale package (UCSP™) and a 14-pin TSSOP  
package.  
8kV ESD-Protected Amplifier Outputs  
Available in Space-Saving Packages  
16-Bump UCSP (2mm x 2mm)  
14-Pin TSSOP  
Ordering Information  
PIN/BUMP-  
PACKAGE  
PART  
TEMP RANGE  
Applications  
Notebooks  
Cellular Phones  
PDAs  
MP3 Players  
Web Pads  
Portable Audio Equipment  
MAX4410EBE-T*  
MAX4410EUD  
-40°C to +85°C  
-40°C to +85°C  
16 UCSP-16  
14 TSSOP  
*Future product—contact factory for availability.  
Pin Configurations  
TOP VIEW  
(BUMP SIDE  
DOWN)  
MAX4410  
TOP VIEW  
1
2
3
4
A
B
SHDNL  
PV  
1
2
3
4
5
6
7
14 SGND  
13 INR  
INR  
SGND  
SHDNL  
OUTR  
PV  
C1P  
DD  
DD  
C1P  
PGND  
C1N  
12 SHDNR  
PGND  
C1N  
SHDNR  
INL  
11 OUTR  
10 INL  
MAX4410  
C
D
PV  
SV  
9
8
SV  
DD  
SS  
SS  
OUTL  
SV  
DD  
OUTL  
SV  
SS  
PV  
SS  
TSSOP  
UCSP (B16-2)  
UCSP is a trademark of Maxim Integrated Products, Inc.  
Functional Diagram/Typical Application Circuit appears at  
end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
ABSOLUTE MAXIMUM RATINGS  
PGND to SGND .....................................................-0.3V to +0.3V  
Continuous Power Dissipation (T = +70°C)  
A
PV  
to SV  
SS  
and SV  
-0.3V to +0.3V  
16-Bump UCSP (derate 15.2mW/°C above +70°C) ..1212mW  
14-Pin TSSOP (derate 9.1mW/°C above +70°C) .........727mW  
Junction Temperature......................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Bump Temperature (soldering) (Note 1)  
Infrared (15s) ...............................................................+220°C  
Vapor Phase (60s) .......................................................+215°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
DD .................................................................  
PV to SV .........................................................-0.3V to +0.3V  
SS  
PV  
to PGND or SGND.........................-0.3V to +4V  
DD  
DD  
SS  
PV and SV to PGND or SGND ..........................-4V to +0.3V  
SS  
IN_ to SGND..........................................................-0.3V to +0.3V  
SHDN_ to SGND........................(SGND - 0.3V) to (SV  
OUT_ to SGND .............................(SV - 0.3V) to (SV  
C1P to PGND.............................(PGND - 0.3V) to (PV  
+ 0.3V)  
+0.3V)  
+ 0.3V)  
DD  
DD  
DD  
SS  
C1N to PGND.............................(PV - 0.3V) to (PGND + 0.3V)  
SS  
Output Short Circuit to GND or V ...........................Continuous  
DD  
Note 1: This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device  
can be exposed to during board-level solder attach and rework. This limit permits only the use of the solder profiles recom-  
mended in the industry-standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and convection reflow.  
Preheating is required. Hand or wave soldering is not allowed.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(PV  
= SV  
= 3V, PGND = SGND = 0, SHDNL = SHDNR = SV , C1 = C2 = 2.2µF, R = R = 10k, R = , T = T  
to T  
,
MAX  
DD  
DD  
DD  
IN  
F
L
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by PSRR test  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
V
1.8  
3.6  
V
DD  
One channel enabled  
Two channels enabled  
SHDNL = SHDNR = GND  
4
7
6
Quiescent Supply Current  
Shutdown Supply Current  
I
mA  
µA  
DD  
11.5  
10  
I
SHDN  
0.7 x  
V
V
IH  
IL  
SV  
DD  
SHDN_ Thresholds  
V
0.3 x  
SV  
DD  
SHDN_ Input Leakage Current  
SHDN_ to Full Operation  
CHARGE PUMP  
-1  
+1  
µA  
µs  
t
f
175  
320  
0.5  
SON  
OSC  
Oscillator Frequency  
AMPLIFIERS  
272  
368  
kHz  
Input Offset Voltage  
Input Bias Current  
V
Input AC-coupled, R = 32Ω  
2.4  
mV  
nA  
OS  
L
I
-100  
75  
+100  
BIAS  
1.8V V  
3.6V  
DC  
90  
90  
55  
65  
80  
DD  
Power-Supply Rejection Ratio  
Output Power  
PSRR  
dB  
f
f
= 1kHz  
RIPPLE  
RIPPLE  
200mV  
ripple  
P-P  
= 20kHz  
R = 32Ω  
L
P
THD + N = 1%  
mW  
OUT  
R = 16Ω  
L
40  
2
_______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
ELECTRICAL CHARACTERISTICS (continued)  
(PV  
= SV  
= 3V, PGND = SGND = 0, SHDNL = SHDNR = SV , C1 = C2 = 2.2µF, R = R = 10k, R = , T = T  
to T  
,
DD  
DD  
DD  
IN  
F
L
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R = 32,  
L
0.003  
P
= 25mW  
OUT  
Total Harmonic Distortion Plus  
Noise  
THD + N  
f
= 1kHz  
%
IN  
R = 16,  
L
0.005  
P
= 50mW  
OUT  
Signal-to-Noise Ratio  
Slew Rate  
SNR  
SR  
R = 32, P  
= 20mW, f = 1kHz  
95  
0.8  
300  
67  
dB  
V/µs  
pF  
L
OUT  
IN  
Maximum Capacitive Load  
Crosstalk  
C
No sustained oscillations  
R = 16, P = 1.6mW, f = 10kHz  
L
dB  
°C  
L
OUT  
IN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
ESD Protection  
140  
15  
°C  
Human body model (OUTR, OUTL)  
8
kV  
Note 2: All specifications are 100% tested at T = +25°C; temperature limits are guaranteed by design.  
A
Typical Operating Characteristics  
(C1 = C2 = 2.2µF, THD + N measurement bandwidth = 22Hz to 22kHz, single-channel driven, T = +25°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION +  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION +  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION +  
NOISE vs. FREQUENCY  
MAX4410 toc01  
MAX4410 toc02  
1
0.1  
1
0.1  
1
V
A
= 3V  
V
A
R
= 3V  
DD  
DD  
V
= 3V  
DD  
= -1V/V  
= -2V/V  
= 16  
V
V
L
A
= -1V/V  
= 32Ω  
V
L
R
L
= 16Ω  
R
0.1  
P
= 5mW  
OUT  
0.01  
0.001  
P
= 25mW  
OUT  
P
= 10mW  
OUT  
P
= 25mW  
OUT  
P
= 10mW  
OUT  
P
= 50mW  
P
= 10mW  
OUT  
OUT  
0.01  
0.001  
0.01  
0.001  
P
= 25mW  
OUT  
P
= 50mW  
OUT  
0.0001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
3
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Typical Operating Characteristics (continued)  
(C1 = C2 = 2.2µF, THD + N measurement bandwidth = 22Hz to 22kHz, single-channel driven, T = +25°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION +  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION +  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION +  
NOISE vs. FREQUENCY  
MAX4410 toc05  
MAX4410 toc06  
1
0.1  
1
0.1  
1
V
A
= 1.8V  
V
= 1.8V  
DD  
V
A
= 3V  
DD  
DD  
= -1V/V  
A
= -2V/V  
= 16Ω  
= -2V/V  
= 32Ω  
V
V
L
V
L
R
= 16Ω  
R
R
L
0.1  
P
= 5mW  
OUT  
P
= 10mW  
OUT  
P = 5mW  
OUT  
0.01  
P
= 5mW  
OUT  
P
= 10mW  
OUT  
P
= 10mW  
OUT  
0.01  
0.001  
0.01  
0.001  
0.001  
P
= 25mW  
OUT  
P
= 20mW  
OUT  
P
= 20mW  
OUT  
0.0001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION +  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION +  
NOISE vs. FREQUENCY  
1
1
100  
10  
1
V
= 1.8V  
V
= 3V  
DD  
V
= 1.8V  
DD  
DD  
A
= -2V/V  
A
= -1V/V  
A
= -1V/V  
V
V
L
IN  
V
R
= 32Ω  
R
f
= 16Ω  
R
= 32Ω  
L
L
0.1  
0.1  
= 20Hz  
P
= 5mW  
OUT  
P
= 5mW  
P
= 10mW  
OUT  
OUT  
0.01  
0.01  
0.001  
P
= 10mW  
OUT  
0.1  
0.001  
P
= 20mW  
OUT  
0.01  
P
= 20mW  
OUT  
0.0001  
0.001  
0.0001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
0
50  
100  
150  
200  
FREQUENCY (Hz)  
OUTPUT POWER (mW)  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
100  
10  
1
100  
100  
10  
V
= 3V  
DD  
V
= 3V  
DD  
V
= 3V  
DD  
V
= 16Ω  
L
= 10kHz  
A
= -2V/V  
A
= -1V/V  
A
= -1V/V  
V
V
R
f
= 16Ω  
R
f
= 16Ω  
R
L
10  
1
L
= 20Hz  
= 1kHz  
f
IN  
IN  
IN  
1
0.1  
0.1  
0.1  
0.01  
0.01  
0.01  
0.001  
0.001  
0.001  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
4
_______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Typical Operating Characteristics (continued)  
(C1 = C2 = 2.2µF, THD + N measurement bandwidth = 22Hz to 22kHz, single-channel driven, T = +25°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
100  
10  
100  
10  
1
100  
10  
V
= 3V  
DD  
V
A
= 3V  
V
A
= 3V  
DD  
DD  
A
= -2V/V  
= -1V/V  
= 32Ω  
= 20Hz  
V
L
IN  
= -2V/V  
V
L
IN  
V
L
IN  
R
f
= 16Ω  
R
R
= 16Ω  
= 1kHz  
f
f
= 10kHz  
1
1
0.1  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
0
25  
50  
75  
100  
125  
125  
60  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
100  
10  
100  
10  
100  
10  
V
A
= 3V  
DD  
V
A
= 3V  
V
= 3V  
DD  
DD  
= -1V/V  
= 32Ω  
= 1kHz  
V
L
IN  
= -1V/V  
A
= -2V/V  
= 32Ω  
= 20Hz  
V
L
IN  
V
L
R
R
= 32Ω  
R
f
f
= 10kHz  
f
IN  
1
1
1
0.1  
0.1  
0.1  
0.01  
0.001  
0.01  
0.01  
0.001  
0.001  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
100  
10  
100  
10  
100  
10  
V
A
= 3V  
V
= 1.8V  
DD  
V
A
= 3V  
DD  
DD  
= -2V/V  
A
= -1V/V  
= 16Ω  
= 20Hz  
= -2V/V  
= 32Ω  
= 1kHz  
V
L
IN  
V
L
V
L
IN  
R
= 32Ω  
R
R
f
= 10kHz  
f
f
IN  
1
1
1
0.1  
0.1  
0.1  
0.01  
0.01  
0.01  
0.001  
0.001  
0.001  
0
25  
50  
75  
100  
125  
0
10  
20  
30  
40  
50  
0
25  
50  
75  
100  
125  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
_______________________________________________________________________________________  
5
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Typical Operating Characteristics (continued)  
(C1 = C2 = 2.2µF, THD + N measurement bandwidth = 22Hz to 22kHz, single-channel driven, T = +25°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
100  
10  
100  
10  
100  
10  
V
A
= 1.8V  
V
= 1.8V  
DD  
V
A
R
f
= 1.8V  
DD  
DD  
= -1V/V  
= 16Ω  
= 1kHz  
A
= -2V/V  
= 16Ω  
= 20Hz  
= -1V/V  
= 16Ω  
= 10kHz  
V
L
IN  
V
L
IN  
V
L
IN  
R
R
f
f
1
1
1
0.1  
0.1  
0.1  
0.01  
0.01  
0.01  
0.001  
0.001  
0.001  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
100  
10  
100  
10  
100  
10  
V
A
= 1.8V  
V
A
R
f
= 1.8V  
DD  
V
A
R
f
= 1.8V  
DD  
DD  
= -2V/V  
= -2V/V  
= 16Ω  
= 1kHz  
V
= -1V/V  
= 32Ω  
= 20Hz  
V
L
IN  
V
L
IN  
R
= 16Ω  
= 10kHz  
L
f
IN  
1
1
1
0.1  
0.1  
0.1  
0.01  
0.01  
0.01  
0.001  
0.001  
0.001  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
100  
10  
100  
10  
100  
10  
V
A
= 1.8V  
V
= 1.8V  
DD  
V
A
R
f
= 1.8V  
DD  
DD  
= -1V/V  
= 32Ω  
= 10kHz  
A
R
f
= -2V/V  
= -1V/V  
= 32Ω  
= 1kHz  
V
L
IN  
V
V
L
IN  
R
= 32Ω  
L
IN  
f
= 20Hz  
1
1
1
0.1  
0.1  
0.1  
0.01  
0.01  
0.01  
0.001  
0.001  
0.001  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
6
_______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Typical Operating Characteristics (continued)  
(C1 = C2 = 2.2µF, THD + N measurement bandwidth = 22Hz to 22kHz, single-channel driven, T = +25°C, unless otherwise noted.)  
A
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION +  
NOISE vs. OUTPUT POWER  
0
100  
10  
100  
10  
V
= 3V  
DD  
= 16Ω  
V
A
= 1.8V  
V
A
R
f
= 1.8V  
DD  
DD  
R
L
= -2V/V  
= -2V/V  
= 32Ω  
= 1kHz  
V
V
L
IN  
-20  
R
= 32Ω  
= 10kHz  
L
f
IN  
-40  
-60  
1
1
0.1  
0.1  
-80  
0.01  
0.01  
-100  
0.001  
0.001  
0.01  
0.1  
1
10  
100  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (kHz)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
0
0
0
V
R
= 3V  
V
= 1.8V  
V
= 1.8V  
DD  
DD  
= 32Ω  
DD  
= 16Ω  
R
L
R = 32Ω  
L
L
-20  
-40  
-60  
-20  
-40  
-60  
-20  
-40  
-60  
-80  
-80  
-80  
-100  
-100  
-100  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
CROSSTALK vs. FREQUENCY  
OUTPUT POWER vs. SUPPLY VOLTAGE  
OUTPUT POWER vs. SUPPLY VOLTAGE  
0
-20  
200  
180  
160  
140  
120  
100  
80  
300  
V
P
= 3V  
f
= 1kHz  
f
= 1kHz  
IN  
L
DD  
IN  
= 1.6mW  
INPUTS 180°  
OUT OF PHASE  
R
L
= 16Ω  
R
= 16Ω  
OUT  
250  
200  
150  
100  
50  
INPUTS 180°  
OUT OF PHASE  
R = 16Ω  
THD + N = 1%  
THD + N = 10%  
L
-40  
-60  
60  
INPUTS  
IN PHASE  
INPUTS  
IN PHASE  
-80  
40  
20  
-100  
0
0
10  
100  
1k  
10k  
100k  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
7
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Typical Operating Characteristics (continued)  
(C1 = C2 = 2.2µF, THD + N measurement bandwidth = 22Hz to 22kHz, single-channel driven, T = +25°C, unless otherwise noted.)  
A
OUTPUT POWER vs. SUPPLY VOLTAGE  
OUTPUT POWER vs. SUPPLY VOLTAGE  
OUTPUT POWER vs. LOAD RESISTANCE  
140  
180  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
f
= 1kHz  
f
= 1kHz  
IN  
L
V
f
= 3V  
IN  
DD  
R
L
= 32Ω  
R
= 32Ω  
= 1kHz  
120  
100  
IN  
INPUTS 180°  
THD + N = 10%  
INPUTS 180°  
OUT OF PHASE  
THD + N = 1%  
THD + N = 1%  
OUT OF PHASE  
80  
60  
40  
20  
0
INPUTS 180°  
OUT OF PHASE  
INPUTS  
IN PHASE  
60  
60  
40  
20  
0
INPUTS  
IN PHASE  
40  
20  
0
INPUTS  
IN PHASE  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
10  
100  
1k  
10k  
100k  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
LOAD RESISTANCE ()  
OUTPUT POWER vs. LOAD RESISTANCE  
OUTPUT POWER vs. LOAD RESISTANCE  
OUTPUT POWER vs. LOAD RESISTANCE  
70  
60  
50  
40  
30  
20  
10  
0
45  
40  
35  
30  
25  
20  
15  
10  
5
250  
200  
150  
V
f
= 1.8V  
V
f
= 3V  
DD  
V
f
= 1.8V  
DD  
DD  
= 1kHz  
= 1kHz  
IN  
= 1kHz  
IN  
IN  
INPUTS 180°  
OUT OF PHASE  
INPUTS 180°  
OUT OF PHASE  
THD + N = 10%  
THD + N = 10%  
THD + N = 1%  
INPUTS IN  
PHASE  
INPUTS IN  
PHASE  
INPUTS 180°  
OUT OF PHASE  
100  
50  
0
INPUTS  
IN PHASE  
0
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
POWER DISSIPATION  
vs. OUTPUT POWER  
POWER DISSIPATION  
vs. OUTPUT POWER  
POWER DISSIPATION  
vs. OUTPUT POWER  
180  
160  
140  
120  
100  
400  
350  
300  
250  
200  
150  
100  
50  
INPUTS  
IN PHASE  
INPUTS  
IN PHASE  
INPUTS  
IN PHASE  
f
= 1kHz  
= 16Ω  
= 1.8V  
f
= 1kHz  
= 16Ω  
= 3V  
IN  
L
DD  
OUT  
IN  
L
DD  
OUT  
R
V
R
V
140  
120  
100  
80  
P
= P  
+ P  
P
= P  
+ P  
OUTR  
OUTL OUTR  
OUTL  
INPUTS 180°  
OUT OF PHASE  
INPUTS 180°  
OUT OF PHASE  
80  
60  
40  
20  
0
INPUTS 180°  
OUT OF PHASE  
60  
40  
20  
0
f
= 1kHz  
= 32Ω  
IN  
R
L
V
P
= 3V  
DD  
OUT  
= P  
+ P  
OUTR  
OUTL  
0
0
40  
80  
120  
160  
200  
0
10  
20  
30  
40  
50  
60  
0
40  
80  
120  
160  
200  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
8
_______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Typical Operating Characteristics (continued)  
(C1 = C2 = 2.2µF, THD + N measurement bandwidth = 22Hz to 22kHz, single-channel driven, T = +25°C, unless otherwise noted.)  
A
POWER DISSIPATION  
vs. OUTPUT POWER  
GAIN AND PHASE vs. FREQUENCY  
70  
60  
50  
80  
60  
40  
20  
0
INPUTS  
IN PHASE  
INPUTS 180°  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
40  
30  
20  
10  
0
OUT OF PHASE  
f
= 1kHz  
= 32Ω  
= 1.8V  
IN  
L
DD  
R
V
V
A
= 3V  
DD  
= 1000V/V  
V
R
P
= P  
+ P  
OUT  
OUTL OUTR  
= 16Ω  
L
0
10  
20  
30  
40  
50  
60  
100  
10k  
100k  
1M  
10M  
1k  
OUTPUT POWER (mW)  
FREQUENCY (Hz)  
CHARGE-PUMP OUTPUT RESISTANCE  
vs. SUPPLY VOLTAGE  
GAIN FLATNESS vs. FREQUENCY  
10  
10  
V
PVSS  
NO LOAD  
= GND  
IN_  
0
-10  
-20  
I
= 10mA  
8
6
4
2
0
-30  
-40  
-50  
V
A
L
= 3V  
DD  
= -1V/V  
V
R = 16Ω  
100  
10  
1k  
10k 100k 1M  
10M  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
OUTPUT POWER vs. CHARGE-PUMP  
CAPACITANCE AND LOAD RESISTANCE  
OUTPUT SPECTRUM vs. FREQUENCY  
90  
80  
70  
60  
50  
0
-20  
C1 = C2 = 2.2µF  
C1 = C2 = 1µF  
V
IN  
R
A
= 1V  
P-P  
IN  
f
= 1kHz  
= 32Ω  
= -1V/V  
L
V
-40  
C1 = C2 = 0.68µF  
C1 = C2 = 0.47µF  
-60  
40  
30  
20  
10  
0
-80  
f
= 1kHz  
IN  
-100  
-120  
THD + N = 1%  
INPUTS IN PHASE  
10  
20  
30  
40  
50  
0.1  
1
10  
100  
LOAD RESISTANCE ()  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
9
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Typical Operating Characteristics (continued)  
(C1 = C2 = 2.2µF, THD + N measurement bandwidth = 22Hz to 22kHz, single-channel driven, T = +25°C, unless otherwise noted.)  
A
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
10  
10  
SHDNL = SHDNR = GND  
8
6
4
2
0
8
6
4
2
0
0
0.9  
1.8  
2.7  
3.6  
0
0.9  
1.8  
2.7  
3.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
POWER-UP/DOWN WAVEFORM  
EXITING SHUTDOWN  
MAX4410 toc58  
MAX4410 toc57  
3V  
0
2V/div  
V
DD  
SHDNR  
OUTR  
OUT_  
10mV/div  
20dB/div  
-100dB  
500mV/div  
OUT_FFT  
200ms/div  
FFT: 25Hz/div  
200µs/div  
f
= 1kHz  
IN  
R = 32Ω  
IN_  
R = 32Ω  
SHDNL = GND  
L
L
V
= GND  
10 ______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Pin Description  
PIN  
BUMP  
NAME  
FUNCTION  
TSSOP  
UCSP  
1
B2  
SHDNL  
Active-Low, Left-Channel Shutdown. Connect to V for normal operation.  
DD  
Charge-Pump Power Supply. Powers charge-pump inverter, charge-pump logic, and  
oscillator.  
2
A3  
PV  
DD  
3
4
A4  
B4  
C4  
D4  
D3  
D2  
D1  
C1  
C2  
B1  
A1  
A2  
C1P  
PGND  
C1N  
Flying Capacitor Positive Terminal  
Power Ground. Connect to SGND.  
Flying Capacitor Negative Terminal  
Charge-Pump Output  
5
6
PV  
SS  
SV  
SS  
7
Amplifier Negative Power Supply. Connect to PV  
.
SS  
8
OUTL  
SV  
Left-Channel Output  
9
Amplifier Positive Power Supply. Connect to PV  
.
DD  
DD  
10  
11  
12  
13  
14  
INL  
Left-Channel Audio Input  
OUTR  
SHDNR  
INR  
Right-Channel Output  
Active-Low, Right-Channel Shutdown. Connect to V  
Right-Channel Audio Input  
for normal operation.  
DD  
SGND  
Signal Ground. Connect to PGND.  
______________________________________________________________________________________ 11  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Detailed Description  
The MAX4410 stereo headphone driver features Maxims  
V
DD  
patented DirectDrive architecture, eliminating the large  
output-coupling capacitors required by traditional single-  
supply headphone drivers. The device consists of two  
80mW Class AB headphone drivers, undervoltage lock-  
out (UVLO)/shutdown control, charge-pump, and com-  
prehensive click-and-pop suppression circuitry (see the  
Functional Diagram/Typical Application Circuit). The  
V
/2  
V
DD  
OUT  
charge pump inverts the positive supply (PV ), creat-  
DD  
GND  
ing a negative supply (PV ). The headphone drivers  
SS  
operate from these bipolar supplies with their outputs  
biased about GND (Figure 1). The drivers have almost  
twice the supply range compared to other 3V single-sup-  
ply drivers, increasing the available output power. The  
benefit of this GND bias is that the driver outputs do not  
CONVENTIONAL DRIVER-BIASING SCHEME  
+V  
DD  
have a DC component typically V /2. Thus, the large  
DD  
DC-blocking capacitors are unnecessary, improving fre-  
quency response while conserving board space and  
system cost.  
V
OUT  
GND  
Each channel has independent left/right, active-low  
shutdown controls, making it possible to optimize  
power savings in mixed-mode, mono/stereo operation.  
The device features an undervoltage lockout that pre-  
vents operation from an insufficient power supply and  
click-and-pop suppression that eliminates audible tran-  
sients on startup and shutdown. Additionally, the  
MAX4410 features thermal overload and short-circuit  
protection and can withstand 8kV ESD strikes on the  
output pins.  
-V  
DD  
DirectDrive BIASING SCHEME  
Figure 1. Traditional Driver Output Waveform vs. MAX4410  
Output Waveform  
DirectDrive  
Traditional single-supply headphone drivers have their  
outputs biased about a nominal DC voltage (typically  
half the supply) for maximum dynamic range. Large  
coupling capacitors are needed to block this DC bias  
from the headphone. Without these capacitors, a signif-  
icant amount of DC current flows to the headphone,  
resulting in unnecessary power dissipation and possi-  
ble damage to both headphone and headphone driver.  
Operating Characteristics for details of the possible  
capacitor sizes. There is a low DC voltage on the driver  
outputs due to amplifier offset. However, the offset of  
the MAX4410 is typically 0.5mV, which, when com-  
bined with a 32load, results in less than 16µA of DC  
current flow to the headphones.  
Previous attempts to eliminate the output-coupling capac-  
itors involved biasing the headphone return (sleeve) to  
the DC-bias voltage of the headphone amplifiers. This  
method raises some issues:  
Maxims patented DirectDrive architecture uses a  
charge pump to create a negative supply voltage. This  
allows the outputs of the MAX4410 to be biased about  
GND, almost doubling dynamic range while operating  
from a single supply. With no DC component, there is  
no need for the large DC-blocking capacitors. Instead  
of two large (220µF, typ) tantalum capacitors, the  
MAX4410 charge pump requires two small ceramic  
capacitors, conserving board space, reducing cost,  
and improving the frequency response of the head-  
phone driver. See the Output Power vs. Charge-Pump  
Capacitance and Load Resistance graph in the Typical  
1) The sleeve is typically grounded to the chassis.  
Using this biasing approach, the sleeve must be  
isolated from system ground, complicating product  
design.  
2) During an ESD strike, the drivers ESD structures  
are the only path to system ground. Thus, the driver  
must be able to withstand the full ESD strike.  
3) When using the headphone jack as a line out to other  
12 ______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
equipment, the bias voltage on the sleeve may con-  
Applications Information  
flict with the ground potential from other equipment,  
Power Dissipation  
Under normal operating conditions, linear power ampli-  
fiers can dissipate a significant amount of power. The  
maximum power dissipation for each package is given  
in the Absolute Maximum Ratings section under  
Continuous Power Dissipation or can be calculated by  
the following equation:  
resulting in possible damage to the drivers.  
Charge Pump  
The MAX4410 features a low-noise charge pump. The  
320kHz switching frequency is well beyond the audio  
range, and thus does not interfere with the audio sig-  
nals. The switch drivers feature a controlled switching  
speed that minimizes noise generated by turn-on and  
turn-off transients. By limiting the switching speed of the  
switches, the di/dt noise caused by the parasitic bond  
wire and trace inductance is minimized. Although not  
typically required, additional high-frequency noise atten-  
uation can be achieved by increasing the size of C2  
(see the Functional Diagram/Typical Application Circuit).  
T
T  
A
J(MAX)  
P
=
DISSPKG(MAX)  
θ
JA  
where T  
is +150°C, T is the ambient tempera-  
A
J(MAX)  
ture, and θ is the reciprocal of the derating factor in  
JA  
°C/W as specified in the Absolute Maximum Ratings  
section. For example, θ  
of the TSSOP package is  
JA  
+109.9°C/W.  
Shutdown  
The MAX4410 features two shutdown controls allowing  
either channel to be shut down or muted independent-  
ly. SHDNL controls the left channel while SHDNR con-  
trols the right channel. Driving either SHDN_ low  
disables the respective channel, sets the driver output  
impedance to 1k, and reduces the supply current.  
When both SHDN_ inputs are driven low, the charge  
pump is also disabled, further reducing supply current  
draw to 6µA. The charge pump is enabled once either  
SHDN_ input is driven high.  
The MAX4410 has two sources of power dissipation,  
the charge pump and the two drivers. If the power dis-  
sipation for a given application exceeds the maximum  
allowed for a given package, either reduce V  
,
DD  
increase load impedance, decrease the ambient tem-  
perature, or add heat sinking to the device. Large out-  
put, supply, and ground traces improve the maximum  
power dissipation in the package.  
Thermal overload protection limits total power dissipa-  
tion in the MAX4410. When the junction temperature  
exceeds +140°C, the thermal protection circuitry dis-  
ables the amplifier output stage. The amplifiers are  
enabled once the junction temperature cools by 15°C.  
This results in a pulsing output under continuous ther-  
mal overload conditions.  
Click-and-Pop Suppression  
In traditional single-supply audio drivers, the output-  
coupling capacitor is a major contributor of audible  
clicks and pops. Upon startup, the driver charges the  
coupling capacitor to its bias voltage, typically half the  
supply. Likewise, on shutdown the capacitor is dis-  
charged to GND. This results in a DC shift across the  
capacitor, which in turn, appears as an audible transient  
at the speaker. Since the MAX4410 does not require  
output-coupling capacitors, this does not arise.  
Output Power  
The device has been specified for the worst-case sce-  
nariowhen both inputs are in phase. Under this con-  
dition, the drivers simultaneously draw current from the  
charge pump, leading to a slight loss in headroom of  
Additionally, the MAX4410 features extensive click-and-  
pop suppression that eliminates any audible transient  
sources internal to the device. The Power-Up/Down  
Waveform in the Typical Operating Characteristics  
shows that there are minimal spectral components in the  
audible range at the output upon startup or shutdown.  
V
. In typical stereo audio applications, the left and  
SS  
right signals have differences in both magnitude and  
phase, subsequently leading to an increase in the max-  
imum attainable output power. Figure 2 shows the two  
extreme cases for in and out of phase. In reality, the  
available power lies between these extremes.  
In most applications, the output of the preamplifier dri-  
ving the MAX4410 has a DC bias of typically half the  
supply. At startup, the input-coupling capacitor is  
charged to the preamplifiers DC-bias voltage through  
the R of the MAX4410, resulting in a DC shift across  
F
the capacitor and an audible click/pop. Delaying the  
rise of the MAX4410s SHDN_ signals 4 to 5 time con-  
stants (200ms to 300ms) relative to that of the preampli-  
fiers eliminates this click/pop.  
______________________________________________________________________________________ 13  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Table 1. Suggested Capacitor Manufacturers  
SUPPLIER  
Taiyo Yuden  
TDK  
PHONE  
FAX  
WEBSITE  
www.t-yuden.com  
www.component.tdk.com  
800-348-2496  
847-803-6100  
847-925-0899  
847-390-4405  
Note: Please indicate you are using the MAX4410 when contacting these component suppliers.  
Input Filtering  
The input capacitor (C ), in conjunction with R forms  
IN  
IN,  
100  
10  
1
a highpass filter that removes the DC bias from an  
incoming signal (see the Functional Diagram/Typical  
Application Circuit). The AC-coupling capacitor allows  
the amplifier to bias the signal to an optimum DC level.  
Assuming zero-source impedance, the -3dB point of  
the highpass filter is given by:  
V
= 3V  
DD  
R = 16  
L
f
= 1kHz  
IN  
INPUTS  
IN  
PHASE  
1
f
=
3dB  
2πR C  
IN IN  
0.1  
INPUTS  
180° OUT  
OF PHASE  
Choose R according to the Gain-Setting Resistors sec-  
IN  
tion. Choose the C such that f  
lowest frequency of interest. Setting f  
is well below the  
-3dB  
IN  
0.01  
too high affects  
-3dB  
0
25  
50  
75  
100  
125  
150  
the low-frequency response of the amplifier. Use capaci-  
tors whose dielectrics have low-voltage coefficients,  
such as tantalum or aluminum electrolytic. Capacitors  
with high-voltage coefficients, such as ceramics, may  
result in increased distortion at low frequencies.  
OUTPUT POWER (mW)  
Figure 2. Output Power vs. Supply Voltage with Inputs In/Out of  
Phase  
Other considerations when designing the input filter  
include the constraints of the overall system and the  
actual frequency band of interest. Although high-fidelity  
audio calls for a flat-gain response between 20Hz and  
20kHz, portable voice-reproduction devices such as  
cellular phones and two-way radios need only concen-  
trate on the frequency range of the spoken human voice  
(typically 300Hz to 3.5kHz). In addition, speakers used  
in portable devices typically have a poor response  
below 150Hz. Taking these two factors into considera-  
tion, the input filter may not need to be designed for a  
20Hz to 20kHz response, saving both board space and  
cost due to the use of smaller capacitors.  
Component Selection  
Gain-Setting Resistors  
External feedback components set the gain of the  
MAX4410. Resistors R and R (see the Functional  
F
IN  
Diagram/Typical Application Circuit) set the gain of each  
amplifier as follows:  
R
F
A
= −  
V
R
IN  
To minimize V , set R equal to 10k. Values other  
OS  
F
OS  
than 10kincrease V  
due to the input bias current,  
which in turn increases the amount of DC current flow  
to the speaker.  
Charge-Pump Capacitor Selection  
Use capacitors with an ESR less than 100mfor opti-  
mum performance. Low-ESR ceramic capacitors mini-  
mize the output resistance of the charge pump. For best  
performance over the extended temperature range,  
select capacitors with an X7R dielectric. Table 1 lists sug-  
gested manufacturers.  
Compensation Capacitor  
The stability of the MAX4410 is affected by the value of  
the feedback resistor (R ). The combination of R and  
F
F
the input and parasitic trace capacitance introduces an  
additional pole. Adding a capacitor in parallel with R  
F
compensates for this pole. Under typical conditions  
with proper layout, the device is stable without the  
additional capacitor.  
Flying Capacitor (C1)  
The value of the flying capacitor (C1) affects the load  
regulation and output resistance of the charge pump. A  
C1 value that is too small degrades the devices ability  
to provide sufficient current drive, which leads to a loss  
14 ______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
R
F
5
6
H0  
L0  
LEFT AUDIO  
INPUT  
C
IN  
R
IN  
10  
W0A  
7
8
INL  
OUTL  
MAX4410  
MAX5408  
RIGHT AUDIO  
INPUT  
H1  
L1  
12  
C
IN  
R
IN  
13  
11  
10  
W1A  
INR  
OUTR  
11  
R
F
Figure 3. MAX4410 and MAX5408 Volume Control Circuit  
of output voltage. Increasing the value of C1 improves  
load regulation and reduces the charge-pump output  
resistance to an extent. See the Output Power vs.  
Charge-Pump Capacitance and Load Resistance  
graph in the Typical Operating Characteristics. Above  
2.2µF, the on-resistance of the switches and the ESR of  
C1 and C2 dominate.  
MAX5408 to the audio input, the low terminal to ground  
and the wiper to C . Setting the wiper to the top posi-  
IN  
tion passes the audio signal unattenuated. Setting the  
wiper to the lowest position fully attenuates the input.  
Layout and Grounding  
Proper layout and grounding are essential for optimum  
performance. Connect PGND and SGND together at a  
single point on the PC board. Connect all components  
associated with the charge pump (C2 and C3) to the  
Output Capacitor (C2)  
The output capacitor value and ESR directly affect the  
PGND plane. Connect PV  
and SV  
SS  
together at the  
DD  
ripple at PV . Increasing the value of C2 reduces out-  
SS  
DD  
device. Connect PV and SV together at the device.  
put ripple. Likewise, decreasing the ESR of C2 reduces  
both ripple and output resistance. Lower capacitance  
values can be used in systems with low maximum out-  
put power levels. See the Output Power vs. Charge-  
Pump Capacitance and Load Resistance graph in the  
Typical Operating Characteristics.  
SS  
Bypassing of both supplies is accomplished by  
charge-pump capacitors C2 and C3 (see Functional  
Diagram/Typical Application Circuit). Place capacitors  
C2 and C3 as close to the device as possible. Route  
PGND and all traces that carry switching transients  
away from SGND and the traces and components in  
the audio signal path. Refer to the layout example in the  
MAX4410 EV kit data sheet.  
Power-Supply Bypass Capacitor  
The power-supply bypass capacitor (C3) lowers the out-  
put impedance of the power supply, and reduces the  
impact of the MAX4410s charge-pump switching tran-  
When using the MAX4410 in a UCSP package, make  
sure the traces to OUTR (bump C2) are wide enough to  
handle the maximum expected current flow. Multiple  
traces may be necessary.  
sients. Bypass PV  
with C3, the same value as C1, and  
DD  
place it physically close to the PV  
and PGND pins  
DD  
(refer to the MAX4410 EV kit for a suggested layout).  
UCSP Considerations  
For general UCSP information and PC layout considera-  
tions, refer to the Maxim Application Note: Wafer-Level  
Ultra Chip-Scale Package.  
Adding Volume Control  
The addition of a digital potentiometer provides simple  
volume control. Figure 3 shows the MAX4410 with the  
MAX5408 dual log taper digital potentiometer used as  
an input attenuator. Connect the high terminal of the  
______________________________________________________________________________________ 15  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Functional Diagram/Typical Application Circuit  
C
IN  
1µF  
R
R
F
IN  
10kΩ  
1.8V to 3.6V  
10kΩ  
LEFT  
CHANNEL  
AUDIO IN  
C3  
2.2µF  
9
(D1)  
1
(B2)  
12  
(B1)  
10  
(C1)  
2
(A3)  
INL  
PV  
SV  
DD  
DD  
SHDNL  
SHDNR  
SV  
DD  
8
(D2)  
OUTL  
SGND  
HEADPHONE  
JACK  
UVLO/  
SHUTDOWN  
CONTROL  
3
(A4)  
C1P  
SV  
SS  
CHARGE  
PUMP  
CLICK-AND-POP  
SUPPRESSION  
C1  
2.2µF  
5
(C4) C1N  
SV  
DD  
SGND  
11  
(C2)  
MAX4410  
OUTR  
SV  
SS  
PV  
SV  
7
SS  
6
PGND  
4
SGND  
INR  
SS  
14  
(A2)  
13  
(A1)  
(D4)  
C2  
2.2µF  
(D3) (B4)  
C
IN  
1µF  
R
F
10kΩ  
R
IN  
10kΩ  
RIGHT  
CHANNEL  
AUDIO IN  
( ) DENOTE BUMPS FOR UCSP.  
Chip Information  
TRANSISTOR COUNT: 4337  
PROCESS: BiCMOS  
16 ______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 17  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX4410EVKIT

Evaluation Kit for the MAX4410
MAXIM

MAX4411

80mW, Fixed-Gain, DirectDrive, Stereo Headphone Amplifier with Shutdown
MAXIM

MAX4411B

80mW, Fixed-Gain, DirectDrive, Stereo Headphone Amplifier with Shutdown
MAXIM

MAX4411BEBE

Audio/Video Amplifier, BICMOS, PBGA14
MAXIM

MAX4411BEBE+

Audio/Video Amplifier, BICMOS, PBGA14
MAXIM

MAX4411BEBE-T

80mW, Fixed-Gain, DirectDrive, Stereo Headphone Amplifier with Shutdown
MAXIM

MAX4411BETP

80mW, Fixed-Gain, DirectDrive, Stereo Headphone Amplifier with Shutdown
MAXIM

MAX4411BETP+T

Audio Amplifier, 0.08W, 2 Channel(s), 1 Func, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, QFN-20
MAXIM

MAX4411BETP-T

暂无描述
MAXIM

MAX4411EBE+

Audio/Video Amplifier, BICMOS, PBGA14,
MAXIM

MAX4411EBE+T

80mW, Fixed-Gain, DirectDrive, Stereo Headphone Amplifier with Shutdown
MAXIM

MAX4411EBE+TCAN

暂无描述
MAXIM