MAX448C/D [MAXIM]

Single/Dual/Quad High-Speed, Fast-Settling, High Output Current Operational Amplifier; 单/双/四高速,快速建立,高输出电流运算放大器
MAX448C/D
型号: MAX448C/D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Single/Dual/Quad High-Speed, Fast-Settling, High Output Current Operational Amplifier
单/双/四高速,快速建立,高输出电流运算放大器

运算放大器 放大器电路
文件: 总12页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2394; Rev 1; 7/97  
S in g le /Du a l/Qu a d Hig h -S p e e d , Fa s t -S e t t lin g ,  
Hig h Ou t p u t Cu rre n t Op e ra t io n a l Am p lifie r  
MAX02/48  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX408/428/448 are high speed general purpose  
monolithic operational amplifiers in a single, dual or  
quad package, that are useful for signal frequencies  
extending into the video range. These Op Amps func-  
tion in gain configurations greater-than or equal-to 3.  
High output current allows large capacitive loads to be  
driven at high speeds.  
Fast Settling Time: ±0.1% In 150ns  
High Slew Rate: 90V/µs  
Large Gain Bandwidth: 100MHz  
Full Power Bandwidth: 4.8MHz at 6V p-p  
Ease of Use: Internally Compensated for  
Open-loop voltage gain of 10k V/V and high slew rate of  
90V/µs ma ke the MAX408/428/448 id e a l for a na log  
amplification and high speed signal processing. 100MHz  
gain bandwidth and a ±0.1% settling time of l50ns make  
each amplifier ideal for fast data conversion systems.  
A
3 with 50°–60° Phase Margin  
CL  
Low Supply Voltage Operation: ±4V  
Wide Input Voltage Range: Within 1.5V of V+ and  
0.5V of V-  
The amplifiers are capable of driving back terminated  
transmission lines of 75with amplitudes of 5V peak-  
to-peak.  
Minimal Crosstalk: >90dB Separation  
(MAX428/448)  
Short Circuit Protection  
Along with the high speed and output drive capability,  
a 35nA offs e t c urre nt a nd trimma b le offs e t volta g e  
make the MAX408/428/448 optimal for signal condition-  
ing applications where accuracy must be maintained.  
Ap p lic a t io n s  
Ord e rin g In fo rm a t io n  
Video Amplifiers  
Test Equipment  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
8 Lead Plastic DIP  
8 Lead Small Outline  
8 Lead Plastic DIP  
8 Lead Small Outline  
Dice  
MAX408ACPA  
MAX408ACSA  
MAX408CPA  
MAX408CSA  
MAX408C/D  
Waveform Generators  
Video Distribution  
Pulse Amplifiers  
Ordering Information continued at end of data sheet.  
P in Co n fig u ra t io n s  
TOP VIEW  
OUTA  
-IN  
1
2
3
4
5
6
7
14 OUT  
D
A
B
D
13 -IN  
A
D
-
-
-
+IN  
A
12 +IN  
D
BALANCE  
-IN  
1
2
3
4
8
7
6
5
N.C.  
OUT 1  
-IN  
1
2
3
4
8
7
6
5
V+  
A
MAX408  
-
V+  
+IN  
11 V-  
10 +IN  
MAX448  
V+  
OUT2  
A
B
-
-
B
C
+
+IN  
OUT  
+IN  
A
-IN  
B
-
-IN  
B
9
8
-IN  
C
C
V-  
BALANCE  
V-  
+IN  
B
OUT  
OUT  
C
B
MAX428  
DIP/SO  
DIP/SO  
DIP/SO  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
S in g le /Du a l/Qu a d Hig h -S p e e d , Fa s t -S e t t lin g ,  
Hig h Ou t p u t Cu rre n t Op e ra t io n a l Am p lifie r  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltages .....................................................................+6V  
Differential Input Voltage .......................................................+9V  
Common Mode Input Voltage .......................................|Vs| -0.5V  
Output Short Circuit Current Duration ...........................Indefinite  
14-Pin Plastic DIP  
(derate 10.00mW/°C above +70°C).........................800mW  
14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW  
Operating Temperature Range  
Continuous Power Dissipation (T = +70°C)  
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ....727mW  
8-Pin SO (derate 5.88mW/°C above +70°C).................471mW  
Commercial (MAX4_8AC/C) ................................0°C to +70°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (Soldering, 60 seconds)...................+300° C  
A
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX408  
S
MAX02/48  
(V = ±5V, T = +25°C, unless otherwise noted.)  
A
MAX408C  
TYP  
MAX408AC  
TYP  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
MIN  
MAX  
MIN  
MAX  
5
8
12  
16  
3
5
6
10  
T
= 25°C  
A
Input Offset Voltage  
V
OS  
mV  
0°C T 70°C  
A
V /T  
Average Offset Voltage Drift  
Input Bias Current  
0°C T 70°C  
20  
20  
µV/°C  
nA  
OS  
A
I
B
650  
1100  
650  
1100  
35  
70  
120  
200  
35  
70  
120  
200  
T
= 25°C  
A
Input Offset Current  
I
OS  
nA  
0°C T 70°C  
A
+3  
-4  
+3.5  
-4.5  
+3  
-4  
+3.5  
-4.5  
Input Common Mode Range  
Differential Input Resistance  
V
V
CM  
IND  
INC  
IND  
INC  
MΩ  
MΩ  
pF  
R
R
C
C
(Note 1)  
(Note 1)  
3
10  
3
10  
Common Mode Input  
Resistance  
4
8
4
8
Differential Input Capacitance  
2
2
Common Mode Input  
Capacitance  
3
3
pF  
Input Voltage Noise  
e
BW = 10Hz to 100kHz  
12  
5
12  
10  
µV  
RMS  
N
V
= ±3V, R = 2kΩ  
L
Open Loop Voltage Gain  
A
2
5
V/mV  
OUT  
V
R
R
= 2kΩ  
= 150Ω  
±3.5  
±2.0  
±3.5  
±2.5  
L
L
Output Voltage Swing  
V
OUT  
V
±2.4  
7
±2.7  
7
Power Supply Current  
I
S
10  
10  
mA  
dB  
dB  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR  
PSRR  
V
CM  
= ±2V  
60  
60  
70  
66  
60  
60  
70  
66  
V = ±0.5V  
PS  
10–90% of Leading  
Edge (Figure 1)  
Slew Rate (Note 1)  
SR  
60  
90  
60  
90  
V/µS  
To ±0.1% (±4mV) of  
Final Value (Figure 1)  
(Note 1)  
Settling Time  
t
150  
100  
200  
150  
100  
200  
ns  
S
Gain Bandwidth Product  
GBW  
MHz  
Note 1: Not tested, guaranteed by design.  
_______________________________________________________________________________________  
2
S in g le /Du a l/Qu a d Hig h -S p e e d , Fa s t -S e t t lin g ,  
Hig h Ou t p u t Cu rre n t Op e ra t io n a l Am p lifie r  
MAX02/48  
ELECTRICAL CHARACTERISTICS—MAX428  
(V = ±5V, T = +25°C, unless otherwise noted.)  
A
S
MAX428C  
TYP  
MAX428AC  
TYP  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
MIN  
MAX  
MIN  
MAX  
5
8
12  
16  
3
5
6
10  
T
= 25°C  
A
Input Offset Voltage  
V
mV  
µV/°C  
mA  
nA  
OS  
0°C T 70°C  
A
V /T  
Average Offset Voltage Drift  
Input Bias Current  
0°C T 70°C  
20  
20  
OS  
A
650  
1100  
1700  
650  
1100  
1700  
T
= 25°C  
A
I
B
0°C T 70°C  
A
Input Offset Current  
I
OS  
35  
120  
35  
120  
+3  
-4  
+3.5  
-4.5  
+3  
-4  
+3.5  
-4.5  
Input Common Mode Range  
Differential Input Resistance  
V
V
CM  
IND  
INC  
IND  
INC  
MΩ  
MΩ  
pF  
R
R
C
C
(Note 1)  
(Note 1)  
3
10  
3
10  
Common Mode Input  
Resistance  
4
8
4
8
Differential Input Capacitance  
2
2
Common Mode Input  
Capacitance  
3
3
pF  
Input Voltage Noise  
e
BW = 10Hz to 100kHz  
12  
5
12  
10  
µV  
RMS  
N
V
= ±3V, R = 2kΩ  
L
Open Loop Voltage Gain  
A
2
5
V/mV  
OUT  
V
R
R
= 2kΩ  
= 150Ω  
±3.5  
±2.0  
±3.5  
±2.5  
L
L
Output Voltage Swing  
V
OUT  
V
±2.4  
15  
±2.7  
15  
Power Supply Current  
(Both Amplifiers)  
I
S
20  
20  
mA  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR  
PSRR  
V
= ±2V  
60  
60  
70  
66  
60  
60  
70  
66  
dB  
dB  
CM  
V = ±0.5V  
PS  
10–90% of Leading  
Edge (Figure 1)  
Slew Rate (Note 1)  
SR  
60  
90  
60  
90  
V/µS  
To ±0.1% (±4mV) of  
Final Value (Figure 1)  
(Note 1)  
Settling Time  
t
150  
100  
200  
150  
100  
200  
ns  
S
Gain Bandwidth Product  
GBW  
MHz  
Note 1: Not tested, guaranteed by design.  
_______________________________________________________________________________________  
3
S in g le /Du a l/Qu a d Hig h -S p e e d , Fa s t -S e t t lin g ,  
Hig h Ou t p u t Cu rre n t Op e ra t io n a l Am p lifie r  
ELECTRICAL CHARACTERISTICS—MAX448  
(V = ±5V, T = +25°C, unless otherwise noted.)  
A
S
MAX408C  
TYP  
MAX408AC  
TYP  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
MIN  
MAX  
MIN  
MAX  
5
8
12  
16  
3
5
6
10  
T
= 25°C  
A
Input Offset Voltage  
V
mV  
µV/°C  
nA  
OS  
0°C T 70°C  
A
V /T  
Average Offset Voltage Drift  
Input Bias Current  
0°C < T 70°C  
20  
20  
OS  
A
650  
1100  
1700  
650  
1100  
1700  
T
= 25°C  
A
I
B
0°C T 70°C  
A
Input Offset Current  
I
OS  
35  
120  
35  
120  
nA  
+3  
-4  
+3.5  
-4.5  
+3  
-4  
+3.5  
-4.5  
Input Common Mode Range  
Differential Input Resistance  
V
V
CM  
IND  
INC  
IND  
INC  
MΩ  
MΩ  
pF  
R
R
C
C
(Note 1)  
(Note 1)  
3
10  
3
10  
MAX02/48  
Common Mode Input  
Resistance  
4
8
4
8
Differential Input Capacitance  
2
Common Mode Input  
Capacitance  
3
3
pF  
Input Voltage Noise  
e
BW = 10Hz to 100kHz  
12  
5
12  
10  
µV  
RMS  
N
V
= ±3V, R = 2kΩ  
L
Open Loop Voltage Gain  
A
2
4
V/mV  
OUT  
V
R
R
= 2kΩ  
= 150Ω  
±3.5  
±2.0  
±3.5  
±2.5  
L
L
Output Voltage Swing  
V
OUT  
V
±2.4  
30  
±2.7  
30  
Power Supply Current  
(All Four Amplifiers)  
I
S
40  
40  
mA  
V = ±0.5V  
Power Supply Rejection Ratio  
Common Mode Rejection Ratio  
PSRR  
60  
60  
66  
70  
60  
60  
66  
70  
dB  
dB  
PS  
CMRR  
V
= ±2V  
CM  
10–90% of Leading  
Edge (Figure 1)  
Slew Rate (Note 1)  
SR  
60  
90  
60  
90  
V/µS  
To ±0.1% (±4mV) of  
Final Value (Figure 1)  
(Note 1)  
Settling Time  
t
150  
100  
200  
150  
100  
200  
ns  
S
Gain Bandwidth Product  
GBW  
MHz  
Note 1: Not tested, guaranteed by design.  
AC CHARACTERISTICS—MAX408/428/448  
(V = ±5V, T = +25°C, unless otherwise specified.)  
A
S
MAX4XXC  
TYP  
MAX4XXC  
TYP  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
ns  
MIN  
MAX  
MIN  
MAX  
e
= ±100mV  
10–90% (Figure 1)  
O
Small Signal Rise/Fall Time  
Full Power Bandwidth  
tr/tf  
7
7
R
V
= 2k, C = 50pF  
L
L
BW  
4.8  
-96  
4.8  
-96  
MHz  
dB  
FP  
= 6Vp-p  
OUT  
Amp-Amp Crosstalk  
(MAX428/448)  
Input Referenced  
f = 10kHz  
4
_______________________________________________________________________________________  
S in g le /Du a l/Qu a d Hig h -S p e e d , Fa s t -S e t t lin g ,  
Hig h Ou t p u t Cu rre n t Op e ra t io n a l Am p lifie r  
MAX02/48  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = ±5, T = +25°C, unless otherwise stated and apply for each individual op amp where applicable.)  
S
A
INPUT BIAS CURRENT  
vs. TEMPERATURE  
NORMALIZED OPEN LOOP GAIN  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
10  
8
1200  
1000  
800  
10  
5
6
0
600  
4
-5  
-10  
400  
2
200  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
3
4
5
6
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (±V)  
INPUT OFFSET CURRENT  
vs. TEMPERATURE  
OPEN LOOP GAIN  
vs. SUPPLY VOLTAGE  
AMPLIFIER/AMPLIFIER CROSSTALK  
vs. FREQUENCY (MAX428/448)  
90  
80  
100  
80  
60  
40  
20  
-20  
-40  
-60  
70  
60  
50  
-80  
-100  
-120  
3
4
5
6
0
10  
20  
30  
40  
50  
60  
70  
1k  
10k  
100k  
1M  
10M  
100M  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
MAXIMUM OUTPUT VOLTAGE SWING  
vs. LOAD RESISTANCE  
MAXIMUM OUTPUT VOLTAGE SWING  
vs. TEMPERATURE  
5
NEGATIVE SWING  
R = 2k  
L
8
6
4
2
0
4
3
2
1
POSITIVE SWING  
R = 50Ω  
L
0
10Ω  
100Ω  
1kΩ  
0
10  
20  
30  
40  
50  
60  
70  
LOAD RESISTANCE ()  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
S in g le /Du a l/Qu a d Hig h -S p e e d , Fa s t -S e t t lin g ,  
Hig h Ou t p u t Cu rre n t Op e ra t io n a l Am p lifie r  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
EQUIVALENT INPUT NOISE  
vs. BANDWIDTH  
SHORT CURCUIT OUTPUT CURRENT  
vs. TEMPERATURE  
120  
100  
80  
100  
R
= 10k  
SOURCE  
10  
1
-I  
SC  
R
= 0  
SOURCE  
+I  
SC  
60  
40  
THERMAL NOISE OF  
10kRESISTOR  
20  
MAX02/48  
0.1  
0
10  
20  
30  
40  
50  
60  
70  
100  
1k  
10k  
BANDWIDTH (Hz)  
(LOWER - 3dB FREQUENCY = 10Hz)  
100k  
1M  
TEMPERATURE (°C)  
OPEN LOOP FREQUENCY RESPONSE,  
R = 50, C = 50pF  
OPEN LOOP FREQUENCY RESPONSE  
L
L
MAX408toc11  
MAX408-12  
0
35  
30  
25  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
0
80  
60  
40  
20  
0
60  
φ
Av  
60  
Av  
120  
180  
240  
300  
360  
10dB  
PHASE  
MARGIN = φ  
120  
180  
240  
300  
360  
φ
M
10dB  
M
GAIN MARGIN = G  
-20  
R = 2kΩ  
C = 5pF  
L
L
-40  
1kHz  
1M  
10M  
100M  
1G  
10kHz  
100kHz  
1MHz  
10MHz  
100MHz  
1GHz  
FREQUENCY (Hz)  
FREQUENCY  
OPEN LOOP FREQUENCY RESPONSE,  
10dB PHASE MARGIN AND  
10dB FREQUENCY vs. TEMP  
GAIN MARGIN AND 180 DEGREE  
R = 2k, C = 50pF  
FREQUENCY vs. TEMP (A = 10dB)  
V
L
L
MAX408-13  
MAX408toc14  
MAX408toc15  
35  
0
30  
25  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
40  
35  
30  
25  
80  
70  
60  
50  
40  
Av  
10dB FREQUENCY  
60  
180 FREQUENCY  
φ
120  
180  
240  
300  
360  
55  
50  
45  
6
φ
M
G
M
5
4
R = 2kΩ  
C = 50pF  
L
R = 2kΩ  
L
C = 50pF  
L
L
1M  
10M  
100M  
1G  
0
20  
40  
TEMPERATURE (°C)  
60  
80  
0
20  
40  
TEMPERATURE (°C)  
60  
80  
FREQUENCY (Hz)  
6
_______________________________________________________________________________________  
S in g le /Du a l/Qu a d Hig h -S p e e d , Fa s t -S e t t lin g ,  
Hig h Ou t p u t Cu rre n t Op e ra t io n a l Am p lifie r  
MAX02/48  
+1V  
e
IN  
2kΩ  
-1V  
1kΩ  
SETTLING  
TIME  
e
IN  
R
L
C
L
10pF  
2V  
90%  
2kΩ  
e
O
±4mV OF  
FINAL VALUE  
SLEW RATE  
300Ω  
150Ω  
e
OUT  
10%  
e
S = SETTLE VOLTAGE  
-2V  
Note that to properly measure e , amplifier and settle resistor ratios should be matched to 0.5% and probe capacitance 35pF  
s
Figure 1A. Settling Time and Slew Rate Test Circuit  
e
OV  
OV  
IN  
e
o
Figure 1C. Small Signal Response  
___________Ap p lic a t io n In fo rm a t io n  
e
OV  
OV  
o
AC Ch a ra c t e ris t ic s  
The 35MHz 10d B c ros s ove r p oint of the MAX408/  
428/448 is achieved without feed forward compensa-  
tion, a technique which can produce long tails in the  
recovery characteristic. The single pole rolloff follows  
the c la s s ic 20d B/d e c a d e s lop e to fre q ue nc ie s  
approaching 50MHz. The 10dB (3.2V/V) phase margin  
of 50°, even with a capacitive load of 50pF, gives stable  
and predictable performance down to non-inverting  
gain configurations of approximately 3V/V (inverting  
gains of -2V/V). At frequencies beyond 50MHz, the  
20dB/decade slope is disturbed by an output stage  
zero, the damping factor of which is dependent upon  
e
s
Figure 1B. Large Signal Response  
the R , C load combination. This results in loss of gain  
L
L
_______________________________________________________________________________________  
7
S in g le /Du a l/Qu a d Hig h -S p e e d , Fa s t -S e t t lin g ,  
Hig h Ou t p u t Cu rre n t Op e ra t io n a l Am p lifie r  
margin (gain at loop phase = 360°) at frequencies of 70  
to 100MHz which at a gain margin of 5dB (R = 2k, C  
(R C ) increases the peaking gets progressively worse  
L L  
6dB at R = 2K, C = 50pF. The step response wave-  
L
L
L
L
= 5pF) results in a peak in the gain of 3 amplifier con-  
figurations as shown in Figures 3 and 4.  
forms are as expected with a very strong 88MHz ring  
being exhibited at R = 2k, C = 50pF and no over-  
L
L
shoot at R = 50, CL = 5pF.  
L
Figure 3 shows a blow up of the open loop characteris-  
tics in the 10MHz to 200MHz frequency range, as well  
as the corresponding closed loop characteristics for a  
gain of three non-inverting amplifier at similar load con-  
ditions. It should be noted that the open loop character-  
istic does not show the additional phase shift covered  
by the input capacitance pole. This is why the closed  
loop p e a king a t 30 to 40MHz is g re a te r tha n wha t  
would be expected from the 50 to 60 degrees of phase  
margin indicated by the open loop characteristics.  
Corresponding small signal step response characteris-  
tics show well-behaved pulse waveforms with 16–33%  
overshoot.  
La yo u t Co n s id e ra t io n s  
As with any high-speed wideband amplifier, certain lay-  
out considerations are necessary to ensure stable opera-  
tion. All connections to the amplifier should remain as  
short as possible, and the power supplies bypassed with  
0.1µF capacitors to signal ground. It is suggested that a  
ground plane be considered as the best method for  
ensuring stability because it minimizes stray inductance  
and unwanted coupling in the ground signal paths.  
To minimize capacitive effects, resistor values should be  
kept as small as possible, consistent with the application.  
MAX02/48  
The input capacitive pole can be neutralized by adding  
MAX4 0 8 Offs e t Vo lt a g e Nu llin g  
a feedback capacitor to R . The value of capacitance  
2
The configuration of Figure 2 will give a typical V  
OS  
is selected according to R C = R C , where C is  
1
IN  
2
FB  
IN  
nulling range of ±15mV. If a smaller adjustment range is  
desired, resistor values R1 and R2 can be increased  
accordingly. For example, at R1 = 3.6k, the adjustment  
range is ±5mV. Since pins 1 and 5 are not part of the sig-  
nal path, AC characteristics are left undisturbed.  
the sum of the common mode and differential input  
capacitance 5pF. For R = 2R , C = C 2.5pF.  
2
1
FB  
IN/2  
Figure 4 shows the results of this feedback capacitor  
addition. Neutralizing the input capacitance demon-  
strates the peaking that can result from the loss of gain  
margin at 70 to 100MHz. As the load time constant  
R = 10kΩ  
P
R = 1.3k  
1
R = 1.3kΩ  
2
1
2
3
V+ BAL.  
5
6
BAL.  
Figure 2. V Nulling Method for MAX408  
Simplified Schematic. For MAX428/448 omit balance pins.  
OS  
8
_______________________________________________________________________________________  
S in g le /Du a l/Qu a d Hig h -S p e e d , Fa s t -S e t t lin g ,  
Hig h Ou t p u t Cu rre n t Op e ra t io n a l Am p lifie r  
MAX02/48  
OPEN LOOP FREQUENCY RESPONSE  
R2 = 2kΩ  
20  
15  
10  
60  
R = 2kΩ  
C = 50pF  
L
L
φ,  
120  
180  
R
1 =  
1kΩ  
R = 2kΩ  
C = 50pF  
L
L
A ,  
V
C
L
R
L
e
O
5
0
240  
300  
360  
e
IN  
R = 50Ω  
C = 5pF  
L
L
R = 50Ω  
C = 5pF  
L
L
φ,  
A ,  
V
e / e = (1 + R2 / R1) = 3V/V  
o
IN  
-5  
-10  
10MHz  
100MHz  
FREQUENCY  
1GHz  
e
IN  
e
O
CLOSED LOOP FREQUENCY RESPONSE  
R = 50Ω  
C = 5pF  
L
R = 1k,  
1
R = 2k  
2
L
20  
15  
10  
A ,  
V
R = 2  
C = 50pF  
L
L
R = 2kΩ  
C = 50pF  
L
L
A ,  
V
0
45  
90  
5
0
135  
180  
225  
R = 50Ω  
C = 5pF  
L
L
φ,  
e
IN  
R = 2kΩ  
C = 50pF  
L
270  
315  
-5  
L
φ,  
-10  
1MHz  
10MHz  
100MHz  
1GHz  
FREQUENCY  
e
O
R = 50Ω  
L
C = 5pF  
L
SMALL SIGNAL STEP RESPONSE  
Figure 3. Frequency and Time Domain Response Characteristics, A = 3  
V
_______________________________________________________________________________________  
9
S in g le /Du a l/Qu a d Hig h -S p e e d , Fa s t -S e t t lin g ,  
Hig h Ou t p u t Cu rre n t Op e ra t io n a l Am p lifie r  
C
FB  
= 2.5pF  
CLOSED LOOP FREQUENCY RESPONSE  
R = 1kΩ  
R = 2kΩ  
2
20  
15  
10  
1
2kΩ  
R = 50Ω  
C = 5pF  
L
L
A ,  
V
C
IN  
5pF  
1kΩ  
0
45  
90  
C
L
R
L
e
O
5
0
135  
180  
225  
R = 2kΩ  
C = 50pF  
L
L
A ,  
V
e
IN  
270  
315  
-5  
-10  
MAX02/48  
1MHz  
10MHz  
100MHz  
1GHz  
FREQUENCY  
e
IN  
e
O
R = 2kΩ  
L
C = 50pF  
L
e
IN  
e
O
R = 50Ω  
L
C = 5pF  
L
SMALL SIGNAL STEP RESPONSE  
Figure 4. Response Characteristics with Input Pole Cancellation, A = 3  
V
10 ______________________________________________________________________________________  
S in g le /Du a l/Qu a d Hig h -S p e e d , Fa s t -S e t t lin g ,  
Hig h Ou t p u t Cu rre n t Op e ra t io n a l Am p lifie r  
MAX02/48  
Ord e rin g In fo rm a t io n (c o n t in u e d )  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
8 Lead Plastic DIP  
8 Lead Small Outline  
8 Lead Plastic DIP  
8 Lead Small Outline  
Dice  
MAX428A_CPA  
MAX428ACSA  
MAX428CPA  
MAX428CSA  
MAX428C/D  
MAX448ACPD  
14 Lead Plastic DIP  
14 Lead Small  
Outline  
MAX448ACSD  
MAX448CPD  
MAX448CSD  
MAX448C/D  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
14 Lead Plastic DIP  
14 Lead Small  
Outline  
Dice  
______________________________________________________________________________________ 11  
S in g le /Du a l/Qu a d Hig h -S p e e d , Fa s t -S e t t lin g ,  
Hig h Ou t p u t Cu rre n t Op e ra t io n a l Am p lifie r  
NOTES  
MAX02/48  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX448CJD

Voltage-Feedback Operational Amplifier
MAXIM

MAX448CJD-2

Voltage-Feedback Operational Amplifier
MAXIM

MAX448CPD

Single/Dual/Quad High-Speed, Fast-Settling, High Output Current Operational Amplifier
MAXIM

MAX448CPD+

Operational Amplifier, 4 Func, 16000uV Offset-Max, BIPolar, PDIP14, PLASTIC, DIP-14
MAXIM

MAX448CPD-2

Voltage-Feedback Operational Amplifier
MAXIM

MAX448CSD

Single/Dual/Quad High-Speed, Fast-Settling, High Output Current Operational Amplifier
MAXIM

MAX448CSD-2

Voltage-Feedback Operational Amplifier
MAXIM

MAX448MJD

Voltage-Feedback Operational Amplifier
MAXIM

MAX448MJD-4

Voltage-Feedback Operational Amplifier
MAXIM

MAX4490

Low-Cost, High-Slew-Rate, Rail-to-Rail I/O Op Amps in SC70
MAXIM

MAX4490AUK

Operational Amplifier, 1 Func, 16000uV Offset-Max, CMOS, PDSO5
MAXIM

MAX4490AUK+

暂无描述
MAXIM