MAX442ESA [MAXIM]

140MHz, 2-Channel Video Multiplexer/Amplifier; 140MHz的, 2路视频多路复用器/放大器
MAX442ESA
型号: MAX442ESA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

140MHz, 2-Channel Video Multiplexer/Amplifier
140MHz的, 2路视频多路复用器/放大器

复用器 放大器
文件: 总8页 (文件大小:95K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0016; Rev 1; 1/95  
1 4 0 MHz, 2 -Ch a n n e l  
Vid e o Mu lt ip le x e r/Am p lifie r  
MAX42  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
140MHz Unity-Gain Bandwidth  
250V/µs Slew Rate  
The MAX442 combines a 140MHz video amplifier with a  
high-speed, 2-channel multiplexer in an 8-pin package.  
With its 36ns switching time and low differential gain  
(0.07%) and phase (0.09°) errors, it is ideal for broad-  
cast-quality video applications. The device is designed  
to drive both 50and 75cables, and can directly  
drive a 75load to ±3V.  
0.07%/0.09° Differential Gain/Phase Error  
36ns Channel Switch Time  
No External Compensation Components  
8-Pin DIP and SO Packages  
The MAX442 video amplifier is compensated for unity-  
gain stability, and features a 140MHz bandwidth and a  
250V/µs slew rate. The multiplexers low input capaci-  
tance (4pF with the channel on or off) maximizes high-  
speed performance, and a ground pin separating the  
two input channels minimizes crosstalk and simplifies  
board layout.  
Directly Drives 50and 75Cables  
______________Ord e rin g In fo rm a t io n  
The MAX442 operates from ±5V supplies and typically  
consumes 300mW. For applications that require more  
input channels, see the data sheets for the MAX440 8-  
channel mux/amp and the MAX441 4-channel mux/amp.  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX442CPA  
MAX442CSA  
MAX442C/D  
MAX442EPA  
MAX442ESA  
Dice*  
8 Plastic DIP  
8 SO  
________________________Ap p lic a t io n s  
Broadcast-Quality Video-Signal Multiplexing  
Coaxial-Cable Drivers  
*Dice are specified at T = +25°C, DC parameters only.  
A
Video Editing  
Video Security Systems  
Medical Imaging  
__________Typ ic a l Op e ra t in g Circ u it  
High-Speed Signal Processing  
+5V  
0.1µF  
__________________P in Co n fig u ra t io n  
V+  
TOP VIEW  
MAX442  
75Ω  
CABLE  
VIDEO  
OUTPUT  
75Ω  
V
OUT  
IN0  
IN1  
VIDEO  
SIGNALS  
IN  
270Ω  
75Ω  
1
2
3
4
8
7
6
5
IN0  
GND  
IN1  
A0  
V+  
V
IN-  
MAX442  
A0  
OUT  
270Ω  
GND V-  
IN-  
V-  
0.1µF  
DIP/SO  
CHANNEL  
SELECT  
-5V  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
1 4 0 MHz, 2 -Ch a n n e l  
Vid e o Mu lt ip le x e r/Am p lifie r  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V+ to V-).......................................................12V  
Analog Input Voltage ............................(V+ + 0.3V) to (V- - 0.3V)  
Digital Input Voltage .....................................-0.3V to (V+ + 0.3V)  
Short-Circuit Current Duration ........................................1 minute  
Input Current to Any Pin, Power On or Off........................±50mA  
Operating Temperature Ranges  
MAX442C_A........................................................0°C to +70°C  
MAX442E_A.....................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 9.09mW/°C above +70°C) ............727mW  
SO (derate 5.88mW/°C above +70°C).........................471mW  
MAX42  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = 5V, V- = -5V, R = 150, T = T  
to T , unless otherwise noted.)  
MAX  
L
A
MIN  
PARAMETER  
DC PERFORMANCE  
Input Voltage Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
IN  
-2  
2
T
= +25°C  
±1.5  
±7.0  
±10  
±12  
±2.5  
±5.0  
±2  
A
Input Offset Voltage  
(All Channels)  
V
MAX442C  
MAX442E  
mV  
OS  
T
A
= +25°C  
±1  
±0.6  
±0.5  
2.0  
Offset Matching  
mV  
µA  
(V  
–V  
)
OS0 OS1  
T
A
= T to T  
MIN MAX  
T
= +25°C  
A
Input Bias Current  
(Channel On)  
I
V
= 0V  
= 0V  
B
IN  
T
A
= T  
to T  
±5  
MIN  
MAX  
MAX  
MAX  
T
A
= +25°C  
±50  
±1  
nA  
µA  
Input Leakage Current  
(Channel Off)  
I
V
IN  
LKG  
T
A
= T  
to T  
MIN  
T
A
= +25°C  
0.5  
0.2  
Input Resistance  
(Channel On) (Note 1)  
R
C
-2V V 2V  
MΩ  
pF  
IN  
CM  
T
A
= T  
to T  
MIN  
Input Capacitance  
Channel on or off  
4
IN  
A
= 0dB  
= 6dB  
25  
50  
60  
V
DC Output Resistance  
R
mΩ  
OUT  
A
V
T
= +25°C  
50  
46  
A
R
= 75,  
L
Open-Loop Voltage Gain  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
Output Voltage Swing  
A
dB  
dB  
dB  
V
VOL  
-2V V  
+2V  
OUT  
T
A
= T  
to T  
MIN  
MAX  
MAX  
MAX  
MAX  
T
A
= +25°C  
46  
50  
80  
CMRR  
PSRR  
-2V V +2V  
IN  
T
A
= T  
to T  
46  
MIN  
T
A
= +25°C  
54  
±4.75V to ±5.25V  
T
A
= T  
to T  
54  
MIN  
T
A
= +25°C  
±2.5  
±2.0  
±3.0  
V
OUT  
R = 75Ω  
L
T
A
= T  
to T  
MIN  
2
_______________________________________________________________________________________  
1 4 0 MHz, 2 -Ch a n n e l  
Vid e o Mu lt ip le x e r/Am p lifie r  
MAX42  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = 5V, V- = -5V, R = 150, T = T  
to T , unless otherwise noted.)  
MAX  
L
A
MIN  
PARAMETER  
DYNAMIC PERFORMANCE  
-3dB Bandwidth  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BW  
SR1  
DP  
A
= 0dB, R = 100Ω  
140  
250  
MHz  
V/µs  
V
L
Slew Rate  
Differential Phase Error  
Differential Gain Error  
Figure 1  
0.09  
0.07  
degrees  
%
DG  
Figure 1  
To 0.1% of final value,  
Settling Time  
t
s
50  
ns  
A
= 0dB, R = 150, 2V step input  
L
V
Crosstalk  
X
f = 10MHz, R = 75, A = 0dB, Figure 6  
76  
12  
dB  
TALK  
S
V
nV/ Hz  
Input Noise-Voltage Density  
POWER REQUIREMENTS  
e
f = 10kHz  
n
Operating Supply-Voltage Range  
V
±4.75  
25  
±5.25  
35  
V
S
T
= +25°C  
30  
28  
A
Positive Supply Current  
I
CC  
V
= 0V  
= 0V  
MAX442C  
MAX442E  
22  
38  
mA  
IN  
19  
41  
T
A
= +25°C  
23  
35  
Negative Supply Current  
I
EE  
V
IN  
MAX442C  
MAX442E  
20  
38  
mA  
17  
41  
SWITCHING CHARACTERISTICS  
Logic Low Voltage  
V
0.8  
V
V
IL  
Logic High Voltage  
V
IH  
2.4  
Address Propagation Delay  
Channel Switching Time  
t
Figure 7  
Figure 7 (Note 2)  
24  
36  
ns  
ns  
APD  
t
SW  
Note 1: Incremental resistance for a common-mode voltage between ±2V.  
Note 2: Channel Switching Time specified between two grounded input channels; does not include signal rise/fall times for switch-  
ing between channels with different input voltages.  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
UNITY-GAIN OUTPUT IMPEDANCE  
vs. FREQUENCY  
CLOSED-LOOP GAIN  
vs. FREQUENCY  
OPEN-LOOP GAIN AND PHASE  
vs. FREQUENCY  
100  
10  
30  
25  
80  
70  
135  
90  
A
= 20dB  
= 6dB  
= 0dB  
VCL  
20  
15  
10  
5
60  
50  
45  
A
VCL  
GAIN  
A
VCL  
0
40  
30  
20  
10  
0
-45  
PHASE  
-90  
1
0
-135  
-180  
-225  
-270  
-315  
-5  
0.1  
0.01  
-10  
-15  
-20  
-10  
-20  
10k  
100k  
1M  
10M  
100M  
0.1  
1
10  
100  
1000  
0.001  
0.1  
10  
1000  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
3
1 4 0 MHz, 2 -Ch a n n e l  
Vid e o Mu lt ip le x e r/Am p lifie r  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
VOLTAGE-NOISE DENSITY  
OUTPUT VOLTAGE SWING  
vs. LOAD RESISTANCE  
CROSSTALK  
vs. FREQUENCY  
vs. FREQUENCY  
5
4
3
2
1
0
-20  
1000  
MAX42  
100  
10  
1
-40  
-60  
0
-1  
-2  
-80  
-3  
-4  
-5  
-100  
-120  
1
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
1
10  
100  
1000  
FREQUENCY (Hz)  
LOAD RESISTANCE ()  
FREQUENCY (MHz)  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. TEMPERATURE  
5
1.0  
40  
30  
V
CM  
= 0V  
I
CC  
4
3
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
20  
10  
0
2
1
0
-1  
-2  
-10  
-20  
-30  
-40  
I
EE  
-3  
-4  
-5  
0.2  
0.1  
0
-40 -20  
0
20  
40 60  
80 100  
-40 -20  
0
20  
40 60  
80 100  
-40 -20  
0
20  
40 60  
80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OPEN-LOOP VOLTAGE GAIN  
vs. TEMPERATURE  
COMMON-MODE REJECTION RATIO  
vs. TEMPERATURE  
DIFFERENTIAL INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
80  
80  
3
70  
60  
50  
40  
30  
70  
60  
50  
40  
30  
2
1
0
-1  
-2  
-3  
20  
10  
0
20  
10  
0
-40 -20  
0
20  
40 60  
80 100  
-40 -20  
0
20  
40 60  
80 100  
-40 -20  
0
20  
40 60  
80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
1 4 0 MHz, 2 -Ch a n n e l  
Vid e o Mu lt ip le x e r/Am p lifie r  
MAX42  
To prevent oscillation and unwanted signal coupling,  
_____________________P in De s c rip t io n  
minimize trace area at the circuit’s critical high-imped-  
ance nodes, especially the amplifier summing junction  
(the amplifiers inverting input). Surround these critical  
nodes with a ground trace, and include ground traces  
between all signal traces to minimize parasitic coupling  
that can degrade crosstalk and/or amplifier stability.  
Keep signal paths as short as possible to minimize  
inductance, and keep all input channel traces at equal  
lengths to maintain the phase relationship between the  
input channels.  
PIN  
1
NAME  
IN0  
FUNCTION  
Analog Input, channel 0  
Ground  
2
GND  
IN1  
3
Analog Input, channel 1  
Negative Power Supply, -5V  
Amplifier Inverting Input  
Amplifier Output  
4
V-  
5
IN-  
Bypass all power-supply pins directly to the ground  
plane with 0.1µF ceramic capacitors, placed as close  
to the supply pins as possible. For high-current loads,  
it may be necessary to include 1µF tantalum or alu-  
minum-electrolytic capacitors in parallel with the 0.1µF  
c e ra mic b yp a s s c a p a c itors . Ke e p c a p a c itor le a d  
lengths as short as possible to minimize series induc-  
tance; surface-mount (chip) capacitors are ideal for this  
application.  
6
V
OUT  
7
V+  
A0  
Positive Power Supply, +5V  
Channel Address Input:  
A0 = logic 0 selects channel 0,  
A0 = logic 1 selects channel 1  
8
__________Ap p lic a t io n s In fo rm a t io n  
Diffe re n t ia l Ga in a n d P h a s e Erro rs  
In color video applications, lowest differential gain and  
phase errors are critical for an IC, because they cause  
changes in contrast and color of the displayed picture.  
Typically, the MAX442s multiplexer/amplifier combina-  
tion has a differential gain and phase error of only  
0.07% and 0.09°, respectively. This low differential  
gain and phase error makes the MAX442 ideal for use  
in broadcast-quality color video systems.  
The MAX442s bipolar construction results in a typical  
channel input capacitance of only 4pF, whether the  
channel is on or off. As with all ICs, the muxs input  
capacitance forms a single-pole RC lowpass filter with  
the signal sources output impedance. This filter can  
limit the systems signal bandwidth if the RC product  
becomes too large. However, the MAX442s low chan-  
nel input capacitance allows full AC performance of the  
amplifier, even with source impedances as great as  
250—a significant improvement over common mux or  
switch alternatives.  
Co a x ia l-Ca b le Drive rs  
High-speed performance and excellent output current  
capability make the MAX442 ideal for driving 50or  
75coaxial cables. The MAX442 will drive 50and  
75coaxial cables to ±3V.  
Feedback resistors should be limited to no more than  
500to ensure that the RC time constant formed by the  
re s is tors , the c irc uit b oa rd s c a p a c ita nc e , a nd the  
capacitance of the amplifier input pins does not limit  
the systems high-speed performance.  
75Ω  
CABLE  
P o w e r-S u p p ly Byp a s s in g  
a n d Bo a rd La yo u t  
75Ω  
Realizing the full AC performance of high-speed ampli-  
fiers requires careful attention to power-supply bypass-  
ing and board layout. Use a low-impedance ground  
plane with the MAX442. With multilayer boards, the  
ground plane should be located on the PC boards  
component side to minimize impedance between the  
components and the ground plane. For single-layer  
boards, components should be mounted on the boards  
copper side and the ground plane should include the  
entire portion of the board that is not dedicated to a  
specific signal trace.  
75Ω  
CABLE  
MAX442  
75Ω  
75Ω  
CABLE  
75Ω  
75Ω  
470Ω  
SOURCE:  
TEKTRONIX  
1910 DIGITAL GENERATOR  
470Ω  
MEASUREMENT:  
TEKTRONIX  
VM700 VIDEO  
MEASUREMENT SET  
Figure 1. Differential Gain and Phase Error Test Circuit  
_______________________________________________________________________________________  
5
1 4 0 MHz, 2 -Ch a n n e l  
Vid e o Mu lt ip le x e r/Am p lifie r  
The Typical Operating Circuit shows the MAX442 dri-  
ving a back-terminated 75video cable. The back-ter-  
mination resistor (at the MAX442 output) is included to  
match the impedance of the cables driven end to the  
characteristic impedance of the cable itself. This, plus  
the load-termination resistor, eliminates signal reflec -  
tions from the cables ends. The back-termination resis-  
tor forms a voltage divider with the load impedance,  
which attenuates the signal at the cable output by one-  
half. The amplifier is operated with a 2V/V closed-loop  
gain to provide unity gain at the cables video output.  
lowe rs . The a mp lifie rs outp ut imp e d a nc e a nd the  
capacitive load form an RC filter that adds a pole to the  
loop response. If the pole frequency is low enough, as  
when driving a large capacitive load, the circuit phase  
margin is degraded and oscillation may occur.  
With capacitive loads greater than approximately 50pF  
and the MAX442 configured as a unity-gain buffer, use  
an isolation resistor in series with the load, as shown in  
Figure 2. The resistor removes the pole from the loop  
response caused by the load capacitance.  
MAX42  
Ch a n n e l S w it c h in g Tim e /Tra n s ie n t  
When the MAX442 multiplexer is switched from one  
channel to another, a small glitch will appear at the out-  
put. Figure 3 shows the results of putting a 0V to 5V  
pulse 100ns wide into A0.  
Ca p a c it ive -Lo a d Drivin g  
Driving large capacitive loads increases the likelihood  
of oscillation in most amplifier circuits. This is especial-  
ly true for circuits with high loop gains, like voltage fol-  
MAX442  
INPUT  
GND  
1V/div  
IN  
22Ω  
OUT  
C
LOAD  
> 50pF  
CABLE  
OUTPUT  
GND  
500mV/div  
Figure 2. Capacitive-Load-Driving Circuit  
Figure 4. Pulse Response with R = 100(50back-terminated  
L
cable), A  
= +1V/V  
VCL  
A0 INPUT  
5V/div  
GND  
GND  
INPUT  
1V/V  
GND  
GND  
AMP  
OUTPUT  
200mV/div  
CABLE  
OUTPUT  
1V/V  
Figure 3. Output Switching Transient when Switching Between  
Two Grounded Inputs with R = 100Ω  
Figure 5. Pulse Response with R = 100(50back-terminated  
L
cable), A  
= +2V/V  
L
VCL  
6
_______________________________________________________________________________________  
1 4 0 MHz, 2 -Ch a n n e l  
Vid e o Mu lt ip le x e r/Am p lifie r  
MAX42  
___________________Ch ip To p o g ra p h y  
A0  
MAX442  
(MEASURED WITH  
CHANNEL 0  
SELECTED)  
IN0  
IN0  
IN1  
V+  
V
OUT  
75Ω  
0. 066"  
150Ω  
(1. 676mm)  
A0  
GND  
IN1  
OUT  
IN-  
V
= 1V at 10MHz,  
p-p  
IN  
V-  
R = 75Ω  
S
0. 066"  
(1. 676mm)  
V
TRANSISTOR COUNT: 137  
SUBSTRATE CONNECTED TO V-  
OUT  
CROSSTALK = 20log  
10  
V
IN  
Figure 6. Crosstalk Test Circuit  
t
APD  
A0  
V
OUT  
t
SW  
Figure 7. Switch Timing  
_______________________________________________________________________________________  
7
1 4 0 MHz, 2 -Ch a n n e l  
Vid e o Mu lt ip le x e r/Am p lifie r  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
E
MIN  
MAX  
0.200  
MIN  
MAX  
5.08  
A
E1  
D
A1 0.015  
A2 0.125  
A3 0.055  
0.38  
3.18  
1.40  
0.41  
1.14  
0.20  
0.13  
7.62  
6.10  
2.54  
7.62  
0.175  
0.080  
0.022  
0.065  
0.012  
0.080  
0.325  
0.310  
4.45  
2.03  
0.56  
1.65  
0.30  
2.03  
8.26  
7.87  
A3  
A2  
A1  
MAX42  
A
L
B
0.016  
B1 0.045  
0.008  
D1 0.005  
0.300  
E1 0.240  
0.100  
eA 0.300  
C
0° - 15°  
E
C
e
e
B1  
eA  
eB  
B
eB  
L
0.400  
0.150  
10.16  
3.81  
0.115  
2.92  
D1  
INCHES  
MILLIMETERS  
PKG. DIM  
PINS  
Plastic DIP  
PLASTIC  
DUAL-IN-LINE  
PACKAGE  
(0.300 in.)  
MIN  
MAX MIN  
MAX  
8
P
P
P
P
P
N
D
D
D
D
D
D
0.348 0.390 8.84  
9.91  
14  
16  
18  
20  
24  
0.735 0.765 18.67 19.43  
0.745 0.765 18.92 19.43  
0.885 0.915 22.48 23.24  
1.015 1.045 25.78 26.54  
1.14 1.265 28.96 32.13  
21-0043A  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.053  
MAX  
0.069  
0.010  
0.019  
0.010  
0.157  
MIN  
1.35  
0.10  
0.35  
0.19  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
4.00  
A
D
A1 0.004  
B
C
E
e
0.014  
0.007  
0.150  
0°-8°  
A
0.101mm  
0.004in.  
0.050  
1.27  
e
H
L
0.228  
0.016  
0.244  
0.050  
5.80  
0.40  
6.20  
1.27  
A1  
C
B
L
INCHES  
MILLIMETERS  
DIM PINS  
Narrow SO  
SMALL-OUTLINE  
PACKAGE  
MIN MAX  
MIN  
MAX  
5.00  
8.75  
8
0.189 0.197 4.80  
D
D
D
E
H
14 0.337 0.344 8.55  
16 0.386 0.394 9.80 10.00  
21-0041A  
(0.150 in.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8
___________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1995 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX442ESA-T

Video Multiplexer, 1 Func, 2 Channel, CMOS, PDSO8, 0.150 INCH, SOP-8
MAXIM

MAX4430

Dual-Supply, 180MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps
MAXIM

MAX4430ESA

Dual-Supply, 180MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps
MAXIM

MAX4430ESA+

Operational Amplifier, 1 Func, 5000uV Offset-Max, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX4430ESA+T

Operational Amplifier, 1 Func, 5000uV Offset-Max, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX4430ESA-T

Operational Amplifier, 1 Func, 5000uV Offset-Max, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX4430EUK+

Operational Amplifier, 1 Func, 5000uV Offset-Max, PDSO5, SOT-23, 5 PIN
MAXIM

MAX4430EUK+T

Operational Amplifier, 1 Func, 5000uV Offset-Max, PDSO5, SOT-23, 5 PIN
MAXIM

MAX4430EUK-T

Dual-Supply, 180MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps
MAXIM

MAX4431

Dual-Supply, 180MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps
MAXIM

MAX4431ESA

Dual-Supply, 180MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps
MAXIM

MAX4431EUK+T

Operational Amplifier, 1 Func, 5000uV Offset-Max, PDSO5, SOT-23, 5 PIN
MAXIM