MAX44269EWL+T [MAXIM]

Comparator, 2 Func, 10000uV Offset-Max, 39000ns Response Time, BICMOS, PBGA9, 1.30 X 1.30 MM, 0.40 MM PITCH, ROHS COMPLIANT, WLP-9;
MAX44269EWL+T
型号: MAX44269EWL+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Comparator, 2 Func, 10000uV Offset-Max, 39000ns Response Time, BICMOS, PBGA9, 1.30 X 1.30 MM, 0.40 MM PITCH, ROHS COMPLIANT, WLP-9

放大器 信息通信管理
文件: 总14页 (文件大小:2289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5986; Rev 1; 12/11  
E V A L U A T I O N K I T A V A I L A B L E  
General Description  
Features  
The MAX44269 is an ultra-small and low-power dual  
comparator ideal for battery-powered applications such  
as cell phones, notebooks, and portable medical devices  
that have extremely aggressive board space and power  
constraints. The comparator is available in a miniature  
1.3mm x 1.3mm, 9-bump WLP package, making it the  
industry’s smallest dual comparator.  
S Ultra-Low Power Consumption  
0.5µA per Comparator  
S Ultra-Small 1.3mm x 1.3mm WLP Package  
S Guaranteed Operation Down to V = 1.8V  
CC  
S Input Common-Mode Voltage Range Extends  
200mV Beyond-the-Rails  
S 6V Tolerant Inputs Independent of Supply  
S Open-Drain Outputs  
The IC can be powered from supply rails as low as 1.8V  
and up to 5.5V. It requires just 0.5µA of typical supply  
current per comparator. It has a rail-to-rail input struc-  
ture and a unique output stage that limits supply current  
surges while switching. This design also minimizes over-  
all power consumption under dynamic conditions. The  
IC has open-drain outputs, making it suitable for mixed  
voltage systems. The IC also features internal filtering to  
provide high RF immunity. It operates over a -40°C to  
+85°C temperature.  
S Internal Filters Enhance RF Immunity  
S Crowbar-Current-Free Switching  
S Internal Hysteresis for Clean Switching  
S No Output Phase Reversal for Overdriven Inputs  
Ordering Information appears at end of data sheet.  
Applications  
Smartphones  
Notebooks  
For related parts and recommended products to use with this part,  
refer to www.maxim-ic.com/MAX44269.related.  
Two-Cell Battery-Powered Devices  
Battery-Operated Sensors  
Ultra-Low-Power Systems  
Portable Medical Mobile Accessories  
Typical Application Circuit  
V
CC  
V
CC  
V
PULL  
MAX44269  
V
CC  
OUT1  
OUT2  
V
REF  
V
PULL  
V
CC  
REMOTE KEY  
CONNECTOR  
GND  
ACCESSORY ID  
����������������������������������������������������������������� Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
 
MAX44269  
1.3mm x 1.3mm, Low-Power  
Dual Comparator  
ABSOLUTE MAXIMUM RATINGS  
CC  
INA+, INA-, INB+, INB- to GND..............................-0.3V to +6V  
Continuous Input Current into Any Pin............................ Q20mA  
Maximum Power Dissipation  
V
to GND.............................................................-0.3V to +6V  
Output Short-Circuit Duration (OUT_).......................Continuous  
Operating Temperature Range.......................... -40NC to +85NC  
Storage Temperature Range............................ -65NC to +150NC  
Junction Temperature .....................................................+150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
(derate 11.9mW/NC at T = +70NC) ............................952mW  
A
Output Voltage to GND (OUT_) ..............................-0.3V to +6V  
Output Current (OUT_).................................................... Q50mA  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
WLP  
Junction-to-Ambient Thermal Resistance (q ) ..........84°C/W  
JA  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 5V, V  
= 0V, V = V  
= 1.2V, R  
= 100kIto V , T = -40NC to +85NC. Typical values are at T = +25NC, unless  
CC  
GND  
IN-  
IN+  
PULLUP CC A A  
otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
P(V + 0.2V) (Note 3)  
MIN  
TYP  
MAX  
UNITS  
DC CHARACTERISTICS  
Input-Referred Hysteresis  
V
(V  
- 0.2V) PV  
4
6
5
mV  
mV  
HYS  
GND  
CM  
CC  
T
= +25NC  
0.15  
V
V
- 0.2V PV  
P
A
GND  
CM  
Input Offset Voltage  
Input Bias Current  
V
OS  
+ 0.2V (Note 4)  
-40NC PT P+85NC  
10  
CC  
A
T
T
= +25NC  
0.15  
0.2  
A
I
nA  
mV  
V
B
= -40NC to +85NC  
= 1.8V,  
A
T
= +25NC  
105  
200  
300  
350  
450  
V
I
A
CC  
= 1mA  
-40NC PT P+85NC  
SINK  
A
Output-Voltage Swing Low  
Input Voltage Range  
V
OL  
T
= +25NC  
285  
A
V
= 5V, I  
= 6mA  
CC  
SINK  
-40NC PT P+85NC  
A
V
V
CC  
+ 0.2V  
GND  
V
Inferred from V  
test  
CM  
OS  
- 0.2V  
V
V
= 1.8V  
= 5V  
3
Output Short-Circuit  
Current  
CC  
I
Sinking, V  
= V  
mA  
nA  
SC  
OUT  
CC  
30  
0.2  
CC  
Output Leakage Current  
I
V
= 5.5V, V  
= 5.5V  
LEAK  
CC  
OUT  
����������������������������������������������������������������� Maxim Integrated Products  
2
MAX44269  
1.3mm x 1.3mm, Low-Power  
Dual Comparator  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 5V, V  
= 0V, V = V  
= 1.2V, R  
= 100kIto V , T = -40NC to +85NC. Typical values are at T = +25NC, unless  
CC  
GND  
IN-  
IN+  
PULLUP CC A A  
otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AC CHARACTERISTICS  
Input overdrive = Q100mV, V  
Input overdrive = Q100mV, V  
= 5V  
5
7
CC  
= 1.8V  
Propagation Delay High to  
Low (Note 5)  
CC  
t
t
Fs  
PHL  
PLH  
Input overdrive = Q20mV, V  
Input overdrive = Q20mV, V  
= 5V  
8
CC  
= 1.8V  
12  
34  
12  
35  
12  
0.2  
CC  
Input overdrive = Q100mV, V  
Input overdrive = Q100mV, V  
= 5V  
CC  
= 1.8V  
Propagation Delay Low to  
High (Note 5)  
CC  
Fs  
Fs  
Input overdrive = Q20mV, V  
Input overdrive = Q20mV, V  
= 5V  
CC  
= 1.8V  
CC  
Fall Time  
t
C
= 15pF  
F
LOAD  
POWER SUPPLY  
Supply Voltage Range  
V
Guaranteed from PSRR tests  
1.8  
60  
5.5  
V
CC  
Power-Supply Rejection  
Ratio  
PSRR  
V
= 1.8V to 5.5V  
80  
dB  
CC  
V
V
V
= 1.8V, T = +25NC  
0.4  
0.5  
0.75  
0.85  
1
CC  
CC  
CC  
A
Supply Current per  
Comparator  
I
= 5V, T = +25NC  
FA  
CC  
A
= 5V, -40NC PT P+85NC  
A
Power-Up Time  
t
1
ms  
ON  
Note 2: All devices are 100% production tested at T = +25NC. Temperature limits are guaranteed by design.  
A
Note 3: Hysteresis is the input voltage difference between the two switching points.  
Note 4: V  
is the average of the positive and negative trip points minus V  
.
OS  
REF  
Note 5: Overdrive is defined as the voltage above or below the switching points.  
����������������������������������������������������������������� Maxim Integrated Products  
3
MAX44269  
1.3mm x 1.3mm, Low-Power  
Dual Comparator  
Typical Operating Characteristics  
(V  
= 5V, V  
= 0V, V = V  
= 1.2V, R  
= 100kto V , T = -40NC to +85NC. Typical values are at T = +25NC, unless  
PULLUP CC A A  
CC  
GND  
IN-  
IN+  
otherwise noted. All devices are 100% production tested at T = +25NC. Temperature limits are guaranteed by design.)  
A
SUPPLY CURRENT vs. TRANSITION  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
FREQUENCY (V  
= 20mV)  
OVERDRIVE  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
14  
12  
10  
8
T = +85°C  
A
T = +85°C  
A
V
= 5V  
CC  
6
T = +25°C  
A
T = -40°C  
A
T = +25°C  
A
T = -40°C  
A
V
= 2.7V  
CC  
4
V
= 1.8V  
CC  
2
V
= HIGH  
V
= LOW  
OUT  
OUT  
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
1
10  
100  
1k  
10k  
INPUT FREQUENCY (Hz)  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
INPUT BIAS CURRENT  
vs. COMMON-MODE VOLTAGE  
0
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-0.35  
-0.40  
-0.45  
-0.50  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 5V  
DD  
V
= 5V  
DD  
V
= 1.8V  
DD  
V
= 2.7V  
DD  
V
= 2.7V  
DD  
V
= 5V  
DD  
V
= 2.7V  
DD  
V
= 1.8V  
DD  
V
= 0V  
1
DD  
V
= 1.8V  
60  
DD  
0
-40 -20  
0
20  
40  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
-1  
0
2
3
4
5
6
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT COMMON-MODE VOLTAGE (V)  
OUTPUT-VOLTAGE LOW  
vs. PULLUP RESISTANCE  
SHORT-CIRCUIT CURRENT  
vs. SUPPLY VOLTAGE  
INPUT OFFSET VOLTAGE HISTOGRAM  
10,000  
1000  
100  
10  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= LOW  
OUT  
T
A
= -40°C  
T
A
= +25°C  
T
= +85°C  
A
1
0
0
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
-2 -1.5 -1.0 -0.5  
0
0.5 1.0 1.5 2.0 2.5  
PULLUP RESISTANCE (I)  
SUPPLY VOLTAGE (V)  
INPUT OFFSET VOLTAGE (mV)  
����������������������������������������������������������������� Maxim Integrated Products  
4
 
MAX44269  
1.3mm x 1.3mm, Low-Power  
Dual Comparator  
Typical Operating Characteristics (continued)  
(V  
= 5V, V  
= 0V, V = V  
= 1.2V, R  
= 100kto V , T = -40NC to +85NC. Typical values are at T = +25NC, unless  
PULLUP CC A A  
CC  
GND  
IN-  
IN+  
otherwise noted. All devices are 100% production tested at T = +25NC. Temperature limits are guaranteed by design.)  
A
PROPAGATION DELAY  
vs. CAPACITIVE LOAD  
PROPAGATION DELAY  
vs. PULLUP RESISTANCE  
LEAKAGE CURRENT vs. TEMPERATURE  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
t
PLH  
t
PLH  
V
= 5V  
CC  
V
CC  
= 2.7V  
t
PHL  
t
PHL  
1M  
V
= 1.8V  
CC  
-50 -30 -10 10 30 50 70 90 110  
TEMPERATURE (°C)  
1k  
10k  
100k  
10M  
0
200  
400  
600  
800  
1000  
PULLUP RESISTANCE (I)  
CAPACITIVE LOAD (pF)  
PROPAGATION DELAY  
PROPAGATION DELAY  
PROPAGATION DELAY vs. TEMPERATURE  
vs. INPUT OVERDRIVE (t  
)
vs. INPUT OVERDRIVE (t  
)
(V  
= 100mV, V = 5V)  
PLH  
PHL  
OVERDRIVE  
DD  
60  
50  
40  
30  
20  
10  
0
12  
10  
8
45  
40  
35  
30  
25  
20  
15  
10  
5
T
= +25°C  
A
T
= -40°C  
A
T
A
= -40°C  
t
PLH  
6
T
A
= +25°C  
T
= +85°C  
A
4
t
PHL  
2
T
A
= +85°C  
0
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
-40 -20  
0
20  
40  
60  
80 100  
INPUT OVERDRIVE VOLTAGE (mV)  
INPUT OVERDRIVE VOLTAGE (mV)  
TEMPERATURE (°C)  
INPUT REFERRED HYSTERESIS  
vs. TEMPERATURE  
SMALL-SIGNAL TRANSIENT RESPONSE  
SMALL-SIGNAL TRANSIENT RESPONSE  
(V = 1.8V)  
(V = 5V)  
CC  
CC  
MAX44269 toc17  
MAX44269 toc18  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
IN+  
20mV/div  
V
IN+  
20mV/div  
V
OUT  
1V/div  
V
OUT  
2V/div  
-40 -20  
0
20  
40  
60  
80 100  
20µs/div  
20µs/div  
TEMPERATURE (°C)  
����������������������������������������������������������������� Maxim Integrated Products  
5
MAX44269  
1.3mm x 1.3mm, Low-Power  
Dual Comparator  
Typical Operating Characteristics (continued)  
(V  
= 5V, V  
= 0V, V = V  
= 1.2V, R  
= 100kto V , T = -40NC to +85NC. Typical values are at T = +25NC, unless  
PULLUP CC A A  
CC  
GND  
IN-  
IN+  
otherwise noted. All devices are 100% production tested at T = +25NC. Temperature limits are guaranteed by design.)  
A
LARGE-SIGNAL TRANSIENT RESPONSE  
LARGE-SIGNAL TRANSIENT RESPONSE  
(V = 5V)  
(V = 1.8V)  
CC  
CC  
MAX44269 toc20  
MAX44269 toc19  
V
V
IN+  
IN+  
100mV/div  
200mV/div  
V
V
OUT  
OUT  
2V/div  
1V/div  
20µs/div  
20µs/div  
NO OUTPUT PHASE REVERSAL  
POWER-UP RESPONSE  
MAX44269 toc22  
MAX44269 toc21  
V
IN  
200mV/div  
V
IN  
-0.3V TO +6V  
V
CC  
2V/div  
V
OUT  
V
OUT  
2V/div  
20µs/div  
800µs/div  
����������������������������������������������������������������� Maxim Integrated Products  
6
MAX44269  
1.3mm x 1.3mm, Low-Power  
Dual Comparator  
Bump Configuration  
TOP VIEW  
MAX44269  
1
2
3
+
INA-  
INA+  
OUTA  
A
B
C
GND  
INB-  
N.C.  
V
CC  
INB+  
OUTB  
WLP  
Bump Description  
PIN  
A1  
A2  
A3  
B1  
B2  
B3  
C1  
C2  
C3  
NAME  
INA-  
FUNCTION  
Comparator A Inverting Input  
INA+  
OUTA  
GND  
N.C.  
Comparator A Noninverting Input  
Comparator A Output  
Negative Supply Voltage. Bypass to GND with a 1.0FF capacitor.  
Not Connected  
V
Positive Supply Voltage. Bypass to GND with a 1.0FF capacitor.  
Comparator B Inverting Input  
CC  
INB-  
INB+  
OUTB  
Comparator B Noninverting Input  
Comparator B Output  
����������������������������������������������������������������� Maxim Integrated Products  
7
MAX44269  
1.3mm x 1.3mm, Low-Power  
Dual Comparator  
Detailed Description  
Applications Information  
The MAX44269 is a general-purpose dual comparator for  
battery-powered devices where area, power, and cost  
constraints are crucial. The IC can operate with a low  
1.8V supply rail typically consuming 0.5µA quiescent cur-  
rent per comparator. This makes it ideal for mobile and  
very low-power applications. The IC’s common-mode  
input voltage range extends 200mV beyond-the-rails. An  
internal 4mV hysteresis ensures clean output switching,  
even with slow-moving input signals.  
Hysteresis  
Many comparators oscillate in the linear region of opera-  
tion because of noise or undesired parasitic feedback.  
This tends to occur when the voltage on one input is  
equal or very close to the voltage on the other input.  
The hysteresis in a comparator creates two trip points:  
one for the rising input voltage and one for the falling input  
voltage (Figure 1). The difference between the trip points  
is the hysteresis. When the comparator’s input voltages  
are equal and the output trips, the hysteresis effectively  
causes one comparator input to move quickly past the  
other. This takes the input out of the region where oscil-  
lation occurs. This provides clean output transitions for  
noisy, slow-moving input signals. The IC has an internal  
hysteresis of 4mV. Additional hysteresis can be generat-  
ed with three resistors using positive feedback (Figure 2).  
Input Stage Structure  
The input common-mode voltage range extends from  
(V  
GND  
- 0.2V) to (V  
+ 0.2V). The comparator operates  
CC  
at any different input voltage within these limits with low  
input bias current. Input bias current is typically 0.15nA if  
the input voltage is between the supply rails.  
The IC features a unique input ESD structure that can  
handle voltages from -0.3V to 6V independent of supply  
voltage. This allows for the device to be powered down  
with a signal still present on the input without damag-  
ing the part. This feature is useful in applications where  
one of the inputs has transient spikes that exceed the  
supply rails.  
THERSHOLDS  
IN+  
V
TH  
HYSTERESIS BAND  
IN-  
V
V
HYST  
TL  
No Output Phase Reversal  
for Overdriven Inputs  
The IC’s design is optimized to prevent output phase  
reversal if both the inputs are within the input common  
mode voltage range. If one of the inputs is outside the  
input common-mode voltage range, then output phase  
reversal does not occur as long as the other input is  
kept within the valid input common-mode voltage range.  
This behavior is shown in the No Output Phase Reversal  
graph in the Typical Operating Characteristics section.  
OUT  
Figure 1. Threshold Hysteresis Band (Not to Scale)  
V
CC  
Open-Drain Output  
The IC features an open-drain output, enabling greater  
control of speed and power consumption in the circuit  
design. The output logic level is also independent from  
the input, allowing for simple level translation.  
R3  
R1  
MAX44269  
RF Immunity  
The IC has very high RF immunity due to on-chip filtering  
of RF sensitive nodes. This allows the IC to hold its output  
state even in the presence of high amounts of RF noise.  
This improved RF immunity makes the IC ideal for mobile  
wireless devices.  
R2  
V
IN  
OUT  
R4  
V
REF  
GND  
Figure 2. Adding Hysteresis with External Resistors  
����������������������������������������������������������������� Maxim Integrated Products  
8
 
 
MAX44269  
1.3mm x 1.3mm, Low-Power  
Dual Comparator  
Use the following procedure to calculate resistor values.  
6) Verify the trip voltages and hysteresis as follows:  
1) Select R3. Input bias current at IN_+ is less than15nA.  
To minimize errors caused by the input bias current,  
the current through R3 should be at least 1.5µA.  
1
R2  
1
R3  
1
R4  
=
xR2  
+
+
V
V
REF  
THR  
1
R2  
1
1
Current through R3 at the trip point is (V  
- V  
)/  
OUT  
REF  
=
x R2  
+
+
V
V
REF  
THF  
R3. Considering the two possible output states in solv-  
ing for R3 yields two formulas:  
R1+ R3 R4  
   
R2  
R1+ R3  
x
V
CC  
R3 = V  
/IR3 and R3 = [(V  
- V )/IR3] - R1  
REF  
REF  
CC  
Use the smaller of the two resulting resistor values.  
For example, for V = 5V, IR3 = -1.5µA, R1 = 200kI,  
The hysteresis network in Figure 2 can be simplified if the  
reference voltage is chosen to be at midrail and the trip  
points of the comparator are chosen to be symmetrical  
about the reference voltage. Use the circuit in Figure 3  
if the reference voltage can be designed to be at the  
center of the hysteresis band. For the symmetrical case,  
follow the same steps outlined in the paragraph above  
to calculate the resistor values except that in this case,  
resistor R4 approaches infinity (open). So in the previous  
CC  
and a V  
= 1.24V, the two resistor values are 827kI  
REF  
and 1.5MI. Therefore, for R3 choose the standard  
value of 825kI.  
2) Choose the hysteresis band required (V ). In this  
HB  
example, the V  
= 50mV.  
HB  
3) Calculate R2 according to the following equation:  
example with V  
= 2.475V then using the above formulas, we get R1 =  
200kI, R2 = 9.09kIand R3 = 825kI, R4 = not installed.  
= 2.5V, if V  
= 2.525V and V  
REF  
THR THF  
V
HB  
x R1) / R3  
R2 = (R1+ R3)  
+
(V  
V
CC  
REF  
For this example, insert the value:  
Jack Detect  
The IC can be used to detect peripheral devices  
connected to a circuit. This includes a simple jack-  
detect scheme for cell phone applications. The Typical  
Application Circuit shows how the device can be used in  
conjunction with an external reference to detect a remote  
key connection and an accessory ID input. The open-  
drain output of the devices allows the output logic level  
to be controlled independent of the peripheral device’s  
load, making interfacing and controlling external devices  
as simple as monitoring a few digital inputs on a micro-  
controller or codec.  
50mV  
R2 = (200kΩ + 0.825M)  
= 9.67kΩ  
5.3  
For this example, choose standard value R2 = 9.76kI.  
4) Choose the trip point for V rising (V  
IN  
) in such a  
THR  
way that:  
V
HB  
V
> V  
1+  
THR  
REF  
V
CC  
V
is the threshold voltage at which the com-  
THR  
parator switches its output from low to high, as V  
IN  
rises above the trip point. For this example, choose  
= 3V.  
V
CC  
V
THR  
R3  
5) Calculate R4 as follows:  
1
R4 =  
R1  
1
R2  
1
R3  
MAX44269  
V
THR  
x R2  
R2  
V
REF  
V
IN  
1
OUT  
R4 =  
= 6.93kΩ  
3
1
9.76  
1
825  
V
REF  
1.24x 9.76  
GND  
For this example, choose a standard value of 6.98kI.  
Figure 3. Simplified External Hysteresis Network if V  
the Center of the Hysteresis Band  
is at  
REF  
����������������������������������������������������������������� Maxim Integrated Products  
9
 
MAX44269  
1.3mm x 1.3mm, Low-Power  
Dual Comparator  
Logic-Level Translator  
Relaxation Oscillator  
The IC can also be used to make a simple relaxation  
oscillator (Figure 6). By adding the RC circuit R5 and  
C1, a standard Schmidt Trigger circuit referenced to  
a set voltage is converted into an astable multivibra-  
tor. As shown in Figure 7, IN- is a sawtooth waveform  
with capacitor C1 alternately charging and discharging  
through resistor R5. The external hysteresis network  
formed by R1 to R4 defines the trip voltages as:  
Due to the open-drain output of the IC, the device can  
translate between two different logic levels (Figure 4). If  
the internal 4 mV hysteresis is not sufficient, then exter-  
nal resistors can be added to increase the hysteresis as  
shown in Figure 2 and Figure 3.  
Power-On Reset Circuit  
The IC can be used to make a power-on reset circuit as  
displayed in Figure 5. The positive input provides the  
ratiometric reference with respect to the power supply  
and is created by a simple resistive divider. Choose  
reasonably large values to minimize the power consump-  
tion in the resistive divider. The negative input provides  
the power-on delay time set by the time constant of the  
RC circuit formed by R2 and C1. This simple circuit can  
be used to power up the system in a known state after  
ensuring that the power supply is stable. Diode D1 pro-  
vides a rapid reset in the event of unexpected power loss.  
R3x R4  
R2R3 + R2R4 + R3R4  
= V  
V
T_RISE  
CC  
R4R5(R1+ R2 + R3)  
+R1R 3R 4  
R4R5(R1+ R2 + R3) + R1R3R4  
+R2(R1R3 + R3R5 + R1R5)  
= V  
V
T_FALL  
CC  
Using the basic time domain equations for the charging  
and discharging of an RC circuit, the logic-high time,  
logic-low time, and frequency can be calculated as:  
V
CC  
V
PULL  
MAX44269  
V
IN  
V
T_FALL  
R1  
= R5C1 ln  
t
LOW  
V
T_RISE  
OUT  
V
REF  
V
CC  
GND  
R3  
V
CC  
Figure 4. Logic-Level Translator  
R1  
R2  
R4  
MAX44269  
V
CC  
V
CC  
OUT  
D1  
R2  
R3  
MAX44269  
R1  
GND  
R5  
RESET  
C1  
C1  
R4  
GND  
Figure 6. Relaxation Oscillator  
Figure 5. Power-On Reset Circuit  
���������������������������������������������������������������� Maxim Integrated Products 10  
 
 
 
MAX44269  
1.3mm x 1.3mm, Low-Power  
Dual Comparator  
Since the comparator’s output is open drain, it goes to  
The frequency of the relaxation oscillator is:  
high impedance corresponding to logic-high. So, when  
the output is at logic-high, the C1 capacitor charges  
through the resistor network formed by R1 to R5 as shown  
1
1
f =  
=
+
t
t
V
V  
(
)
)
HIGH LOW  
V
CC  
T_RISE  
T_FALL  
R5C11n  
in Figure 8. An accurate calculation of t  
would have  
HIGH  
V
V
(
V
T_RISE  
CC  
T_FALL  
involved applying thevenin’s theorem to compute the  
equivalent thevenin voltage (V ) and thevenin  
THEVENIN  
Simple PWM Generation Circuit  
resistance (R  
) in series with the capacitor  
THEVENIN  
A pulse-width modulated (PWM) signal generator can be  
made utilizing both comparators in the IC (Figure 9). The  
capacitor/feedback resistor combination on INA- deter-  
mines the switching frequency and the analog control  
voltage determines the pulse width.  
C1. t  
can then be computed using the basic time  
domain equations for the charging RC circuit as:  
HIGH  
V
V
V
THEVENIN  
T_RISE  
= R  
C1 ln  
THEVENIN  
t
HIGH  
V
THEVENIN  
T_FALL  
R
= (R2 R4) + R3 R1+ R5  
[
]
THEVENIN  
V
V
CC  
CC  
R2  
R4  
R1  
V
(R2 R4) + R3  
]
+
[
V
xR4  
CC  
CC  
R
R3  
R5  
THEVENIN  
V
=
THEVENIN  
(R2 R4) + R3 + R1  
R1  
(R2 R4) + R3 + R1  
R2 + R4  
V
C1  
C1  
THEVENIN  
x
The t  
calculation can be simplified by selecting the  
HIGH  
component values in such a way that R3 >> R1 and R5  
>> R1. This ensures that the output of the comparator  
Figure 8. Charging Network Corresponding to Logic-High Output  
goes close to V  
when at logic-high (that is, V  
CC  
THEVENIN  
~ V  
and R  
~ R5). With this selection, t  
CC  
THEVENIN HIGH  
R4  
can be approximated as:  
V
CC  
V
CC  
V
V
V
CC  
T_RISE  
= R5C1 ln  
t
HIGH  
R2  
R3  
V
CC  
T_FALL  
R1  
INA-  
R5  
V
T_FALL  
C1 WAVEFORM  
C1  
V
T_RISE  
V
CC  
MAX44269  
ANALOG  
CONTROL  
VOLTAGE  
R6  
OUT  
OUT  
WAVEFORM  
GND  
Figure 7. Relaxation Oscillator Waveforms  
Figure 9. PWM Generator  
���������������������������������������������������������������� Maxim Integrated Products 11  
 
 
 
MAX44269  
1.3mm x 1.3mm, Low-Power  
Dual Comparator  
Window Detector Circuit  
Board Layout and Bypassing  
The IC is ideal for window detectors (undervoltage/over-  
voltage detectors). Figure 10 shows a window detector  
circuit for a single-cell Li+ battery with a 2.9V end-of-life  
charge, a peak charge of 4.2V, and a nominal value of  
3.6V. Choose different thresholds by changing the values  
of R1, R2, and R3. OUTA provides an active-low under-  
voltage indication, and OUTB provides an active-low  
overvoltage indication. The open-drain outputs of both  
the comparators are wired OR to give an active-high  
power-good signal.  
Use 1.0FF bypass capacitors from V to GND. To maxi-  
CC  
mize performance, minimize stray inductance by putting  
this capacitor close to the V  
lengths.  
pin and reducing trace  
CC  
5V  
V
V
= 4.2V  
= 2.9V  
OTH  
UTH  
V
IN  
V
CC  
R3  
R2  
MAX44269  
INA+  
The design procedure is as follows:  
1) Select R1. The input bias current into INB- is less than  
15nA, so the current through R1 should exceed 1.5µA  
for the thresholds to be accurate. In this example,  
choose R1 = 825kI (1.24V/1.5µA).  
OUTA  
OUTB  
POWER  
GOOD  
INA-  
INB+  
2) Calculate R2 + R3. The overvoltage threshold should  
be 4.2V when V is rising. The design equation is as  
IN  
REF  
1.24V  
follows:  
INB-  
GND  
V
OTH  
R2 + R3 = R1 x  
1  
R1  
V
GND  
REF   
4.2  
1.24  
= 825 x  
1  
  
Figure 10. Window Detector Circuit  
=1969kΩ  
3) Calculate R2. The undervoltage threshold should be  
Chip Information  
2.9V when V is falling. The design equation is as  
IN  
follows:  
PROCESS: BiCMOS  
V
REF  
R2 = (R1+ R2 + R3)x  
R1  
V
UTH  
Ordering Information  
= 825 + 1969 x 1.24 / 2.9 825  
(
)
(
)
)
(
PIN-  
TOP  
= 370kΩ  
PART  
TEMP RANGE  
PACKAGE  
MARK  
For this example, choose a 374kIstandard value 1%  
MAX44269EWL+T -40NC to +85NC  
9 WLP  
+AJL  
resistor.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
4) Calculate R3:  
R3 = (R2 + R3) R2  
= 1969kΩ − 374kΩ  
=1.595MΩ  
For this example, choose a 1.58MI standard value 1%  
resistor.  
���������������������������������������������������������������� Maxim Integrated Products 12  
 
 
MAX44269  
1.3mm x 1.3mm, Low-Power  
Dual Comparator  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or  
“-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains  
to the package regardless of RoHS status.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
21-0430  
LAND PATTERN NO.  
9 WLP  
W91B1-6  
Refer to Application Note 1891  
���������������������������������������������������������������� Maxim Integrated Products 13  
MAX44269  
1.3mm x 1.3mm, Low-Power  
Dual Comparator  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1
9/11  
Initial release  
Revised Electrical Characteristics, Typical Operating Characteristics, and Figure 5.  
12/11  
3, 5, 6, 9, 10  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
14  
©
2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX44269_1112

1.3mm x 1.3mm, Low-Power Dual Comparator
MAXIM

MAX4426C

Dual High-Speed 1.5A MOSFET Drivers
MAXIM

MAX4426C/D

Dual High-Speed 1.5A MOSFET Drivers
MAXIM

MAX4426CPA

Dual High-Speed 1.5A MOSFET Drivers
MAXIM

MAX4426CPA+

Buffer/Inverter Based MOSFET Driver, 1.5A, PDIP8, PLASTIC, DIP-8
MAXIM

MAX4426CSA

Dual High-Speed 1.5A MOSFET Drivers
MAXIM

MAX4426CSA+T

Buffer/Inverter Based MOSFET Driver, 1.5A, CMOS, PDSO8, SOP-8
MAXIM

MAX4426CSA-T

Buffer/Inverter Based MOSFET Driver, 1.5A, CMOS, PDSO8, SOP-8
MAXIM

MAX4426D

Dual High-Speed 1.5A MOSFET Drivers
MAXIM

MAX4426EJA

Dual MOSFET Driver
MAXIM

MAX4426EPA

Dual High-Speed 1.5A MOSFET Drivers
MAXIM

MAX4426ESA

Dual High-Speed 1.5A MOSFET Drivers
MAXIM