MAX4462TESA+ [MAXIM]

Instrumentation Amplifier, 1 Func, 750uV Offset-Max, 0.25MHz Band Width, BICMOS, PDSO8, SO-8;
MAX4462TESA+
型号: MAX4462TESA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Instrumentation Amplifier, 1 Func, 750uV Offset-Max, 0.25MHz Band Width, BICMOS, PDSO8, SO-8

信息通信管理 光电二极管
文件: 总20页 (文件大小:439K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2279; Rev 2; 11/02  
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
General Description  
Features  
The MAX4460/MAX4461/MAX4462 are instrumentation  
amplifiers with precision specifications, low-power con-  
sumption, and excellent gain-bandwidth product.  
Proprietary design techniques allow ground-sensing  
capability combined with ultra-low input current and  
increased common-mode rejection performance. These  
Rail-to-Rail® output instrumentation amplifiers are offered  
in fixed or adjustable gains and the option for either a  
shutdown mode or a pin to set the output voltage relative  
to an external reference (see Ordering Information and  
Selector Guide).  
Tiny 6-Pin SOT23 Package  
Input Negative Rail Sensing  
1pA (typ) Input Bias Current  
100µV Input Offset Voltage  
Rail-to-Rail Output  
2.85V to 5.25V Single Supply  
700µA Supply Current  
0.1ꢀ ꢁain ꢂrror  
The MAX4460 has an adjustable gain and uses ground  
as its reference voltage. The MAX4461 is offered in fixed  
gains of 1, 10, and 100, uses ground as its reference volt-  
age, and has a logic-controlled shutdown input. The  
MAX4462 is offered in fixed gains of 1, 10, and 100 and  
has a reference input pin (REF). REF sets the output volt-  
age for zero differential input to allow bipolar signals in  
single-supply applications.  
2.5MHz ꢁain-Bandwidth Product  
18nV/Hz Input-Referred Noise  
Ordering Information  
TꢂMP  
RANꢁꢂ  
PIN-  
PACKAꢁꢂ  
TOP  
MARK  
PART  
MAX4460EUT-T  
MAX4460ESA  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
6 SOT23-6  
8 SO  
AASS  
The MAX4460/MAX4461/MAX4462 have high-impedance  
inputs optimized for small-signal differential voltages. The  
MAX4461/MAX4462 are factory trimmed to gains of 1, 10,  
or 100 (suffixed U, T, and H) with 0.1ꢀ accuracy. The  
typical offset of the MAX4460/MAX4461/MAX4462 is  
100µV. All devices have a gain-bandwidth product of  
2.5MHz.  
MAX4461UEUT-T  
MAX4461UESA  
MAX4461TEUT-T  
MAX4461TESA  
MAX4461HEUT-T  
MAX4461HESA  
MAX4462UEUT-T  
MAX4462UESA  
MAX4462TEUT-T  
MAX4462TESA  
MAX4462HEUT-T  
MAX4462HESA  
6 SOT23-6  
8 SO  
AAST  
6 SOT23-6  
8 SO  
AASU  
6 SOT23-6  
8 SO  
AASV  
These amplifiers operate with a single-supply voltage  
from 2.85V to 5.25V and with a quiescent current of only  
700µA (less than 1µA in shutdown for the MAX4461). The  
MAX4462 can also be operated with dual supplies.  
Smaller than most competitors, the MAX4460/  
MAX4461/MAX4462 are available in space-saving 6-pin  
SOT23 packages.  
6 SOT23-6  
8 SO  
AASW  
6 SOT23-6  
8 SO  
AASX  
6 SOT23-6  
8 SO  
AASY  
________________________Applications  
Industrial Process Control  
Strain-Gauge Amplifiers  
Typical Application Circuits  
Transducer Interface  
Precision Low-Side Current Sense  
Low-Noise Microphone Preamplifier  
Differential Voltage Amplification  
Battery-Powered Medical Equipment  
V
CC  
V
+ V  
3
4
CM  
5
MAX4462  
1
OUT  
REF  
6
V
- V  
CM  
Selector Guide appears at end of data sheet.  
Pin Configurations appear at end of data sheet.  
2
Typical Application Circuits continued at end of data sheet.  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
ABSOLUTꢂ MAXIMUM RATINꢁS  
Supply Voltage (V  
to V ) ...................................-0.3V to +6V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s)....................................300°C  
DD  
SS  
All Other Pins ...................................(V - 0.3V) to (V  
+ 0.3V)  
SS  
DD  
Output Short-Circuit Duration to Either Supply.........................1s  
Continuous Power Dissipation (T = +70°C)  
A
6-Pin SOT23 (derate 8.7mW/°C above +70°C)............695mW  
8-Pin SO (derate 5.9mW/°C above +70°C)..................470mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ꢂLꢂCTRICAL CHARACTꢂRISTICS—MAX4460/MAX4461  
(V  
= 5V, V  
= 0V, V  
= V  
- V  
= 50mV to 100mV for G = 1, 20mV to 100mV for G = 10, 2mV to 48mV for G =100,  
IN-  
DD  
CM  
DIFF  
IN+  
MAX4460 is configured for G = 10, R = 200kto GND, T = +25°C, unless otherwise noted.)  
L
A
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
Guaranteed by PSRR test  
MIN  
TYP  
MAX  
5.25  
1.1  
UNITS  
V
2.85  
V
DD  
V
V
= 5V, V  
= 3V, V  
= 0V  
= 0V  
0.80  
0.68  
0.1  
50  
DD  
DD  
DIFF  
DIFF  
Supply Current  
mA  
µA  
0.9  
Shutdown Supply Current  
MAX4461, SHDN = GND  
MAX4460ESA  
V
= 5V  
1
DD  
425  
300  
600  
Input Offset Voltage (Note 1)  
V
µV  
MAX4461ESA  
50  
OS  
MAX446_EUT  
100  
2
Differential mode  
Common mode  
Input Resistance  
R
V
= V /2  
G  
V
IN  
CM  
DD  
2
V
-
DD  
Input Common-Mode Range  
V
Guaranteed by CMRR test  
-0.1  
CM  
1.7  
Input Common-Mode  
Rejection Ratio  
CMRR  
PSRR  
V
V
= -0.1V to (V  
- 1.7V)  
90  
80  
120  
dB  
CM  
DD  
DD  
Power-Supply Rejection Ratio  
Input Bias Current  
= 2.85V to 5.25V  
100  
1
dB  
pA  
pA  
I
(Note 2)  
100  
100  
B
FB Input Current  
MAX4460 (Note 2)  
1
0.7 X  
V
DD  
V
MAX4461  
MAX4461  
IH  
SHDN Logic Levels  
V
0.3 X  
V
IL  
V
DD  
SHDN Input Current  
MAX4461, V  
f = 10kHz  
f = 1kHz  
= 0V or V (Note 2)  
1
18  
38  
1
100  
pA  
SHDN  
DD  
Input Voltage Noise  
e
nV/Hz  
n
R = 200kΩ  
L
2.5  
5
V
V
- V  
OH  
(Note 3)  
OH  
DD  
R = 20kΩ  
L
3
Output Voltage Swing  
Short-Circuit Current  
mV  
mA  
R = 200kΩ  
L
0
0.2  
0.2  
V
OL  
R = 20kΩ  
L
0
I
(Note 4)  
150  
SC  
2
_______________________________________________________________________________________  
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
ELECTRICAL CHARACTERISTICSMAX4460/MAX4461 (continued)  
(V  
= 5V, V  
= 0V, V  
= V  
- V  
= 50mV to 100mV for G = 1, 20mV to 100mV for G = 10, 2mV to 48mV for G =100,  
IN-  
DD  
CM  
DIFF  
IN+  
MAX4460 is configured for G = 10, R = 200kto GND, T = +25°C, unless otherwise noted.)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.1  
MAX  
0.3  
UNITS  
G = 1V/V, MAX4461UESA  
G = 10V/V, MAX4461TESA  
G = 100V/V, MAX4461HESA  
G = 10V/V, MAX4460ESA  
MAX446_EUT  
0.12  
0.15  
0.15  
0.15  
0.05  
100  
2500  
250  
25  
0.35  
0.6  
Gain Error  
R = 20kΩ  
%
L
0.35  
0.6  
Nonlinearity (Note 1)  
R = 20kΩ  
L
0.15  
%
Maximum Capacitive Load  
C
No sustained oscillations  
G = 1V/V, MAX4461U  
pF  
L
-3dB Bandwidth  
Gain-Bandwidth Product  
Slew Rate  
BW  
C = 100pF  
L
kHz  
MHz  
V/µs  
G = 10V/V, MAX4461T  
G = 100V/V, MAX4461H  
-3dB  
GBWP  
SR  
C = 100pF  
L
2.5  
G = 1V/V  
0.5  
C = 100pF  
L
G = 10V/V  
G = 100V/V  
G = 1V/V  
0.5  
0.25  
15  
C = 100pF,  
L
Settling Time  
t
within 0.1% of G = 10V/V  
final value  
75  
µs  
S
G = 100V/V  
250  
ELECTRICAL CHARACTERISTICSMAX4460/MAX4461  
(V  
= 5V, V  
= 0V, V  
= V  
- V  
= 50mV to 100mV for G = 1, 20mV to 100mV for G = 10, 2mV to 48mV for G = 100,  
DD  
CM  
DIFF  
IN+  
IN-  
MAX4460 is configured for G = 10, R = 200kto GND, T = T  
to T  
, unless otherwise noted.)  
L
A
MIN  
MAX  
PARAMETER  
Supply Voltage  
SYMBOL  
V
CONDITIONS  
Guaranteed by PSRR test  
MIN  
TYP  
MAX  
5.25  
1.4  
UNITS  
2.85  
V
DD  
V
V
= 5V, V  
= 3V, V  
= 0V  
= 0V  
DD  
DD  
DIFF  
DIFF  
Supply Current  
mA  
µA  
1.15  
MAX4461,  
SHDN = GND  
Shutdown Supply Current  
V
= 5V  
1
DD  
T
= 0°C to +85°C  
750  
950  
750  
500  
500  
950  
750  
750  
1400  
1900  
A
A
MAX4460ESA  
T
= -40°C to +85°C  
G = 1  
T
= 0°C to  
A
G = 10  
G = 100  
G = 1  
+85°C  
Input Offset Voltage (Note 1)  
Input Offset-Voltage Drift  
V
MAX4461ESA  
µV  
OS  
T
= -40°C to  
A
G = 10  
G = 100  
+85°C  
T
T
= 0°C to +85°C  
A
A
MAX446_EUT  
(Note 1)  
= -40°C to +85°C  
TC  
1.5  
µV/°C  
VOS  
_______________________________________________________________________________________  
3
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
ELECTRICAL CHARACTERISTICSMAX4460/MAX4461 (continued)  
(V  
= 5V, V  
= 0V, V  
= V  
- V  
= 50mV to 100mV for G = 1, 20mV to 100mV for G = 10, 2mV to 48mV for G = 100,  
DD  
CM  
DIFF  
IN+  
IN-  
MAX4460 is configured for G = 10, R = 200kto GND, T = T  
to T  
, unless otherwise noted.)  
L
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by CMRR test  
MIN  
TYP  
MAX  
UNITS  
V
-
DD  
Input Common-Mode Range  
V
-0.1  
V
CM  
1.85  
Input Common-Mode Rejection  
Ratio  
CMRR  
PSRR  
V
V
= -0.1V to (V  
- 1.85V)  
80  
75  
dB  
CM  
DD  
DD  
Power-Supply Rejection Ratio  
Input Bias Current  
= 2.85V to 5.25V  
dB  
pA  
pA  
I
(Note 2)  
100  
100  
B
FB Input Current  
MAX4460 (Note 2)  
0.7 X  
V
DD  
V
MAX4461  
MAX4461  
IH  
SHDN Logic Levels  
SHDN Input Current  
Output Voltage Swing  
V
0.3 X  
V
DD  
V
IL  
MAX4461, V  
= 0V or V (Note 2)  
100  
4
pA  
mV  
SHDN  
DD  
R = 200kΩ  
L
V
- V  
OH  
DD  
V
OH  
(Note 3)  
R = 20kΩ  
L
8
R = 200kΩ  
L
0.25  
0.25  
0.8  
1.6  
0.8  
1.7  
1.0  
2.0  
0.8  
2.0  
1.8  
3.0  
0.20  
0.25  
V
OL  
R = 20kΩ  
L
T
T
T
T
T
T
T
T
T
T
T
T
= 0°C to +85°C  
= -40°C to +85°C  
= 0°C to +85°C  
= -40°C to +85°C  
= 0°C to +85°C  
= -40°C to +85°C  
= 0°C to +85°C  
= -40°C to +85°C  
= 0°C to +85°C  
= -40°C to +85°C  
= 0°C to +85°C  
= -40°C to +85°C  
A
A
A
A
A
A
A
A
A
A
A
A
MAX4461UESA,  
R = 20kΩ  
L
MAX4461TESA,  
R = 20kΩ  
L
MAX4461HESA,  
R = 20kΩ  
L
Gain Error  
%
%
MAX4460ESA,  
R = 20kΩ  
L
MAX446_EUT,  
R = 20kΩ  
L
R = 20kΩ  
L
Nonlinearity  
(Note 1)  
4
_______________________________________________________________________________________  
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
ELECTRICAL CHARACTERISTICSMAX4462  
(V  
= 5V, V = 0V, V  
= V  
= V /2, R = 100kto V /2, T = +25°C, unless otherwise noted. V  
= V - V = -100mV  
IN+ IN-  
DD  
SS  
CM  
REF  
L
A
DIFF  
DD  
DD  
to +100mV for G = 1 and G = 10, -20mV to +20mV for G = 100.)  
PARAMETER SYMBOL  
Supply Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Guaranteed by PSRR test  
2.85  
5.25  
1.1  
V
DD  
V
V
= 5V, V  
= 3V, V  
= 0V  
= 0V  
0.8  
0.68  
50  
DD  
DD  
DIFF  
DIFF  
Supply Current  
mA  
µV  
GΩ  
V
0.9  
MAX4462_ESA  
MAX4462_EUT  
250  
500  
Input Offset Voltage (Note 1)  
Input Resistance  
V
OS  
100  
2
Differential mode  
Common mode  
R
V
= V /2  
CM DD  
IN  
2
V
-
V
1.7  
-
-
SS  
DD  
Input Common-Mode Range  
REF Input Range  
V
Guaranteed by Input CMRR test  
Guaranteed by REF rejection test  
CM  
0.1  
V
+
V
DD  
SS  
V
0.1  
1.7  
Input Common-Mode  
Rejection Ratio  
CMRR  
PSRR  
V
= (V - 0.1V) to (V  
DD  
- 1.7V)  
- 1.7V)  
90  
120  
dB  
CM  
SS  
REF Input Rejection Ratio  
Power-Supply Rejection Ratio  
Input Bias Current  
V
V
= (V + 0.1V) to (V  
SS  
85  
80  
100  
100  
1
dB  
dB  
pA  
CM  
DD  
DD  
= 2.85V to 5.25V  
I
(Note 2)  
f = 10kHz  
f = 1kHz  
100  
B
18  
Input Voltage Noise  
e
nV/Hz  
N
38  
R = 100kΩ  
1
2.5  
5
L
V
- V  
OH  
DD  
V
OH  
(Note 3)  
R = 10kΩ  
L
3
Output Voltage Swing  
Short-Circuit Current  
Gain Error  
mV  
mA  
%
R = 100kΩ  
2
4
L
V
- V  
OL  
SS  
V
OL  
(Note 3)  
R = 10kΩ  
L
6
12  
I
(Note 4)  
150  
0.1  
0.12  
0.15  
0.15  
0.05  
SC  
G = 1V/V, MAX4462UESA  
G = 10V/V, MAX4462TESA  
G = 100V/V, MAX4462HESA  
MAX4462_EUT  
0.30  
0.35  
0.5  
R = 10kΩ  
L
0.5  
R = 10kΩ  
Nonlinearity  
0.15  
%
L
_______________________________________________________________________________________  
5
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
ELECTRICAL CHARACTERISTICSMAX4462 (continued)  
(V  
= 5V, V = 0V, V  
= V  
= V /2, R = 100kto V /2, T = +25°C, unless otherwise noted. V  
= V - V = -100mV  
IN+ IN-  
DD  
SS  
CM  
REF  
L
A
DIFF  
DD  
DD  
to +100mV for G = 1 and G = 10, -20mV to +20mV for G = 100.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum Capacitive Load  
C
No sustained oscillations  
100  
2500  
250  
25  
pF  
L
G = 1V/V, MAX4462U  
G = 10V/V, MAX4462T  
G = 100V/V, MAX4462H  
-3dB Bandwidth  
Gain-Bandwidth Product  
Slew Rate  
BW  
C = 100pF  
L
kHz  
MHz  
V/µs  
-3dB  
GBWP  
SR  
C = 100pF  
L
2.5  
G = 1V/V, MAX4462U  
G = 10V/V, MAX4462T  
G = 100V/V, MAX4462H  
G = 1V/V, MAX4462U  
G = 10V/V, MAX4462T  
G = 100V/V, MAX4462H  
0.5  
C = 100pF  
0.5  
L
0.25  
15  
C = 100pF,  
L
within 0.1% of  
final value  
Settling Time  
t
µs  
75  
S
250  
ELECTRICAL CHARACTERISTICSMAX4462  
(V  
V
= 5V, V  
= 0V, V  
= V  
= V /2, R = 100kto V /2, T = T  
to T  
, unless otherwise noted. V  
=
DIFF  
CM  
REF  
L
A
MIN  
MAX  
DD  
SS  
DD  
DD  
- V = -100mV to +100mV for G = 1 and G = 10, -20mV to +20mV for G = 100.) (Note 5)  
IN-  
IN+  
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by PSRR test  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage  
Supply Current  
V
2.85  
5.25  
V
DD  
V
V
= 5V, V  
= 3V, V  
= 0V  
= 0V  
1.4  
DD  
DD  
DIFF  
DIFF  
mA  
µV  
1.15  
500  
T
T
T
T
= 0°C to +85°C  
= -40°C to +85°C  
= 0°C to +85°C  
= -40°C to +85°C  
A
A
A
A
MAX4462_ESA  
750  
Input Offset Voltage (Note 1)  
V
OS  
1100  
1300  
MAX4462_EUT  
(Note 1)  
Input Offset Voltage Drift  
TCV  
1.5  
µV/°C  
OS  
V
0.1  
-
V
1.85  
-
DD  
SS  
Input Common-Mode Range  
V
Guaranteed by input CMRR test  
Guaranteed by REF rejection test  
V
CM  
V
+
V
1.85  
-
DD  
SS  
REF Input Range  
V
0.1  
Input Common-Mode  
Rejection Ratio  
CMRR  
PSRR  
V
= (V - 0.1V) to (V  
- 1.85V)  
- 1.85V)  
DD  
80  
dB  
CM  
SS  
DD  
REF Input Rejection Ratio  
Power-Supply Rejection Ratio  
Input Bias Current  
V
V
= (V + 0.1V) to (V  
SS  
75  
75  
dB  
dB  
pA  
CM  
DD  
= 2.85V to 5.25V  
I
(Note 2)  
100  
B
6
_______________________________________________________________________________________  
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
ELECTRICAL CHARACTERISTICSMAX4462 (continued)  
(V  
V
= 5V, V  
= 0V, V  
= V  
= V /2, R = 100kto V /2, T = T  
to T  
, unless otherwise noted. V  
=
DIFF  
CM  
REF  
L
A
MIN  
MAX  
DD  
SS  
DD  
DD  
- V = -100mV to +100mV for G = 1 and G = 10, -20mV to +20mV for G = 100.) (Note 5)  
IN-  
IN+  
PARAMETER  
SYMBOL  
CONDITIONS  
R = 100kΩ  
MIN  
TYP  
MAX  
4
UNITS  
L
V
- V  
OH  
DD  
V
OH  
(Note 3)  
R = 10kΩ  
L
8
Output Voltage Swing  
mV  
R = 100kΩ  
L
8
V
- V  
SS  
OL  
V
OL  
(Note 3)  
R = 10kΩ  
L
16  
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
= 0°C to +85°C  
= -40°C to +85°C  
= 0°C to +85°C  
= -40°C to +85°C  
= 0°C to +85°C  
= -40°C to +85°C  
= 0°C to +85°C  
= -40°C to +85°C  
= 0°C to +85°C  
= -40°C to +85°C  
0.8  
1.6  
0.8  
1.7  
0.8  
1.7  
1.8  
3.0  
0.2  
0.25  
R = 10k,  
MAX4462UESA  
L
R = 10k,  
L
MAX4462TESA  
Gain Error  
GE  
NL  
%
%
R = 10k,  
L
MAX4462HESA  
R = 10k,  
L
MAX4462_EUT  
Nonlinearity  
R = 10kΩ  
L
Note 1: Offset Voltage is measured with a best straight-line (BSL) method (see A User Guide to Instrumentation Amplifier Accuracy  
Specifications section).  
Note 2: Guaranteed by design, not production tested.  
Note 3: Output swing high is measured only on G = 100 devices. Devices with G = 1 and G = 10 have output swing high limited by  
the range of V , V , and V  
REF CM  
(see Output Swing section).  
DIFF  
Note 4: Short-circuit duration limited to 1s (see Absolute Maximum Ratings).  
Note 5: SOT23 units are 100% production tested at +25°C. Limits over temperature are guaranteed by design.  
_______________________________________________________________________________________  
7
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
Typical Operating Characteristics  
(V  
= 5V, V = 0V, V + = V = V  
= V /2, R = 100kto V /2, T = +25°C, unless otherwise noted. V  
= V  
- V  
=
IN  
-
DD  
SS  
IN  
REF  
DD  
L
DD  
A
DIFF  
IN+  
IN-  
-100mV to +100mV for G = 1 and G = 10, -20mV to +20mV for G = 100.)  
GAIN ERROR HISTOGRAM  
VOLTAGE OFFSET HISTOGRAM  
VOLTAGE OFFSET DRIFT HISTOGRAM  
18  
16  
14  
12  
10  
8
12  
10  
8
16  
14  
12  
10  
8
A = 100  
V
6
6
6
4
4
4
2
2
2
0
0
0
0.2  
-0.5 -0.4  
-0.3  
-0.2 -0.1  
0
0.1  
0.3 0.4 0.5  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
VOLTAGE OFFSET DRIFT (µV/°C)  
GAIN ERROR (%)  
VOLTAGE OFFSET (µV)  
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
POWER-SUPPLY REJECTION RATIO  
VS. FREQUENCY  
GAIN-LINEARITY HISTOGRAM  
-20  
-30  
16  
14  
0
A
= 1V/V  
V
A
= 1V/V  
V
-20  
-40  
-50  
-60  
-70  
-80  
12  
10  
-40  
-60  
8
6
4
2
0
-90  
-100  
-110  
-80  
-100  
-120  
-120  
-130  
0.1  
1
10  
100  
1k  
10k  
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10  
LINEARITY (%)  
0.01  
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
INPUT VOLTAGE NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
PEAK-TO-PEAK NOISE (0.1Hz TO 10Hz)  
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
10,000  
1000  
100  
10  
INPUT REFERRED  
G = 1, 10, OR 100  
2µV/div  
0.015  
0.010  
0.005  
V
= 100mV  
P-P  
OUT  
G = 1  
L
R = 100kΩ  
0
1
0.1  
1
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
1s/div  
FREQUENCY (Hz)  
8
_______________________________________________________________________________________  
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= 5V, V = 0V, V + = V = V  
= V /2, R = 100kto V /2, T = +25°C, unless otherwise noted. V  
= V  
- V  
IN  
-
=
DD  
SS  
IN  
REF  
DD  
L
DD  
A
DIFF  
IN+  
IN-  
-100mV to +100mV for G = 1 and G = 10, -20mV to +20mV for G = 100.)  
MAX4462H  
NORMALIZED OUTPUT ERROR  
vs. COMMON-MODE VOLTAGE  
SUPPLY CURRENT  
VS. SUPPLY VOLTAGE  
SHUTDOWN CURRENT  
VS. SUPPLY VOLTAGE  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
14  
12  
10  
8
V
V
V
= +2.5V, V = -2.5V  
EE  
DD  
T
= +85°C  
A
= 20mV  
= 2V  
DIFF  
OUT  
G = 100V/V  
= 0V  
V
REF  
T
= +25°C  
T
= +85°C  
A
A
6
T
= -40°C  
A
4
T
= +25°C  
A
T
= -40°C  
A
2
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
(V)  
2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00  
SUPPLY VOLTAGE (V)  
2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00  
SUPPLY VOLTAGE (V)  
V
CM  
MAX4462H  
NORMALIZED OUTPUT ERROR  
vs. COMMON-MODE VOLTAGE  
OUTPUT SWING HIGH  
VS. OUTPUT CURRENT  
OUTPUT SWING LOW  
vs. OUTPUT CURRENT  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.12  
-0.14  
-0.16  
-0.18  
-0.20  
-0.22  
-0.24  
-0.26  
-0.28  
-0.30  
200  
180  
160  
140  
120  
100  
80  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
V
V
= +2.5V, V = -2.5V  
EE  
DD  
= 20mV  
= 2V  
DIFF  
OUT  
V
= 3.3V  
DD  
G = 100V/V  
= 0V  
V
= 2.85V  
DD  
V
REF  
V
= 3.3V  
DD  
V
= 2.85V  
DD  
60  
V
= 5.0V  
DD  
8
V
= 5.0V  
7
DD  
40  
20  
0
0
-2.7 -2.4 -2.1 -1.8 -1.5 -1.2 -0.9 -0.6 -0.3  
(V)  
0
0
1
2
3
4
5
6
8
9
10  
0
1
2
3
4
5
6
7
9
10  
V
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
CM  
GAIN vs. FREQUENCY  
GAIN BANDWIDTH vs. TEMPERATURE  
SETTLING TIME (GAIN = 100)  
MAX4460 toc18  
50  
40  
30  
20  
10  
0
27  
26  
25  
24  
23  
22  
INPUT  
10mV/div  
A
= 100V/V  
V
OUTPUT  
500mV/div  
A
= 10V/V  
V
OUTPUT  
10mV/div  
A
= 1V/V  
10  
V
A
= 100V/V  
60  
V
-10  
0.01  
0.1  
1
100  
1k  
10k  
-40  
-15  
10  
35  
85  
40µs/div  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
9
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= 5V, V = 0V, V + = V = V  
= V /2, R = 100kto V /2, T = +25°C, unless otherwise noted. V  
= V  
- V  
=
IN  
-
DD  
SS  
IN  
REF  
DD  
L
DD  
A
DIFF  
IN+  
IN-  
-100mV to +100mV for G = 1 and G = 10, -20mV to +20mV for G = 100.)  
SMALL-SIGNAL PULSE RESPONSE  
(GAIN = 1V/V)  
LARGE-SIGNAL PULSE RESPONSE  
(GAIN = 1V/V)  
LARGE-SIGNAL PULSE RESPONSE  
(GAIN = 100V/V)  
MAX4460 toc21  
MAX4460 toc19  
MAX4460 toc20  
INPUT  
10mV/div  
INPUT  
INPUT  
10mV/div  
50mV/div  
OUTPUT  
1V/div  
OUTPUT  
OUTPUT  
1µs/div  
1µs/div  
20µs/div  
SMALL-SIGNAL PULSE RESPONSE  
(GAIN = 100V/V)  
SMALL-SIGNAL PULSE RESPONSE  
(GAIN = 1V/V)  
SMALL-SIGNAL PULSE RESPONSE  
(GAIN = 100V/V)  
MAX4460 toc23  
C = 100pF  
C = 100pF  
L
L
INPUT  
1mV/div  
INPUT  
1mV/div  
INPUT  
10mV/div  
OUTPUT  
100mV/div  
OUTPUT  
100mV/div  
OUTPUT  
20µs/div  
1µs/div  
20µs/div  
10 ______________________________________________________________________________________  
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
Pin Descriptions  
PIN  
NAME  
FUNCTION  
MAX4460  
SOT23  
SO  
1
1
2
OUT  
GND  
IN+  
Output  
2
Negative Supply Voltage  
Positive Differential Input  
3
3
4
4, 5  
6
N.C.  
IN-  
No Connection. Not internally connected.  
Negative Differential Input  
5
7
V
Positive Supply Voltage  
DD  
Feedback Input. Connect FB to the center tap of a resistive divider from  
OUT to GND to set the gain.  
6
8
FB  
PIN  
NAME  
FUNCTION  
MAX4461  
SOT23  
SO  
1
1
2
OUT  
GND  
IN+  
Output  
2
Negative Supply Voltage  
3
3
Positive Differential Input  
4
4, 5  
6
N.C.  
IN-  
No Connection. Not internally connected.  
Negative Differential Input  
5
7
V
Positive Supply Voltage  
DD  
6
8
SHDN  
Shutdown Control. Drive SHDN high for normal operation.  
PIN  
NAME  
FUNCTION  
MAX4462  
SOT23  
SO  
1
1
2
OUT  
Output  
2
V
Negative Supply Voltage  
Positive Differential Input  
No Connection. Not internally connected.  
Negative Differential Input  
Positive Supply Voltage  
SS  
3
3
IN+  
N.C.  
IN-  
4
4, 5  
6
5
7
V
DD  
Output Reference Level. Connect REF to an external, low-  
impedance reference voltage. REF sets the OUT voltage for zero  
differential inputs.  
6
8
REF  
______________________________________________________________________________________ 11  
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
Functional Diagrams  
V
DD  
V
DD  
V
DD  
MAX4461  
MAX4462  
MAX4460  
OUT  
OUT  
OUT  
SHDN  
FB  
g
g
M
g
M
M
g
g
g
M
M
M
REF  
V
SS  
Figure 1. Functional Diagrams  
Detailed Description  
V
DD  
The MAX4460/MAX4461/MAX4462 family of instrumen-  
tation amplifiers implements Maxims proprietary indi-  
rect current-feedback design to achieve a precision  
specification and excellent gain-bandwidth product.  
These new techniques allow ground-sensing capability  
combined with an ultra-low input current and an  
increased common-mode rejection.  
MAX4460  
OUT  
FB  
R2  
R1  
The differential input signal is converted to a current by  
an input transconductance stage. An output transcon-  
ductance stage converts a portion of the output voltage  
(equal to the output voltage divided by the gain) into  
another precision current. These two currents are sub-  
tracted and the result is fed to a loop amplifier with a  
class AB output stage with sufficient gain to minimize  
errors (Figure 1).  
g
M
g
M
The MAX4461U/T/H and MAX4462U/T/H have factory-  
trimmed gains of 1, 10, and 100, respectively. The  
MAX4460 has an adjustable gain, set with an external  
pair of resistors between pins OUT, FB, and GND  
(Figure 2).  
Figure 2. MAX4460 External Resistor Configuration  
The MAX4461U/T/H has a shutdown feature to reduce  
the supply current to less than 1µA. The MAX4461U/  
T/H output is internally referenced to ground, making  
the part suitable for unipolar operations.  
The MAX4462U/T/H has a reference input (REF) which  
is connected to an external reference for bipolar opera-  
tion of the device. The range for V  
is 0.1V to (V  
-
The MAX4460 has an FB pin that can be used to exter-  
nally set the gain through a pair of resistors (see Setting  
the Gain (MAX4460) section). The MAX4460 output is  
internally referenced to ground, making the part suitable  
for unipolar operations.  
REF  
DD  
1.7V). For full output-swing capability, optimal perfor-  
mance is usually obtained with V = VDD/2.  
REF  
The MAX4460/MAX4461/MAX4462 operate with single-  
supply voltages of 2.85V to 5.25V. It is possible to use the  
MAX4462U/T/H in a dual-supply configuration with up to  
2.6V at V and V , with REF connected to ground.  
DD  
SS  
12 ______________________________________________________________________________________  
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
levels. In these cases, as the output approaches either  
supply, accuracy may degrade, especially under heavy  
output loading.  
Input Common-Mode and Output  
Reference Ranges  
MAX4460/MAX4461/MAX4462 have an input common-  
mode range of 100mV below the negative supply to  
1.7V below the positive supply.  
Shutdown Mode  
The MAX4461U/T/H features a low-power shutdown  
mode. When the SHDN pin is pulled low, the internal  
transconductance and amplifier blocks are switched off  
and supply current drops to typically less than 0.1µA  
(Figure 1).  
The output reference voltage of MAX4462U/T/H is set by  
REF and ranges from 100mV above the negative supply  
to 1.7V below the positive supply. For maximum voltage  
swing in a bipolar operation, connect REF to VDD/2.  
The output voltages of the MAX4460 and MAX4461U/  
T/H are referenced to ground. Unlike the traditional  
three-op-amp configuration of common instrumentation  
amplifiers, the MAX4460/MAX4461/MAX4462 have  
In shutdown, the amplifier output is high impedance.  
The output transistors are turned off, but the feedback  
resistor network remains connected. If the external load  
is referenced to GND, the output drops to approximate-  
ly GND in shutdown. The output impedance in shut-  
down is typically greater than 100k. Drive SHDN high  
ground-sensing capability (or to V  
in dual-supply  
SS  
configuration) in addition to the extremely high input  
impedances of MOS input differential pairs.  
or connect to V  
for normal operation.  
CC  
Input Differential Signal Range  
The MAX4460/MAX4461/MAX4462 feature a proprietary  
input structure optimized for small differential signals.  
The unipolar output of the MAX4460/MAX4461 is nomi-  
nally zero-for-zero differential input. However, these  
devices are specified for inputs of 50mV to 100mV for  
the unity-gain devices, 20mV to 100mV for gain of 10  
devices, and 2mV to 48mV for gain of 100 devices. The  
MAX4460/MAX4461 can be used with differential inputs  
approaching zero, albeit with reduced accuracy.  
A User Guide to Instrumentation  
Amplifier Accuracy Specifications  
As with any other electronic component, a complete  
understanding of instrumentation amplifier specifica-  
tions is essential to successfully employ these devices  
in their application circuits. Most of the specifications  
for these differential closed-loop gain blocks are similar  
to the well-known specifications of operational ampli-  
fiers. However, there are a few accuracy specifications  
that could be confusing to first-time users. Therefore,  
some explanations and examples may be helpful.  
The bipolar output of the MAX4462 allows bipolar input  
ranges. The output voltage is equal to the reference  
voltage for zero differential input. The MAX4462 is  
specified for inputs of 100mV for the unity gain and  
gain of 10 devices, and 20mV for gain of 100 devices.  
The gain of 100 devices (MAX4462H) can be operated  
beyond 20mV signal provided the reference is chosen  
for unsymmetrical swing.  
Accuracy specifications are measurements of close-  
ness of an actual output response to its ideal  
expected value. There are three main specifications  
in this category:  
Gain error  
Gain nonlinearity error  
Offset error  
Output Swing  
The MAX4460/MAX4461/MAX4462 are designed to  
have rail-to-rail output voltage swings. However,  
depending on the selected gain and supply voltage  
(and output reference level of the MAX4462), the rail-to-  
rail output swing is not required.  
In order to understand these terms, we must look at the  
transfer function of an ideal instrumentation amplifier. As  
expected, this must be a straight line passing through  
origin with a slope equal to the ideal gain (Figure 3). If  
the ideal gain is equal to 10 and the extreme applied  
input voltages are -100mV and +100mV, then the value  
of the output voltages are -1V and +1V, respectively.  
Note that the line passes through the origin and therefore  
a zero input voltage gives a zero output response.  
For example, consider the MAX4461U, a unity-gain  
device with its ground pin as the output reference level.  
The input voltage range is 0 to 100mV (50mV minimum  
to meet accuracy specifications). Because the device  
is unity gain and the output reference level is ground,  
the output only sees excursions from ground to 100mV.  
The transfer function of a real instrumentation amplifier  
is quite different from the ideal line pictured in Figure 3.  
Rather, it is a curve such as the one indicated as the  
typical curve in Figure 4, connecting end points A and B.  
Devices with higher gain and with bipolar output such  
as the MAX4462, can be configured to swing to higher  
______________________________________________________________________________________ 13  
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
END-POINT LINE  
V
OUT  
IDEAL TRANSFER  
FUNCTION (LINE)  
B
V
OUT  
V
OUT2  
Z
E
IDEAL LINE  
ACTUAL CURVE  
V
IN1  
V
IN  
0
V
V
IN  
IN2  
0
V
OUT1  
A
Figure 3. Transfer Function of an Ideal Instrumentation  
Amplifier (Straight Line Passing Through the Origin)  
Figure 4. Typical Transfer Function for a Real Instrumentation  
Amplifier  
Looking at this curve, one can immediately identify  
three types of errors.  
ACTUAL CURVE  
B
V
First, there is an obvious nonlinearity (curvature) when  
this transfer function is compared to a straight line.  
More deviation is measured as greater nonlinearity  
error. This is explained in more detail below.  
OUT  
END-POINT LINE  
IDEAL LINE SHIFT  
D
Z
E
Second, even if there was no nonlinearity error, i.e., the  
actual curve in Figure 4 was a straight line connecting  
end points A and B, there exists an obvious slope devi-  
ation from that of an ideal gain slope (drawn as the  
idealline in Figure 4). This rotational error (delta  
slope) is a measure of how different the actual gain  
NL+  
V
IN  
0
(G ) is from the expected ideal gain (G and is called  
A
I)  
gain error (GE) (see the equation below).  
Third, even if the actual curve between points A and B  
was a straight line (no nonlinearity error) and had the  
same slope as the ideal gain line (no gain error), there  
is still another error called the end-point offset error (OE  
on vertical axis), since the line is not passing through  
the origin.  
C
A
NL-  
SLOPE  
SLOPE  
= IDEAL GAIN = G  
= ACTUAL GAIN = G  
(CD)  
I
Figure 5 is the same as Figure 4, but the ideal line (CD)  
is shifted up to pass through point E (the Y intercept of  
end-points line AB).  
(AB)  
A
GAIN ERROR (%) = GE (%) = 100 X (G - G ) / G  
I
OFFSET  
(END POINT)  
NL- = NL+  
A
I
= OE  
This is done to better visualize the rotational error (GE),  
which is the difference between the slopes of end  
points line AB and the shifted ideal line CD.  
Figure 5. Typical Transfer Function for a Real Instrumentation  
Amplifier (Ideal Line (CD) Is Shifted by the End-Points Offset  
(OE) to Visualize Gain Error)  
Mathematically:  
GE (%) = 100 x (G - G ) / G  
I
A
I
14 ______________________________________________________________________________________  
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
The rotational nature of gain error, and the fact that it is  
ACTUAL CURVE  
pivoted around point E in Figure 5, shows that gain-  
error contribution to the total output voltage error is  
directly proportional to the input voltage. At zero input  
voltage, the error contribution of gain error is zero, i.e.,  
the total deviation from the origin (the expected zero  
output value) is only due to end-points OE and nonlin-  
earity error at zero value of input (segment EZ on the  
vertical axis).  
B
V
OUT  
END-POINT LINE  
Z
BSL LINE  
NL+  
The nonlinearity is the maximum deviation from a  
straight line, and the end-point nonlinearity is the devia-  
tion from the end-point line. As shown in Figure 5, it is  
likely that two nonlinearities are encountered, one posi-  
tive and the other a negative nonlinearity error, shown  
as NL+ and NL- in Figure 5.  
S
E
0
V
IN  
Generally, NL+ and NL- have different values and this  
remains the case if the device is calibrated (trimmed)  
for end-points errors (which means changing the gain  
of the instrumentation amplifier in such a way that the  
slope of line AB becomes equal to that of CD, and the  
offset becomes trimmed such that OE vanishes to  
zero). This is an undesirable situation when nonlinearity  
is of prime interest.  
NL-  
A
NL+ = NL- = NL  
NL (%) = (NL / FULL-SCALE OUTPUT RANGE) X 100  
BSL  
OFFSET (BSL) = OSL  
The straight line shown in Figure 6 is in parallel to end-  
points line AB and has a Y intercept of OS on the verti-  
cal axis. This line is a shifted end-points line such that  
the positive and negative nonlinearity errors with  
respect to this line are equal. For this reason, the line is  
called the best straight line (BSL). Maxim internally  
trims the MAX4460/MAX4461/MAX4462 with respect to  
this line (changing the gain slope to be as close as  
possible to the slope of the ideal line and trimming the  
offset such that OS gets as close to the origin as possi-  
ble) to minimize all the errors. The total accuracy error  
is still the summation of the gain error, nonlinearity, and  
offset errors.  
GAIN AND OFFSET WILL BE FACTORY-TRIMMED FOR BEST STRAIGHT LINE  
Figure 6. To Minimize Nonlinearity Error, the MAX4460/MAX4461/  
MAX4462 are Internally Trimmed to Adjust Gain and Offset for the  
Best Straight Line so NL- = NL+  
The individual errors are as follows:  
GE = (0.15%) (10) (100mV) = 1.5mV  
Offset (BSL) = (250µV) (10) = 2.5mV  
NL = (0.05%) (2V) = 1mV  
Maximum Total Error = 1.5mV + 2.5mV + 1mV  
= 5mV  
As an example, assume the following specification for  
an instrumentation amplifier:  
So, the absolute value of the output voltage, consider-  
ing the above errors, would be at worst case between  
0.995V to 1.005V. Note that other important parameters  
such as PSRR, CMRR, and noise also contribute to the  
total error in instrumentation applications. They are not  
considered here.  
Gain = 10  
GE = 0.15%  
Offset (BSL) = 250µV  
NL = 0.05%  
V
DIF  
(input) = -100mV to +100mV  
What is the maximum total error associated with the  
GE, offset (BSL), and NL? With a differential input range  
of -0.1V to +0.1V and a gain of 10, the output voltage  
assumes a range of -1V to +1V, i.e., a total full-scale  
range of 2V.  
______________________________________________________________________________________ 15  
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
Power-Supply Bypass and Layout  
Applications Information  
Good layout technique optimizes performance by  
decreasing the amount of stray capacitance at the  
instrumentation amplifiers gain-setting pins. Excess  
capacitance produces peaking in the amplifiers fre-  
quency response. To decrease stray capacitance, min-  
imize trace lengths by placing external components as  
close to the instrumentation amplifier as possible. For  
best performance, bypass each power supply to  
ground with a separate 0.1µF capacitor.  
Setting the Gain (MAX4460)  
The MAX4460 gain is set by connecting a resistive-  
divider from OUT to GND, with the center tap connect-  
ed to FB (Figure 2). The gain is calculated by:  
Gain = 1 + R2 / R1  
Because FB has less than 100pA IB, high-valued resis-  
tors can be used without significantly affecting the gain  
accuracy. The sum of resistors (R1 + R2) near 100kis  
a good compromise. Resistor accuracy directly affects  
gain accuracy. Resistor sum less than 20kshould not  
be used because their loading can slightly affect output  
accuracy.  
Microphone Amplifier  
The MAX4462s bipolar output, along with its excellent  
common-mode rejection ratio, makes it suitable for pre-  
cision microphone amplifier applications. Figure 7 illus-  
trates one such circuit. In this case, the electret  
microphone is resistively biased to the supply voltage  
through a 2.2kpullup resistor. The MAX4462 directly  
senses the output voltage at its noninverting input, and  
indirectly senses the microphones ground through an  
AC-coupling capacitor. This technique provides excel-  
lent rejection of common-mode noise picked up by the  
microphone lead wires. Furthermore, ground noise from  
distantly located microphones is reduced.  
Capacitive-Load Stability  
The MAX4460/MAX4461/MAX4462 are capable of dri-  
ving capacitive loads up to 100pF.  
Applications needing higher capacitive drive capability  
may use an isolation resistor between OUT and the  
load to reduce ringing on the output signal. However  
this reduces the gain accuracy due to the voltage drop  
across the isolation resistor.  
The single-ended output of the MAX4462 is converted to  
differential through a single op amp, the MAX4335. The  
op amp forces the midpoint between OUT+ and OUT- to  
be equal to the reference voltage. The configuration  
does not change the MAX4662Ts fixed gain of 10.  
Output Loading  
For best performance, the output loading should be to  
the potential seen at REF for the MAX4462 or to ground  
for the MAX4460/MAX4461.  
REF Input (MAX4462)  
The REF input of the MAX4462 can be connected to any  
voltage from (V + 0.1V) to (V  
- 1.7V). A buffered  
DD  
SS  
voltage-divider with sink and source capability works  
well to center the output swing at VDD/2. Unbuffered  
resistive dividers should be avoided because the 100kΩ  
(typ) input impedance of REF causes amplitude-depen-  
dent variations in the dividers output.  
Bandgap references, either series or shunt, can be  
used to drive REF. This provides a voltage and temper-  
ature invariant reference. This same reference voltage  
can be used to bias bridge sensors to eliminate supply  
voltage ratiometricity. For proper operation, the refer-  
ence must be able to sink and source at least 25µA.  
In many applications, the MAX4462 is connected to a  
CODEC or other device with a reference voltage out-  
put. In this case, the receiving devices reference out-  
put makes an ideal reference voltage. Verify the  
reference output of the device is capable of driving the  
MAX4462s REF input.  
16 ______________________________________________________________________________________  
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
V
DD  
3.3k  
MAX4462TEUT  
4.7µF  
2.2kΩ  
5
2
3
1
OUT+  
100kΩ  
4
20kΩ  
6
20kΩ  
6
3
1
MIC  
4
MAX4335  
V
REF  
2
0.1µF  
OUT-  
Figure 7. Differential I/O Microphone Amplifier  
Typical Application Circuits  
(continued)  
Selector Guide  
PART  
GAIN  
REF  
SHUTDOWN  
V
CC  
MAX4460  
Adjustable  
GND  
GND  
GND  
GND  
EXT  
NO  
YES  
YES  
YES  
NO  
MAX4461U  
MAX4461T  
MAX4461H  
MAX4462U  
MAX4462T  
MAX4462H  
1
10  
100  
1
MAX4461  
1
V
+ V  
CM  
3
4
5
V  
V > 0  
OUT  
SHDN  
10  
100  
EXT  
NO  
6
V
CM  
2
EXT  
NO  
Chip Information  
TRANSISTOR COUNT: 421  
PROCESS: BiCMOS  
______________________________________________________________________________________ 17  
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
Pin Configurations  
TOP VIEW  
OUT  
GND  
IN+  
1
2
3
4
8
7
6
5
FB  
OUT  
GND  
IN+  
1
2
3
6
5
4
FB  
V
DD  
MAX4460  
MAX4460  
V
DD  
IN-  
N.C.  
N.C.  
IN-  
SO  
SOT23  
OUT  
GND  
IN+  
1
2
3
4
8
7
6
5
OUT  
GND  
IN+  
1
6
SHDN  
SHDN  
V
DD  
MAX4461  
MAX4461  
2
3
5
4
V
DD  
IN-  
N.C.  
N.C.  
IN-  
SO  
SOT23  
OUT  
1
2
3
4
8
7
6
5
REF  
OUT  
1
6
REF  
V
V
DD  
SS  
MAX4462  
MAX4462  
V
2
3
5
4
V
DD  
SS  
IN+  
IN-  
N.C.  
N.C.  
IN+  
IN-  
SO  
SOT23  
18 ______________________________________________________________________________________  
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 19  
SOT23, 3V/5V, Single-Supply, Rail-to-Rail  
Instrumentation Amplifiers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
INCHES  
MILLIMETERS  
DIM  
A
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
MIN  
1.35  
0.10  
0.35  
0.19  
MAX  
1.75  
0.25  
0.49  
0.25  
0.053  
0.004  
0.014  
0.007  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.228  
0.016  
0.157  
0.244  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
DIM  
D
MIN  
MAX  
0.197  
0.344  
0.394  
MIN  
4.80  
8.55  
9.80  
MAX  
5.00  
N
8
MS012  
AA  
TOP VIEW  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
B
0 -8  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX4462TEUT

Instrumentation Amplifier, 1 Func, BICMOS, PDSO6
MAXIM

MAX4462TEUT-T

SOT23, 3V/5V, Single-Supply, Rail-to-Rail Instrumentation Amplifiers
MAXIM

MAX4462UESA

SOT23, 3V/5V, Single-Supply, Rail-to-Rail Instrumentation Amplifiers
MAXIM

MAX4462UESA+

Instrumentation Amplifier, 1 Func, 750uV Offset-Max, 2.5MHz Band Width, BICMOS, PDSO8, SO-8
MAXIM

MAX4462UESA-T

Instrumentation Amplifier, 1 Func, 750uV Offset-Max, 2.5MHz Band Width, BICMOS, PDSO8, 0.150 INCH, MS-012AA, SOIC-8
MAXIM

MAX4462UETT+

Instrumentation Amplifier,
MAXIM

MAX4462UEUT-T

SOT23, 3V/5V, Single-Supply, Rail-to-Rail Instrumentation Amplifiers
MAXIM

MAX4464

Single/Dual/Quad, !.8V/750nA, SC70, Rail-to-Rail Op Amps
MAXIM

MAX4464EUK+

Operational Amplifier, 1 Func, 15000uV Offset-Max, BICMOS, PDSO5, ROHS COMPLIANT, MO-178, SOT-23, 5 PIN
MAXIM

MAX4464EUK+T

Single/Dual/Quad, +1.8V/750nA, SC70, Rail-to-Rail Op Amps
MAXIM

MAX4464EUK-T

Single/Dual/Quad, !.8V/750nA, SC70, Rail-to-Rail Op Amps
MAXIM

MAX4464EXK+

Operational Amplifier, 1 Func, 15000uV Offset-Max, BICMOS, PDSO5, ROHS COMPLIANT, MO-203, SC-70, 5 PIN
MAXIM