MAX4473EGA [MAXIM]

Industrial Control IC ; 工业控制IC\n
MAX4473EGA
型号: MAX4473EGA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Industrial Control IC
工业控制IC\n

文件: 总7页 (文件大小:297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1448; Rev 1; 1/02  
Low-Cost, Low-Voltage, PA Power Control  
Amplifier for GSM Applications in 8-Pin QFN  
General Description  
Features  
The MAX4473 PA power control IC is intended for  
closed-loop bias control of GSM power amplifiers. The  
device facilitates accurate control of the current deliv-  
ered to the power amplifier (PA) through a control volt-  
age. The error amplifier senses the voltage drop across  
an external current-sense resistor placed between the  
supply and the PA. The output of the error amplifier  
adjusts the PA gain until the current is proportional to  
the power control voltage applied to the MAX4473. This  
unique topology is useful in time-division-multiple-  
access (TDMA) systems, such as GSM, where accurate  
transmit burst shaping and power control is required.  
User-selectable current sensing and gain setting resis-  
tors maximize flexibility.  
Optimized for GSM Timing Requirements  
2.7V to 6.5V Single-Supply Operation  
1.2mA Supply Current  
1µA Supply Current in Shutdown Mode  
Guaranteed 1.5µs Enable/Disable Times  
Active Output Pull-Down in Shutdown Mode  
Rail-to-Rail Error Amplifier Output  
Rail-to-Rail Power Control Input  
Output Drive Capability—500 and 300pF Loads  
1V to V  
Current Sense Input Common-Mode  
CC  
The MAX4473 operates from a single 2.7V to 6.5V sup-  
ply and typically draws 1.2mA of supply current. The  
error amplifier has a common-mode range that extends  
Voltage Range  
No Phase-Reversal for Common-Mode Voltage  
from 1V to V . The power control input and error  
CC  
from 0 to V  
CC  
amplifier outputs swing Rail-to-Rail®. A low-power shut-  
down mode reduces supply current to less than 1µA  
and activates an on-board active pull-down at the error  
amplifier output. Fast enable/disable times of 0.9µs  
reduce average power consumption without compro-  
mising dynamic performance. The MAX4473 is avail-  
able in a space-saving 8-pin QFN package.  
External Current Sensing and Gain Setting  
Resistors Maximize Flexibility  
Available in a Space-Saving 8-Pin QFN  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 µMAX  
Applications  
GSM Cellular Phones  
MAX4473EUA  
MAX4473EGA  
MAX4473ESA  
8 QFN  
Cordless Phones  
8 SO  
Precision Current Control  
Pin Configuration appears at end of data sheet.  
High-Frequency Servo Loops  
Typical Operating Circuit  
V
CC  
R
0.1 F  
SENSE  
RG1  
RG2  
A3  
8
1
SR1  
2
SR2  
V
4
3
CC  
PC  
7
OUT  
I
CCPA  
A1  
BUFFER  
GC  
IN  
V-TO-I  
CONVERTER  
3R  
R
ERROR  
AMPLIFIER  
V
CC  
PA  
Q1  
A2  
MAX4473  
SHDN  
GND  
5
SR3  
RFIN  
V
· RG1  
PC  
6
I
=
CCPA  
4 · RG3 · R  
RG3  
SENSE  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Cost, Low-Voltage, PA Power Control  
Amplifier for GSM Applications in 8-Pin QFN  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
to GND..............................................................................7V  
Continuous Power Dissipation (T = +70°C)  
A
SR1, SR2, SR3, PC, SHDN,  
OUT to GND ............................................-0.3V to (V  
SR1 to SR3......................................................................0 to V  
OUT and SR3 Short-Circuit Duration  
8-Pin µMAX (derate 4.10ꢁW/°C above +70°C)............330ꢁW  
8-Pin QFN (derate 24.4ꢁW/°C above +70°C) ............1951ꢁW  
8-Pin SO (derate 5.88ꢁW/°C above +70°C).................471ꢁW  
Operating Teꢁperature Range ...........................-40°C to +85°C  
Junction Teꢁperature......................................................+150°C  
Storage Teꢁperature Range.............................-65°C to +150°C  
Lead Teꢁperature (soldering, 10s) .................................+300°C  
+ 0.3V)  
CC  
CC  
to V  
or GND ........................................................Continuous  
CC  
Current into Any Pin.......................................................... 50ꢁA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 2.7V to 6.5V, SHDN > 2.4V, MAX4473 test circuit, RG1 = RG2 = 1k  
1ꢀ, RG3 = 2.5k 1ꢀ, R  
, unless otherwise noted. Typical values are at V = 6.0V, V  
CC PC  
= 100  
1ꢀ,  
CC  
SENSE  
R
= 10k , C = 300pF, T = T  
to T  
= 1.0V, T = +25°C.)  
L
L
A
MIN  
MAX  
A
(Note 1)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL  
Supply Voltage  
2.7  
2.4  
6.5  
2
V
ꢁA  
µA  
V
Supply Current  
V
= 0  
1.2  
PC  
Shutdown Supply Current  
SHDN Input High Voltage  
SHDN Input Low Voltage  
SHDN Input Current  
ERROR AMPLIFIER  
0.03  
1
SHDN < 0.4V, R = 10k  
L
0.4  
0.5  
V
µA  
SHDN = 0 to V  
CC  
SR1, SR2 Input Offset Voltage  
1V < V  
1V < V  
, V  
< V  
< V  
0.5  
10  
2
ꢁV  
SR1 SR2  
CC  
SR1, SR2 Input Offset Voltage Drift  
, V  
SR1 SR2  
µV/ C  
CC  
SR1, SR2 Input Coꢁꢁon-Mode  
Voltage Range  
Inferred froꢁ CMRR test; V = GND (Note 2)  
1
V
CC  
V
PC  
1V < V  
SR3 = unconnected  
, V  
< V , V = GND,  
SR1 SR2 CC PC  
SR1, SR2 Input Bias Current  
0.04  
1
µA  
1V < V , V < V , V = GND,  
SR3 = unconnected  
SR1 SR2  
CC PC  
SR1, SR2 Input Bias Offset Current  
SR1, SR2 Shutdown Leakage Current  
Coꢁꢁon-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
0.001  
0.2  
0.5  
µA  
µA  
dB  
dB  
0.001  
85  
95  
SHDN < 0.4V, V  
= V  
= V  
CC  
SR1  
SR2  
V
V
= 2.7V  
= 6.5V  
65  
75  
1V < V  
, V  
< V  
,
CC  
SR1 SR2  
CC  
V
PC  
= GND  
CC  
2.7V < V < 6.5V, V = GND  
80  
90  
CC  
PC  
V
CC  
V
CC  
V
CC  
V
CC  
= 6.5V, 0.3V < V  
= 2.7V, 0.3V < V  
= 6.5V, 0.7V < V  
= 2.7V, 0.7V < V  
< 6V  
80  
80  
80  
80  
130  
125  
130  
120  
R = 10k  
OUT  
OUT  
OUT  
OUT  
L
to V  
/ 2  
CC  
< 2.4V  
< 5.5V  
< 2.2V  
Large-Signal Gain  
dB  
R = 500  
L
to V  
/ 2  
CC  
R = 10k to V  
/ 2  
/ 2  
0.15  
0.5  
V
V
-
0.15  
CC  
-
0.5  
CC  
L
CC  
Output Voltage Swing  
V
R = 500 to V  
L
CC  
Output Current Liꢁit  
Gain-Bandwidth Product  
Phase Margin  
V
= V  
/ 2  
20  
2
ꢁA  
MHz  
OUT  
CC  
R = 10k , C = 300pF, f = 10kHz  
L
L
o
R = 10k , C = 300pF  
60  
degrees  
L
L
Measured froꢁ 30ꢀ to 70ꢀ of V  
C = 300pF  
L
, R = 10k ,  
L
OUT  
Slew Rate  
1.8  
V/µs  
2
_______________________________________________________________________________________  
Low-Cost, Low-Voltage, PA Power Control  
Amplifier for GSM Applications in 8-Pin QFN  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 2.7V to 6.5V, SHDN > 2.4V, MAX4473 test circuit, RG1 = RG2 = 1k  
1ꢀ, RG3 = 2.5k 1ꢀ, R  
, unless otherwise noted. Typical values are at V = 6.0V, V  
CC PC  
= 100  
1ꢀ,  
CC  
SENSE  
R
= 10k , C = 300pF, T = T  
to T  
= 1.0V, T = +25°C.)  
L
L
A
MIN  
MAX  
A
(Note 1)  
PARAMETER  
CONDITIONS  
No sustained oscillations (Note 3)  
Froꢁ 50ꢀ of SHDN edge to V  
MIN  
TYP  
MAX  
300  
1.5  
UNITS  
pF  
Capacitive-Load Stability  
Enable/Disable Tiꢁe  
0
0.9  
µs  
= 1V, V = 2V  
OUT  
PC  
GAIN CONTROL BUFFER AND V-TO-I CONVERTER  
PC Input Bias Current  
GND < V < V  
- 0.15V  
0.04  
4
1
µA  
ꢁA  
PC  
CC  
SR3 Output Current Liꢁit  
V
PC  
= 2.55V, SR1 = SR2 = V  
0.750  
0.095  
CC  
V
PC  
to V  
Ratio  
Measure voltage across RG1, 0.3V < V < 2.55V (Note 4)  
0.1  
2
0.105  
V/V  
RG1  
PC  
PC Input Bandwidth  
Bandwidth froꢁ V to V  
MHz  
PC  
RG1  
Note 1: Liꢁits over teꢁperature are guaranteed by design.  
Note 2: No output phase-reversal for input coꢁꢁon-ꢁode voltage range froꢁ GND to V . Coꢁꢁon-ꢁode range liꢁited by voltage  
CC  
drop across Q1 and RG3.  
Note 3: Guaranteed by design.  
Note 4: Error dependent on tolerance of RG1, RG2, and RG3. Specified with 0.1ꢀ tolerance resistors.  
Typical Operating Characteristics  
(See Test Circuit, T = +25°C, unless otherwise noted.)  
A
V
/ V RATIO vs. V RESPONSE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
ERROR-AMPLIFIER RESPONSE  
MAX4473 toc03  
RG1  
PC  
PC  
0.1100  
0.1075  
0.1050  
0.1025  
0.1000  
0.0975  
0.0950  
0.0925  
0.0900  
70  
60  
50  
40  
30  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
A
V
V
V
= 1000  
VCL  
V
= 6.0V  
CC  
-18  
-36  
-54  
-72  
T
= -40 C  
= 6.5V  
A
CC  
CM  
PC  
= V / 2  
CC  
T
= +25 C  
A
= 0  
GAIN  
PHASE  
ERROR  
T
= +85 C  
A
20  
10  
-90  
-108  
-126  
-144  
-162  
AMPLIFIER  
0
100k  
100  
10k  
-10  
-20  
300pF  
SHDN = V  
PC = GND  
CC  
-30  
-180  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
1
2
3
4
5
6
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
V
(V)  
PC  
ERROR-AMPLIFIER  
OUTPUT LOW VOLTAGE vs. TEMPERATURE  
ERROR-AMPLIFIER  
OUTPUT HIGH VOLTAGE vs. TEMPERATURE  
ENABLE/DISABLE TIME  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 6.5V, R = 500 to V / 2  
L CC  
CC  
V
= 6.5V, R = 500 to V / 2  
L CC  
CC  
SHDN  
2V/div  
GND  
GND  
V
V
= 6.5V  
= 2V  
CC  
PC  
V
= 2.7V, R = 500 to V / 2  
L CC  
CC  
V
= 2.7V, R = 500 to V / 2  
CC  
L
CC  
V
= 6.5V, R = 10k to V / 2  
L CC  
CC  
V
= 2.7V, R = 10k to V / 2  
L CC  
CC  
OUT  
500mV/div  
V
= 6.5V, R = 10k to V / 2  
CC  
L
CC  
V
= 2.7V, R = 10k to V / 2  
L CC  
CC  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
500ns/div  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
_______________________________________________________________________________________  
3
Low-Cost, Low-Voltage, PA Power Control  
Amplifier for GSM Applications in 8-Pin QFN  
Pin Description  
PIN  
NAME  
FUNCTION  
Inverting Input of Error Aꢁplifier and Drain of V-to-I FET, Q1. Connect to supply side of current-sense resis-  
SR1  
1
tor, R , through gain resistor RG1.  
SENSE  
Noninverting Input of Error Aꢁplifier. Connect to load side of current-sense resistor, R  
resistor RG2. Set RG2 equal to RG1.  
, through gain  
SENSE  
2
3
SR2  
Shutdown Input. Drive SHDN low to disable all aꢁplifiers, pull OUT to GND, set the gate-to-source voltage  
of the V-to-I FET (Q1) to 0, and reduce supply current to less than 1µA. Drive high or connect to V  
SHDN  
for nor-  
CC  
ꢁal operation.  
4
5
PC  
Power Control Input. Apply a voltage to PC to set a DC current through the sense resistor to control PA bias.  
Ground  
GND  
Inverting Input of V-to-I Converter and Source of V-to-I FET, Q1. Connect to ground through gain resistor  
RG3.  
6
SR3  
7
8
OUT  
Output of Error Aꢁplifier. Connect to gain control pin of power aꢁplifier in bias control applications.  
+2.7V to +6.5V Voltage Supply Input. Bypass to ground with a 0.1µF capacitor.  
V
CC  
four by a resistor-divider network. A2 forces its inverting  
Detailed Description  
input and the source of Q1 to V  
/ 4, thus setting a  
PC  
The MAX4473 is a voltage-controlled, unidirectional,  
high-side current setting aꢁplifier for applications  
where accurate control of PA supply current is desired.  
This device is intended for wireless TDMA based sys-  
teꢁs (GSM, DECT), where tight restrictions over the  
PAs transꢁit burst and output power require closed-  
loop control over the PAs output power. When used  
with a PA, the MAX4473 functions as a voltage-con-  
trolled constant current source, accurately setting PA  
supply current by varying the gain of the PA. If you  
know the output power versus supply current profile for  
the PA, you can set the PAs output power by control-  
ling the aꢁount of supply current delivered to the PA.  
voltage across RG3. The resulting current through RG3  
sets the current through RG1. This unique architecture  
allows the supply current to be set independent of sup-  
ply voltage. Set PA supply current according to the fol-  
lowing equation:  
I
= ( V · RG1 ) / ( 4 · R  
· RG3 )  
CCPA  
PC  
SENSE  
Shutdown Mode  
When SHDN is a logic-level low (SHDN < 0.4V), aꢁpli-  
fiers A1, A2, and A3 are off, Q1 is turned off, and the  
output of A3 is actively pulled to ground with an N-  
channel FET. Supply current is reduced to less than  
1µA in shutdown ꢁode. Typical power-up tiꢁe is 0.9µs  
and typical power-down tiꢁe is 0.3µs, using the  
MAX4473 test circuit.  
The MAX4473 is coꢁposed of an input buffer (A1), a  
voltage-to-current converting aꢁplifier (A2), and a rail-  
to-rail output error aꢁplifier (A3) (see Typical Operating  
Circuit). External gain and sense resistors allow pro-  
graꢁꢁability for a wide range of applications.  
Applications Information  
Gain Resistor Selection  
(RG1, RG2, RG3)  
In the Typical Operating Circuit, PA supply current  
For proper operation, do not ꢁake the value of external  
gain resistors RG1 and RG2 larger than twice the value  
of RG3. In ꢁost practical applications, choose RG1  
sꢁaller than RG3 to liꢁit the voltage drop over RG1  
flows froꢁ the systeꢁ supply, through the external cur-  
rent-sense resistor (R  
), to the PA. The rail-to-rail  
SENSE  
outputs of the error aꢁplifier, A3, adjust the gain of the  
PA until the voltage drop across R equals the  
SENSE  
and R  
. A large voltage drop over R  
sub-  
SENSE  
SENSE  
voltage drop across external gain resistor, RG1. The  
voltage drop across RG1 sets the voltage drop across  
stantially reduces the voltage applied to the PA, thus  
reducing PA output power. Set RG2 equal to RG1 to  
coꢁpensate for the input bias currents of A3.  
Recoꢁꢁended values for RG3 are between 1k and  
10k .  
R
, with a larger voltage drop resulting in ꢁore  
SENSE  
current delivered to the PA. The voltage drop across  
RG1 is set by A1, A2, and the V-to-I FET, Q1. A voltage  
applied to the PC input of the input buffer is divided by  
4
_______________________________________________________________________________________  
Low-Cost, Low-Voltage, PA Power Control  
Amplifier for GSM Applications in 8-Pin QFN  
Efficiency and Power Dissipation: At high current  
Sense Resistor Selection (R  
)
SENSE  
levels, the I2R losses in R  
are significant. Take  
Choose R  
based on the following criteria:  
SENSE  
SENSE  
this into consideration when choosing the resistor  
value and its power dissipation (wattage) rating.  
Also, the sense resistors value ꢁay drift if it is  
allowed to heat up excessively.  
Voltage Loss: A high R  
power-source voltage to degrade through IR loss.  
For ꢁiniꢁal voltage loss, use low R values.  
value causes the  
SENSE  
SENSE  
Accuracy: A high R  
value allows lower cur-  
SENSE  
rents to be ꢁeasured ꢁore accurately because input  
offset voltages becoꢁe less significant when the  
sense voltage is larger. For best perforꢁance, select  
R
to provide approxiꢁately 100ꢁV of sense  
SENSE  
voltage for the full-scale current in each application.  
_________________________Test Circuit  
Pin Configuration  
R
SENSE  
TOP VIEW  
V
CC  
100  
0.1%  
RG1  
1k  
1%  
RG2  
1k  
1%  
0.1 F  
SR1  
SR2  
1
2
3
4
8
7
6
5
V
CC  
V
SR1  
SR2  
CC  
OUT  
SR3  
GND  
MAX4473  
PC  
2N3904  
OUT  
MAX4473  
SHDN  
PC  
C
L
300pF  
R
10k  
L
SHDN  
GND  
SR3  
R
750  
E
RG3  
2.5k  
1%  
QFN/ MAX/SO  
Chip Information  
TRANSISTOR COUNT: 348  
_______________________________________________________________________________________  
5
Low-Cost, Low-Voltage, PA Power Control  
Amplifier for GSM Applications in 8-Pin QFN  
Package Information  
6 _________________________________________________________________________________________  
Low-Cost, Low-Voltage, PA Power Control  
Amplifier for GSM Applications in 8-Pin QFN  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ______________________7  
© 2002 Maxiꢁ Integrated Products  
Printed USA  
is a registered tradeꢁark of Maxiꢁ Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY