MAX4450EUK-T [MAXIM]

Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs; 超小型,低成本, 210MHz,单电源运算放大器,轨至轨输出
MAX4450EUK-T
型号: MAX4450EUK-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs
超小型,低成本, 210MHz,单电源运算放大器,轨至轨输出

运算放大器
文件: 总12页 (文件大小:457K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1522; Rev 2; 1/00  
Ultra-Small, Low-Cost, 210MHz, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
General Description  
Features  
Ultra-Small SC70-5, SOT23-5, and SOT23-8  
The MAX4450 single and MAX4451 dual op amps are  
unity-gain-stable devices that combine high-speed per-  
Packages  
Low Cost  
High Speed  
®
formance with Rail-to-Rail outputs. Both devices oper-  
ate from a +4.5V to +11V single supply or from ±±.±5V  
to ±5.5V dual supplies. The common-mode input volt-  
age range extends beyond the negative power-supply  
rail (ground in single-supply applications).  
210MHz -3dB Bandwidth  
55MHz 0.1dB Gain Flatness  
485V/µs Slew Rate  
The MAX4450/MAX4451 require only 6.5mA of quies-  
cent supply current per op amp while achieving a  
±10MHz -3dB bandwidth and a 485V/µs slew rate. Both  
devices are an excellent solution in low-power/low-  
voltage systems that require wide bandwidth, such as  
video, communications, and instrumentation.  
The MAX4450 is available in the ultra-small 5-pin SC70  
package, while the MAX4451 is available in a space-  
saving 8-pin SOT±3.  
Single +4.5V to +11V Operation  
Rail-to-Rail Outputs  
Input Common-Mode Range Extends Beyond V  
Low Differential Gain/Phase: 0.02%/0.08°  
EE  
Low Distortion at 5MHz  
-65dBc SFDR  
-63dB Total Harmonic Distortion  
Applications  
Set-Top Boxes  
Ordering Information  
Surveillance Video Systems  
Battery-Powered Instruments  
Video Line Driver  
PIN-  
TOP  
PART  
TEMP. RANGE  
PACKAGE MARK  
Analog-to-Digital Converter Interface  
CCD Imaging Systems  
Video Routing and Switching Systems  
Digital Cameras  
MAX4450EXK-T  
MAX4450EUK-T  
MAX4451EKA-T  
MAX4451ESA  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
5 SC70-5 AAA  
5 SOT±3-5 ADKP  
8 SOT±3-8 AAAA  
8 SO  
Typical Operating Circuit  
Pin Configurations  
TOP VIEW  
R
F
24Ω  
1
2
3
5
V
OUT  
CC  
R
TO  
50Ω  
MAX4450  
V
OUT  
V
EE  
Z
= 50Ω  
O
MAX4450  
R
50Ω  
IN  
O
IN+  
4
IN-  
R
TIN  
50Ω  
SC70-5/SOT23-5  
Pin Configurations continued at end of data sheet.  
UNITY-GAIN LINE DRIVER  
(R = R + R  
)
TO  
L
O
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Ultra-Small, Low-Cost, 210MHz, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V  
to V )................................................+1±V  
8-Pin SOT±3-8 (derate 5.±6mW/°C above +70°C)......4±1mW  
8-Pin SO (derate 5.9mW/°C above +70°C).................471mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
EE  
IN_-, IN_+, OUT_..............................(V - 0.3V) to (V  
+ 0.3V)  
EE  
CC  
Output Short-Circuit Current to V  
or V ......................150mA  
CC  
EE  
Continuous Power Dissipation (T = +70°C)  
A
5-Pin SC70-5 (derate ±.5mW/°C above +70°C)..........±00mW  
5-Pin SOT±3-5 (derate 7.1mW/°C above +70°C)........571mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= +5V, V = 0, R =  
to V /±, V  
= V /±, T = T  
to T , unless otherwise noted. Typical values are at T = +±5°C.)  
MAX A  
CC  
EE  
L
CC  
CC  
A
MIN  
OUT  
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
0.±0  
-
V
±.±5  
Input Common-Mode  
Voltage Range  
EE  
CC  
V
CM  
Guaranteed by CMRR test  
V
Input Offset Voltage (Note ±)  
Input Offset Voltage Matching  
V
4
±6  
mV  
mV  
OS  
1.0  
Input Offset Voltage  
Temperature Coefficient  
TC  
8
µV/°C  
VOS  
Input Bias Current  
Input Offset Current  
I
(Note ±)  
(Note ±)  
6.5  
0.5  
70  
±0  
4
µA  
µA  
B
I
OS  
Differential mode (-1V V +1V)  
Common mode (-0.±V V  
kΩ  
MΩ  
dB  
IN  
Input Resistance  
R
IN  
+±.75V)  
3
CM  
Common-Mode Rejection Ratio  
CMRR  
(V - 0.±V) V  
(V - ±.±5V)  
70  
50  
48  
95  
EE  
CM  
CC  
0.±5V V  
0.5V V  
4.75V, R = ±kΩ  
4.5V, R = 150Ω  
60  
OUT  
L
Open-Loop Gain (Note ±)  
A
58  
dB  
VOL  
OUT  
L
1V V  
4V, R = 50Ω  
57  
OUT  
L
V
V
V
V
V
V
V
V
- V  
0.05  
0.05  
0.30  
0.±5  
0.5  
0.5  
1.0  
0.0±5  
70  
0.±0  
0.15  
0.50  
0.80  
0.80  
1.75  
1.5  
CC  
OL  
CC  
OL  
CC  
OL  
CC  
OL  
OH  
R = ±kΩ  
L
- V  
- V  
EE  
OH  
EE  
R = 150Ω  
L
- V  
- V  
Output Voltage Swing  
(Note ±)  
V
V
OUT  
OH  
EE  
R = 75Ω  
L
- V  
- V  
OH  
EE  
R = 75to ground  
L
- V  
0.065  
Sourcing  
Sinking  
45  
±5  
Output Current  
I
R = 50Ω  
L
mA  
OUT  
50  
Output Short-Circuit Current  
Open-Loop Output Resistance  
I
Sinking or sourcing  
±1±0  
8
mA  
SC  
R
OUT  
V
V
= 0, V  
= ±V  
CM  
46  
54  
6±  
EE  
EE  
Power-Supply Rejection Ratio  
(Note 3)  
PSRR  
V
V
= 5V  
dB  
V
CC  
CC  
= -5V, V  
= 0  
69  
CM  
Operating Supply-Voltage  
Range  
V
S
to V  
4.5  
11.0  
9.0  
EE  
Quiescent Supply Current  
(per amplifier)  
I
6.5  
mA  
S
2
_______________________________________________________________________________________  
Ultra-Small, Low-Cost, 210MHz, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
AC ELECTRICAL CHARACTERISTICS  
(V  
= +5V, V = 0, V  
= +±.5V, R = ±4, R = 100to V /±, V  
= V /±, A  
= +1V/V, T = +±5°C, unless otherwise  
VCL A  
CC  
EE  
CM  
F
L
CC  
OUT  
CC  
noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
= 100mVp-p  
MIN  
TYP  
±10  
175  
MAX  
UNITS  
MHz  
Small-Signal -3dB Bandwidth  
Large-Signal -3dB Bandwidth  
BW  
BW  
V
V
SS  
LS  
OUT  
= ±Vp-p  
MHz  
OUT  
Bandwidth for 0.1dB Gain  
Flatness  
BW  
V
OUT  
= 100mVp-p  
55  
MHz  
0.1dB  
Slew Rate  
SR  
V
OUT  
V
OUT  
V
OUT  
= ±V step  
= ±V step  
= 100mVp-p  
485  
16  
4
V/µs  
ns  
Settling Time to 0.1%  
Rise/Fall Time  
t
S
t , t  
R
ns  
F
Spurious-Free Dynamic  
Range  
SFDR  
f
= 5MHz, V  
= ±Vp-p  
-65  
dBc  
dBc  
C
OUT  
±nd harmonic  
-65  
-58  
3rd harmonic  
f
C
= 5MHz,  
Harmonic Distortion  
HD  
V
= ±Vp-p  
OUT  
Total harmonic  
distortion  
-63  
Two-Tone, Third-Order  
Intermodulation Distortion  
IP3  
f1 = 4.7MHz, f± = 4.8MHz, V  
= 1Vp-p  
66  
dBc  
dB  
OUT  
Channel-to-Channel Isolation  
CH  
Specified at DC  
10±  
ISO  
Input 1dB Compression Point  
Differential Phase Error  
Differential Gain Error  
f
= 10MHz, A  
= +±V/V  
VCL  
14  
0.08  
0.0±  
10  
dBm  
degrees  
%
C
DP  
NTSC, R = 150Ω  
L
DG  
NTSC, R = 150Ω  
L
Input Noise-Voltage Density  
Input Noise-Current Density  
Input Capacitance  
e
n
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
pF  
i
n
1.8  
1
C
IN  
Output Impedance  
Z
OUT  
f = 10MHz  
1.5  
Note 1: All devices are 100% production tested at T = +±5°C. Specifications over temperature limits are guaranteed by design.  
A
Note 2: Tested with V  
= +±.5V.  
CM  
Note 3: PSR for single +5V supply tested with V = 0, V  
= +4.5V to +5.5V; PSR for dual ±5V supply tested with V = -4.5V to  
EE  
EE  
CC  
-5.5V, V  
= +4.5V to +5.5V.  
CC  
_______________________________________________________________________________________  
3
Ultra-Small, Low-Cost, 210MHz, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Typical Operating Characteristics  
(V  
CC  
= +5V, V = 0, V  
= +±.5V, A  
= +1V/V, R = ±4, R = 100to V /±, T = +±5°C, unless otherwise noted.)  
EE  
CM  
VCL  
F
L
CC  
A
GAIN FLATNESS vs. FREQUENCY  
SMALL-SIGNAL GAIN vs. FREQUENCY  
LARGE-SIGNAL GAIN vs. FREQUENCY  
0.4  
0.3  
4
3
2
1
0
4
3
V
= 100mVp-p  
V
= 100mVp-p  
OUT  
OUT  
V
= 2Vp-p  
OUT  
0.2  
2
0.1  
1
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
OUTPUT IMPEDANCE vs. FREQUENCY  
DISTORTION vs. FREQUENCY  
DISTORTION vs. FREQUENCY  
0
0
100  
10  
V
A
= 2Vp-p  
V
A
= 2Vp-p  
-10  
-20  
OUT  
VCL  
-10  
-20  
OUT  
VCL  
= +2V/V  
= +1V/V  
-30  
-40  
-30  
-40  
2ND HARMONIC  
3RD HARMONIC  
-50  
-60  
1
-50  
-60  
2ND HARMONIC  
-70  
-80  
-70  
-80  
0.1  
0.01  
3RD HARMONIC  
-90  
-90  
-100  
-100  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
DISTORTION vs. VOLTAGE SWING  
DISTORTION vs. FREQUENCY  
DISTORTION vs. RESISTIVE LOAD  
0
0
0
f = 5MHz  
O
VCL  
V
= 2Vp-p  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
V
A
= 5MHz  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
OUT  
VCL  
-10  
-20  
O
A = +1V/V  
A
= +5V/V  
= 2Vp-p  
= +1V/V  
OUT  
VCL  
-30  
-40  
2ND HARMONIC  
3RD HARMONIC  
-50  
-60  
3RD HARMONIC  
2ND HARMONIC  
2ND HARMONIC  
3RD HARMONIC  
-70  
-80  
-90  
-100  
1.5  
0.5  
1.0  
2.0  
100k  
1M  
10M  
100M  
0
200  
400  
600  
()  
800 1000 1200  
VOLTAGE SWING (Vp-p)  
FREQUENCY (Hz)  
R
LOAD  
4
_______________________________________________________________________________________  
Ultra-Small, Low-Cost, 210MHz, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Typical Operating Characteristics (continued)  
(V  
CC  
= +5V, V = 0, V  
= +±.5V, A  
= +1V/V, R = ±4, R = 100to V /±, T = +±5°C, unless otherwise noted.)  
EE  
CM  
VCL  
F
L
CC  
A
COMMON-MODE REJECTION  
vs. FREQUENCY  
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
DIFFERENTIAL GAIN AND PHASE  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0.025  
0.020  
0.015  
0.010  
0.005  
0
-0.005  
-0.010  
0
0
100  
100  
IRE  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
-0.02  
-0.04  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
IRE  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
OUTPUT VOLTAGE SWING  
vs. RESISTIVE LOAD  
SMALL-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
INPUT  
INPUT  
50mV/div  
25mV/div  
V
- V  
CC OH  
OUTPUT  
50mV/div  
OUTPUT  
50mV/div  
V
- V  
OL EE  
R = 24Ω  
F
R = 500Ω  
F
A
= +1V/V  
VCL  
A
= +2V/V  
VCL  
20ns/div  
20ns/div  
0
50 100 150 200 250 300 350 400 450 500  
()  
R
LOAD  
SMALL-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
INPUT  
10mV/div  
INPUT  
1V/div  
INPUT  
500mV/div  
OUTPUT  
50mV/div  
OUTPUT  
1V/div  
OUTPUT  
1V/div  
R = 500Ω  
VCL  
F
R = 500Ω  
VCL  
R = 24Ω  
VCL  
F
F
A
= +5V/V  
A
= +2V/V  
A
= +1V/V  
20ns/div  
20ns/div  
20ns/div  
_______________________________________________________________________________________  
5
Ultra-Small, Low-Cost, 210MHz, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Typical Operating Characteristics (continued)  
(V  
CC  
= +5V, V = 0, V  
= +±.5V, A  
= +1V/V, R = ±4, R = 100to V /±, T = +±5°C, unless otherwise noted.)  
EE  
CM  
VCL  
F
L
CC  
A
LARGE-SIGNAL PULSE RESPONSE  
CURRENT NOISE vs. FREQUENCY  
VOLTAGE NOISE vs. FREQUENCY  
100  
10  
1
100  
10  
1
INPUT  
1V/div  
INPUT  
1V/div  
R = 500Ω  
F
VCL  
A
= +2V/V  
R = 100Ω  
L
R = 100Ω  
L
1M  
1
10  
100 1k 10k 100k  
FREQUENCY (Hz)  
10M  
20ns/div  
1M  
1
10  
100 1k 10k 100k  
FREQUENCY (Hz)  
10M  
ISOLATION RESISTANCE  
vs. CAPACITIVE LOAD  
SMALL-SIGNAL BANDWIDTH  
vs. LOAD RESISTANCE  
300  
16  
15  
14  
13  
12  
11  
10  
250  
200  
150  
100  
50  
SMALL SIGNAL  
OUT  
(V = 100mVp-p)  
LARGE SIGNAL (V = 2Vp-p)  
OUT  
0
9
0
0
100 200 300 400 500 600 700 800  
()  
50 100 150 200 250 300 350 400 450 500  
(pF)  
R
C
LOAD  
LOAD  
MAX4451  
CROSSTALK vs. FREQUENCY  
OPEN-LOOP GAIN vs. RESISTIVE LOAD  
60  
40  
80  
70  
60  
50  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
40  
30  
20  
10  
0
0.1M  
1M  
10M  
100M  
1G  
100  
1k  
10k  
FREQUENCY (Hz)  
R
()  
LOAD  
6
_______________________________________________________________________________________  
Ultra-Small, Low-Cost, 210MHz, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Inverting and Noninverting Configurations  
Pin Description  
Select the gain-setting feedback (R ) and input (R )  
F
G
resistor values to fit your application. Large resistor val-  
ues increase voltage noise and interact with the amplifi-  
er’s input and PC board capacitance. This can  
generate undesirable poles and zeros and decrease  
bandwidth or cause oscillations. For example, a nonin-  
PIN  
NAME  
FUNCTION  
MAX4450 MAX4451  
1
OUT  
Amplifier Output  
Negative Power Supply  
or Ground (in single-  
supply operation)  
verting gain-of-two configuration (R = R ) using 1k  
F
G
±
4
V
EE  
resistors, combined with 1pF of amplifier input capaci-  
tance and 1pF of PC board capacitance, causes a pole  
at 159MHz. Since this pole is within the amplifier band-  
width, it jeopardizes stability. Reducing the 1kresis-  
tors to 100extends the pole frequency to 1.59GHz,  
but could limit output swing by adding ±00in parallel  
with the amplifier’s load resistor. Table 1 lists suggest-  
ed feedback and gain resistors, and bandwidths for  
several gain values in the configurations shown in  
Figures 1a and 1b.  
3
4
8
IN+  
IN-  
Noninverting Input  
Inverting Input  
5
V
Positive Power Supply  
Amplifier A Output  
CC  
1
OUTA  
Amplifier A Inverting  
Input  
±
INA-  
Amplifier A Noninverting  
Input  
3
7
6
INA+  
OUTB  
INB-  
Layout and Power-Supply Bypassing  
These amplifiers operate from a single +4.5V to +11V  
power supply or from dual ±±.±5V to ±5.5V supplies. For  
Amplifier B Output  
Amplifier B Inverting  
Input  
single-supply operation, bypass V  
to ground with a  
CC  
Amplifier B Noninverting  
Input  
5
INB+  
R
R
F
G
Detailed Description  
The MAX4450/MAX4451 are single-supply, rail-to-rail,  
voltage-feedback amplifiers that employ current-feed-  
back techniques to achieve 485V/µs slew rates and  
±10MHz bandwidths. Excellent harmonic distortion and  
differential gain/phase performance make these ampli-  
fiers an ideal choice for a wide variety of video and RF  
signal-processing applications.  
R
TO  
V
OUT  
MAX445 _  
IN  
R
O
V
= [1+ (R / R )] V  
F G  
OUT  
IN  
R
TIN  
The output voltage swings to within 55mV of each sup-  
ply rail. Local feedback around the output stage  
ensures low open-loop output impedance to reduce  
gain sensitivity to load variations. The input stage per-  
mits common-mode voltages beyond the negative sup-  
ply and to within ±.±5V of the positive supply rail.  
Figure 1a. Noninverting Gain Configuration  
R
R
F
G
IN  
Applications Information  
R
TIN  
R
TO  
V
OUT  
Choosing Resistor Values  
MAX445 _  
Unity-Gain Configuration  
The MAX4450/MAX4451 are internally compensated for  
unity gain. When configured for unity gain, the devices  
R
O
V
= -(R / R ) V  
F G  
OUT  
IN  
R
S
require a ±4resistor (R ) in series with the feedback  
F
path. This resistor improves AC response by reducing  
the Q of the parallel LC circuit formed by the parasitic  
feedback capacitance and inductance.  
Figure 1b. Inverting Gain Configuration  
_______________________________________________________________________________________  
7
Ultra-Small, Low-Cost, 210MHz, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Table 1. Recommended Component Values  
GAIN (V/V)  
COMPONENT  
+1  
±4  
-1  
500  
500  
0
+2  
500  
500  
-2  
500  
±50  
0
+5  
500  
1±4  
-5  
500  
100  
0
+10  
500  
56  
-10  
500  
50  
+25  
500  
±0  
-25  
1±00  
50  
R ()  
F
R
()  
G
R ()  
S
0
0
R
R
()  
()  
49.9  
49.9  
±10  
56  
49.9  
49.9  
95  
6±  
49.9  
49.9  
±5  
100  
49.9  
±5  
49.9  
49.9  
11  
49.9  
49.9  
5
TIN  
TO  
49.9  
100  
49.9  
50  
49.9  
15  
49.9  
10  
Small-Signal -3dB Bandwidth (MHz)  
Note:  
R
= R + R ; R  
and R  
are calculated for 50applications. For 75systems, R  
TO  
= 75; calculate R from the  
TIN  
L
O
TO  
TIN  
TO  
following equation:  
75  
R
=
TIN  
75  
1-  
R
G
0.1µF capacitor as close to the pin as possible. If operat-  
ing with dual supplies, bypass each supply with a 0.1µF  
capacitor.  
and the rail-to-rail output substantially increase the  
dynamic range. With a symmetric input in a single +5V  
application, the input can swing ±.95Vp-p and the out-  
put can swing 4.9Vp-p with minimal distortion.  
Maxim recommends using microstrip and stripline tech-  
niques to obtain full bandwidth. To ensure that the PC  
board does not degrade the amplifier’s performance,  
design it for a frequency greater than 1GHz. Pay care-  
ful attention to inputs and outputs to avoid large para-  
sitic capacitance. Whether or not you use a constant-  
impedance board, observe the following design guide-  
lines:  
Output Capacitive Loading and Stability  
The MAX4450/MAX4451 are optimized for AC perfor-  
mance. They are not designed to drive highly reactive  
loads, which decrease phase margin and may produce  
excessive ringing and oscillation. Figure ± shows a cir-  
cuit that eliminates this problem. Figure 3 is a graph of  
the optimal isolation resistor (R ) vs. capacitive load.  
S
• Don’t use wire-wrap boards; they are too inductive.  
Figure 4 shows how a capacitive load causes exces-  
sive peaking of the amplifier’s frequency response if  
the capacitor is not isolated from the amplifier by a  
resistor. A small isolation resistor (usually ±0to 30)  
placed before the reactive load prevents ringing and  
oscillation. At higher capacitive loads, AC performance  
is controlled by the interaction of the load capacitance  
and the isolation resistor. Figure 5 shows the effect of a  
±7isolation resistor on closed-loop response.  
• Don’t use IC sockets; they increase parasitic capaci-  
tance and inductance.  
• Use surface-mount instead of through-hole compo-  
nents for better high-frequency performance.  
• Use a PC board with at least two layers; it should be  
as free from voids as possible.  
• Keep signal lines as short and as straight as possi-  
ble. Do not make 90° turns; round all corners.  
Coaxial cable and other transmission lines are easily  
driven when properly terminated at both ends with their  
characteristic impedance. Driving back-terminated  
transmission lines essentially eliminates the line’s  
capacitance.  
Rail-to-Rail Outputs,  
Ground-Sensing Input  
The input common-mode range extends from  
(V - ±00mV) to (V  
EE  
- ±.±5V) with excellent common-  
CC  
mode rejection. Beyond this range, the amplifier output  
is a nonlinear function of the input, but does not under-  
go phase reversal or latchup.  
The output swings to within 55mV of either power-  
supply rail with a ±kload. The input ground sensing  
8
_______________________________________________________________________________________  
Ultra-Small, Low-Cost, 210MHz, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
30  
25  
R
R
F
G
20  
15  
10  
5
R
ISO  
V
OUT  
MAX445 _  
V
C
IN  
L
50Ω  
R
TIN  
0
0
50  
100  
150  
200  
250  
CAPACITIVE LOAD, C (pF)  
L
Figure 2. Driving a Capacitive Load Through an Isolation Resistor  
Figure 3. Capacitive Load vs. Isolation Resistance  
6
5
3
R
= 27Ω  
ISO  
2
1
C = 47pF  
L
C = 15pF  
L
4
3
0
2
-1  
-2  
-3  
-4  
-5  
-6  
-7  
C = 68pF  
L
C = 10pF  
L
1
C = 120pF  
L
0
C = 5pF  
L
-1  
-2  
-3  
-4  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
Figure 4. Small-Signal Gain vs. Frequency with Load  
Capacitance and No Isolation Resistor  
Figure 5. Small-Signal Gain vs. Frequency with Load  
Capacitance and 27Isolation Resistor  
_______________________________________________________________________________________  
9
Ultra-Small, Low-Cost, 210MHz, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Chip Information  
Pin Configurations (continued)  
MAX4450 TRANSISTOR COUNT: 86  
MAX4451 TRANSISTOR COUNT: 170  
TOP VIEW  
OUTA  
INA-  
1
2
3
4
8
7
6
5
V
CC  
OUTB  
INB-  
MAX4451  
INA+  
V
INB+  
EE  
SOT23-8/SO  
10 ______________________________________________________________________________________  
Ultra-Small, Low-Cost, 210MHz, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Package Information  
______________________________________________________________________________________ 11  
Ultra-Small, Low-Cost, 210MHz, Single-Supply  
Op Amps with Rail-to-Rail Outputs  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2000 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX4450EVKIT

Evaluation Kit for the MAX4450
MAXIM

MAX4450EXK+T

Operational Amplifier, 1 Func, 26000uV Offset-Max, BIPolar, PDSO5, SC-70, 5 PIN
MAXIM

MAX4450EXK-T

Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs
MAXIM

MAX4450_09

Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs
MAXIM

MAX4451

Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs
MAXIM

MAX4451EKA+

Operational Amplifier, 2 Func, 26000uV Offset-Max, PDSO8, MO-178, SOT-23, 8 PIN
MAXIM

MAX4451EKA+T

Operational Amplifier, 2 Func, 26000uV Offset-Max, BIPolar, PDSO8, SOT-23, 8 PIN
MAXIM

MAX4451EKA-T

Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs
MAXIM

MAX4451ESA

Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs
MAXIM

MAX4451ESA+

Operational Amplifier, 2 Func, 26000uV Offset-Max, BIPolar, PDSO8, SO-8
MAXIM

MAX4451ESA+T

Operational Amplifier, 2 Func, 26000uV Offset-Max, BIPolar, PDSO8, SO-8
MAXIM

MAX4451ESA-T

Operational Amplifier, 2 Func, 26000uV Offset-Max, BIPolar, PDSO8, 0.150 INCH, MS-012AA, SOIC-8
MAXIM