MAX4507EPN [MAXIM]

Fault-Protected, High-Voltage Signal-Line Protectors; 故障保护,高电压信号线保护
MAX4507EPN
型号: MAX4507EPN
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Fault-Protected, High-Voltage Signal-Line Protectors
故障保护,高电压信号线保护

文件: 总12页 (文件大小:395K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1415; Rev 1; 8/99  
Fault-Protected, High-Voltage  
Signal-Line Protectors  
6/MAX4507  
General Description  
Features  
The MAX4506/MAX4507 multiple, two-terminal signal-line  
protectors are pin-compatible with the industry-standard  
MAX366/MAX367. These new circuit protectors feature  
fault-protected inputs and Rail-to-Rail® signal handling  
capability. The input pins are protected from overvoltage  
faults up to ±36V with power on or ±40V with power off.  
During a fault condition, the input terminal becomes an  
open circuit and only nanoamperes of leakage current  
flow from the source; but the switch output (OUT_) fur-  
nishes typically 19mA from the appropriate polarity sup-  
ply to the load. This ensures unambiguous rail-to-rail  
outputs when a fault begins and ends.  
Overvoltage Protection  
±40V with Power Off  
±36V with Power On  
Open Signal Paths with Power Off  
Output Clamps to Either Rail with an Input  
Overvoltage  
Any On Channel Output is Not Affected  
by an Overvoltage to Any Other Channel  
100max On-Resistance  
10ns Overvoltage Turn-On Delay  
No Latchup During Power Sequencing  
Rail-to-Rail Signal Handling  
The MAX4506 contains three independent protectors  
while the MAX4507 contains eight independent protec-  
tors. They can protect both unipolar and bipolar analog  
signals using either unipolar (+9V to +36V) or bipolar  
(±8V to ±18V) power supplies.  
500Output Clamp Resistance During  
Overvoltage  
These devices have no logic control inputs; the protec-  
tors are designed to be always-on when the supplies  
are on. On-resistance is 100max and matched within  
Ordering Information  
7, and on-leakage is less than 0.5nA at T = +25°C.  
A
The MAX4506 is available in 8-pin SO/DIP packages.  
The MAX4507 is available in 20-pin SSOP and 18-pin  
SO/DIP packages.  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 SO  
MAX4506CSA  
MAX4506CPA  
MAX4506C/D  
MAX4506ESA  
MAX4506EPA  
MAX4506MJA  
0°C to +70°C  
8 Plastic DIP  
Dice*  
Applications  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
8 SO  
Process-Control Systems  
Hot-Insertion Boards/Systems  
Data-Acquisition Systems  
Redundant/Backup Systems  
ATE Equipment  
8 Plastic DIP  
8 CERDIP**  
Ordering Information continued at end of data sheet.  
*Contact factory for dice specifications.  
**Contact factory for availability.  
Sensitive Instruments  
Pin Configurations  
Typical Operating Circuit  
SWITCHED +15V  
TOP VIEW  
P
IN1  
IN2  
IN3  
V-  
1
2
3
4
8
7
6
5
V+  
+15V  
MAX4506  
8
7
V+  
OUT1  
OUT2  
OUT3  
IN1  
IN2  
OUT1  
1
2
MAX4506  
100k  
OUT2  
OUT3  
6
5
OP AMP  
-15V  
IN3  
V-  
3
4
SO/DIP  
Pin Configurations continued at end of data sheet.  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Fault-Protected, High-Voltage  
Signal-Line Protectors  
ABSOLUTE MAXIMUM RATINGS  
(Voltages Referenced to GND)  
8-Pin CERDIP (derate 8.00mW/°C above +70°C) ...........640mW  
V+........................................................................-0.3V to +44.0V  
V- .........................................................................-44.0V to +0.3V  
V+ to V-................................................................-0.3V to +44.0V  
IN_ or OUT_ .........................................................................±44V  
IN_ Overvoltage with Power On...........................................±36V  
IN_ Overvoltage with Power Off...........................................±40V  
Continuous Current into Any Terminal..............................±30mA  
Peak Current into Any Terminal  
18-Pin Wide SO (derate 9.52mW/ °C above +70°C) .......762mW  
18-Pin Plastic DIP (derate 11.11mW/ °C above +70°C) ...889mW  
18-Pin CERDIP (derate 10.53mW/ °C above +70°C) ......842mW  
20-Pin SSOP (derate 11.11mW/°C above +70°C)...........640mW  
Operating Temperature Ranges  
MAX4506C_A /MAX4607C_ _.............................0°C to +70°C  
MAX4506E_A/MAX4607E_ _ ...........................-40°C to +85°C  
MAX4506MJA/MAX4607MJN........................-55°C to +125°C  
Storage Temperature Range.............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
(pulsed at 1ms, 10% duty cycle).................................±70mA  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin Narrow SO (derate 5.88mW/°C above +70°C) ....471mW  
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C).....727mW  
RECOMMENDED OPERATING GUIDELINES  
V+ to GND..............................................................-0.3V to +40V  
V- to GND ...............................................................-32V to +0.3V  
V+ to V- ..................................................................................40V  
IN_........................................................................................±40V  
OUT_ ...............................................................................V+ to V-  
IN_ to OUT_..........................................................40V Differential  
Continuous Current into Any Terminal ..............................30mA  
Peak Current into Any Terminal  
(pulsed at 1ms, 10% duty cycle) .................................70mA  
6/MAX4507  
Note 1: OUT_ pins are not fault protected. Signals on OUT_ exceeding V+ or V- are clamped by internal diodes. Limit forward-diode  
current to maximum current rating.  
Note 2: IN_ pins are fault protected. Signals on IN_ exceeding -36V to +36V may damage the device. These limits apply with power  
applied to V+ or V-, or ±40V with V+ = V- = 0.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = +15V, V- = -15V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
T
A
MIN  
TYP  
MAX  
UNITS  
ANALOG SWITCH  
Fault-Free Analog Signal Range  
(Note 4)  
V+ = +15V, V- = -15V,  
V
R
C, E, M  
V-  
V+  
V
IN_  
V
= ±15V  
IN_  
+25°C  
C, E  
M
65  
1
100  
125  
150  
7
Analog Signal-Path Resistance  
V
= ±10V, I  
= 1mA  
IN_  
OUT_  
ON  
+25°C  
C, E  
M
Signal-Path Resistance Match  
(Note 6)  
R  
V
V
= V  
= ±10V, I = 1mA  
OUT  
10  
ON  
IN_  
OUT_  
12  
+25°C  
C, E  
M
-0.5  
-20  
0.5  
20  
Signal-Path Leakage Current  
(Note 7)  
= ±10V, V  
= ±10V or  
OUT_  
IN_  
I
nA  
pF  
OUT_ON  
floating  
-400  
400  
Input Capacitance  
C
V
IN  
= 0, f = 1MHz  
+25°C  
20  
IN  
FAULT PROTECTION  
Applies with power on  
Applies with power off  
C, E, M  
C, E, M  
+25°C  
C, E  
-36  
-40  
36  
40  
Fault-Protected Analog Signal  
Range  
(Notes  
2, 3)  
V
V
IN_  
-20  
0.1  
20  
nA  
µA  
Input Signal-Path Leakage  
Current, Supplies On  
I
V
= ±25V, V  
= open  
-200  
-10  
200  
10  
IN_  
IN_  
OUT_  
M
2
_______________________________________________________________________________________  
Fault-Protected, High-Voltage  
Signal-Line Protectors  
6/MAX4507  
ELECTRICAL CHARACTERISTICS —Dual Supplies (continued)  
(V+ = +15V, V- = -15V, T = T  
to T , unless otherwise noted. Typical values are at TA = +25°C.) (Note 3)  
MAX  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
= ±40V, V = open,  
T
MIN  
-20  
-500  
-10  
13  
TYP  
MAX  
20  
UNITS  
nA  
A
+25°C  
C, E  
0.2  
Input Signal-Path Leakage  
Current, Supplies Off  
V
IN_  
OUT_  
I
500  
10  
IN_  
V+ = 0, V- = 0  
M
µA  
V
V
= +25V  
= -25V  
+25°C  
+25°C  
+25°C  
+25°C  
19  
-19  
0.5  
0.4  
26  
IN_  
IN_  
Output Clamp Current,  
Supplies On  
I
mA  
OUT_  
-26  
-13  
1.0  
1.0  
V
V
= +25V  
= -25V  
IN_  
Output Clamp Resistance,  
Supplies On  
R
I
= 1mA  
kΩ  
OUT_  
OUT  
IN_  
± Fault Output Turn-On Delay  
Time (Note 5)  
R = 10k, V  
= ±25V  
= ±25V  
+25°C  
+25°C  
10  
ns  
µs  
L
IN_  
IN_  
± Fault Recovery Time (Note 5)  
POWER SUPPLY  
R = 10k, V  
L
2.5  
Power-Supply Range  
V+, V-  
I+  
C, E, M  
+25°C  
C, E  
M
±8  
±18  
150  
175  
200  
250  
300  
400  
V
90  
160  
-90  
MAX4506  
MAX4507  
MAX4506  
MAX4507  
+25°C  
C, E  
M
Power-Supply Current  
V
= +15V  
µA  
IN_  
+25°C  
C, E  
M
-150  
-175  
-200  
-250  
-300  
-400  
I-  
+25°C  
C, E  
M
-160  
ELECTRICAL CHARACTERISTICS—Single Supply  
(V+ = +12V, V- = -0V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
T
A
MIN  
TYP  
MAX  
UNITS  
ANALOG SWITCH  
Fault-Free Analog Signal Range  
(Note 4)  
V+ = +12V, V- = 0  
V
R
C, E, M  
0
V+  
V
IN_  
V
= +12V  
IN_  
+25°C  
C, E  
M
125  
3
200  
250  
300  
12  
Analog Signal-Path Resistance  
V
= +10V, I  
= 1mA  
= 1mA  
IN_  
OUT_  
OUT_  
ON  
+25°C  
C, E  
M
Signal-Path Resistance Match  
(Note 6)  
R  
V
V
= +10V, I  
15  
IN_  
ON  
20  
+25°C  
C, E  
M
-0.5  
-20  
0.05  
0.5  
20  
Signal-Path Leakage Current  
(Note 7)  
I
= +10V or floating  
IN  
nA  
OUT_(ON)  
-400  
400  
_______________________________________________________________________________________  
3
Fault-Protected, High-Voltage  
Signal-Line Protectors  
ELECTRICAL CHARACTERISTICS—Single Supply (continued)  
(V+ = +12V, V- = -0V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
T
A
MIN  
TYP  
MAX  
UNITS  
FAULT PROTECTION  
Applies with power on  
Applies with power off  
C, E, M  
C, E, M  
+25°C  
C, E  
-36  
-40  
36  
40  
Fault-Protected Analog Signal  
Range (Notes 4, 5, 9)  
V
V
IN_  
-20  
0.2  
0.2  
20  
nA  
µA  
nA  
µA  
mA  
Input Signal-Path Leakage  
Current, Supply On (Note 9)  
I
I
V
V
= ±25V, V  
= 0  
OUT_  
-200  
-10  
200  
10  
IN_  
IN_  
IN_  
M
+25°C  
C, E  
-20  
20  
Input Signal-Path Leakage  
Current, Supply Off (Note 9)  
= ±40V  
-500  
-10  
500  
10  
IN_  
M
Output Clamp Current,  
Supply On  
I
V
V
= 25V  
+25°C  
+25°C  
3
5.5  
1.0  
10  
OUT_  
IN_  
IN_  
Output Clamp Resistance,  
Supply On  
R
= ±25V  
2.5  
kΩ  
6/MAX4507  
OUT_  
± Fault Output Turn-On Delay  
Time (Note 5)  
R = 10k, V  
= +25V  
= +25V  
+25°C  
+25°C  
10  
ns  
µs  
L
IN_  
IN_  
± Fault Recovery Time (Note 5)  
POWER SUPPLY  
R = 10k, V  
L
2.5  
Power-Supply Range  
V+  
I+  
C, E, M  
+25°C  
C, E  
M
+9  
+36  
25  
30  
40  
40  
60  
80  
V
9
MAX4506  
Power-Supply Current  
V
= +12V  
µA  
IN_  
+25°C  
C, E  
M
17  
MAX4507  
Note 3: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.  
Note 4: See Fault-Free Analog Signal Range vs. Supply Voltages graph in the Typical Operating Characteristics.  
Note 5: Guaranteed by design.  
Note 6: R  
= R  
- R  
ON  
ON(MAX) ON(MIN)  
Note 7: Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at T = +25°C.  
A
Note 8: Leakage testing for single-supply operation is guaranteed by testing with dual supplies.  
Note 9: Guaranteed by testing with dual supplies.  
4
_______________________________________________________________________________________  
Fault-Protected, High-Voltage  
Signal-Line Protectors  
6/MAX4507  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
ON-RESISTANCE vs. OUTPUT VOLTAGE  
ON-RESISTANCE vs. OUTPUT VOLTAGE  
ON-RESISTANCE vs. OUTPUT VOLTAGE  
(SINGLE SUPPLY)  
(DUAL SUPPLIES)  
AND TEMPERATURE (DUAL SUPPLIES)  
250  
140  
120  
100  
80  
V+ = +15V  
V- = -15V  
V- = 0V  
V+ = +8V  
V- = -8V  
V+ = +9V  
V+ = +10V  
V- = -10V  
120  
100  
80  
60  
40  
20  
0
200  
150  
100  
50  
T
= +125°C  
= +85°C  
A
T
A
V+ = +12V  
V+ = +15V  
V- = -15V  
T
= +70°C  
A
60  
T
A
= +25°C  
V+ = +20V  
T
= -40°C  
A
40  
V+ = +30V  
T
A
= -55°C  
V+ = +18V  
V- = -18V  
20  
0
V+ = +36V  
25  
0
-20 -15 -10 -5  
0
5
10 15 20  
0
5
10  
15  
V
20  
30  
35  
-15  
-10  
-5  
0
5
10  
15  
V
OUT_  
(V)  
(V)  
V
(V)  
OUT_  
OUT_  
ON-RESISTANCE vs. OUTPUT VOLTAGE  
AND TEMPERATURE (SINGLE SUPPLY)  
OUTPUT CLAMP CURRENT SUPPLIES ON  
vs. TEMPERATURE  
OUTPUT CLAMP RESISTANCE SUPPLIES ON  
250  
200  
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
V+ = +12V  
V- = 0  
V+ = +15V  
V- = -15V  
IN  
V+ = +15V  
V- = -15V  
V
= ±25V  
T
= +125°C  
= +85°C  
A
V
IN  
= +25V  
T
A
T
= +70°C  
A
0
V
IN  
= -25V  
T
A
= +25°C  
T
T
= -40°C  
= -55°C  
-5  
A
-10  
-15  
-20  
-25  
A
0
0
2
4
6
8
10  
12  
-55 -35 -15 -5 25 45 65 85 105 125  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
V
OUT_  
(V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT TRANSFER CHARACTERISTICS  
(DUAL SUPPLIES)  
OUTPUT TRANSFER CHARACTERISTICS  
(SINGLE SUPPLY)  
FAULT-FREE ANALOG SIGNAL RANGE  
vs. SUPPLY VOLTAGE  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
20  
15  
10  
5
(V+ = +18V, V- = -18V)  
(V+ = +15V, V- = -15V)  
OUTPUT LOAD = 1MΩ  
V+ = +36V  
V- = 0  
(V+ = +10V, V- = -10V)  
(V+ = +8V, V- = -8V)  
V+ = +25V  
INPUT VOLTAGE  
LINEARLY SWEPT  
BETWEEN -30V  
0
0
V+ = +15V  
-5 AND +30V  
-5  
(V+ = +8V, V- = -8V)  
(V+ = +10V, V- = -10V)  
(V+ = +15V, V- = -15V)  
(V+ = +18V, V- = -18V)  
V+ = +12V  
V+ = +9V  
-10  
-15  
-20  
-10  
-15  
-20  
INPUT VOLTAGE LINEARLY SWEPT  
BETWEEN 0 AND 35V  
OUTPUT LOAD = 1MΩ  
-30 -20 -10  
INPUT VOLTAGE (V)  
0
0
10  
20  
30  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
-20 -15 -10 -5  
0
5
10 15 20  
INPUT VOLTAGE (V)  
_______________________________________________________________________________________  
5
Fault-Protected, High-Voltage  
Signal-Line Protectors  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
MAX4506  
POWER-SUPPLY CURRENT  
vs. TEMPERATURE  
FAULT-FREE OUTPUT LEAKAGE CURRENT  
INPUT FAULT LEAKAGE CURRENT  
WITH SUPPLIES ON  
WITH SUPPLIES ON  
100n  
150  
125  
100  
75  
1µ  
100n  
10n  
1n  
V
OUT  
= ±10υ  
V+ = +15V  
V- = -15V  
10n  
1n  
I+  
I
(V+ = +15V, V- = -15V)  
I
AT +25V (V+ = +15V, V- = -15V)  
OUT  
IN  
50  
25  
0
I+ SINGLE SUPPLY +12V  
100p  
10p  
I
(V+ = +12V, V- = 0)  
OUT  
100p  
10p  
1p  
-25  
-50  
-75  
-100  
-125  
-150  
1p  
I
AT +25V (V+ = +12V, V - = 0)  
25 45 65 85 105 125  
IN  
5
I-  
0.1p  
0.01p  
0.1p  
-55 -30 -5 20 45 70 95 120 145  
-55 -35 -15  
5
25 45 65 85 105 125  
-55 -35 -15  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6/MAX4507  
MAX4507  
POWER-SUPPLY CURRENT vs.  
TEMPERATURE  
SUPPLY CURRENT vs.  
INPUT VOLTAGE  
FREQUENCY RESPONSE  
10  
100  
80  
250  
200  
150  
100  
50  
V+ = +15V  
I+  
BANDWIDTH  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V- = -15V  
I+  
60  
40  
V+ = +15V  
V- = -15V  
20  
I+ SINGLE SUPPLY + 12V  
0
0
CROSSTALK  
-20  
-40  
-60  
-80  
-100  
-50  
-100  
-150  
-200  
-250  
I-  
I-  
0.01  
0.1  
1
10  
100  
1000  
-15  
10  
5
0
5
10  
15  
-55 -35 -15  
5
25 45 65 85 105 125  
FREQUENCY (MHz)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
INPUT OVERVOLTAGE  
vs. OUTPUT CLAMPING  
FAULT-FREE SIGNAL PERFORMANCE  
FAULT RECOVERY  
MAX45506/07 toc16  
MAX45506/07 toc17  
MAX45506/07 toc18  
+25V  
+15V  
+16V  
+15V  
IN_  
IN_  
IN_  
0V  
10V/div  
5V/div  
-15V  
+15V  
0V  
+15V  
OUT_  
OUT_  
0V  
10V/div  
-25V  
5V/div  
0V  
0V  
OUT_  
V+ = +15V  
V- = -15V  
0V  
-15V  
-15V  
5µs/div  
5µs/div  
5µs/div  
±25V OVERVOLTAGE INPUT WITH THE OUTPUT  
CLAMPED AT ±15V  
FAULT-FREE RAIL-TO-RAIL SIGNAL HANDLING  
WITH ±15V SUPPLIES  
6
_______________________________________________________________________________________  
Fault-Protected, High-Voltage  
Signal-Line Protectors  
6/MAX4507  
Pin Description  
PIN  
MAX4506  
MAX4507  
NAME*  
FUNCTION  
8-Pin  
DIP/SO  
18-Pin  
DIP/SO  
20-Pin  
SSOP  
1, 2, 3  
1, 2, 3  
1, 2, 4  
5–9  
IN1, IN2, IN3  
Signal Inputs 1, 2, 3  
4–8  
IN4, IN5, IN6, IN7, IN8  
Signal Inputs 4, 5, 6, 7, 8  
4
9
10–14  
15, 16, 17  
18  
10  
V-  
Negative Supply Voltage Input  
Signal Outputs 8, 7, 6, 5, 4  
Signal Outputs 3, 2, 1  
11–15  
16, 17, 19  
20  
OUT8, OUT7, OUT6, OUT5, OUT4  
5, 6, 7  
OUT3, OUT2, OUT1  
8
V+  
Positive Supply-Voltage Input  
No Connection. Not internally connected.  
3, 18  
N.C.  
* Connect all unused inputs to a hard voltage within the supply range (e.g., V+, V-, or GND).  
Detailed Description  
-15V  
COMPARATOR  
The MAX4506/MAX4507 protect other ICs from over-  
voltage by clamping its output voltage to the supply  
rails. If the power supplies to the device are off, the  
device clamps the output to 0V. The MAX4506/  
N-CHANNEL  
DRIVER  
-V(-15V)  
CLAMP  
MAX4507 provide protection for input signals up to  
-15V  
N3  
±36V with the power supplies on and ±40V with the  
power supplies off.  
SENSE  
SWITCH  
N2  
The MAX4506/MAX4507 protect other integrated cir-  
cuits connected to its output from latching up. Latchup  
is caused by parasitic SCR(s) within the IC turning on,  
and can occur when the supply voltage applied to the  
IC exceeds the specified operating range. Latchup can  
also occur when signal voltage is applied before the  
power-supply voltage. When in a latchup state, the cir-  
cuit draws excessive current and may continue to draw  
excessive current even after the overvoltage condition  
is removed. A continuous latchup condition may dam-  
age the device permanently. Such “faults” are com-  
monly encountered in modular control systems where  
power supplies to interconnected modules may be  
interrupted and reestablished at random. Faults can  
happen during production testing, maintenance, start-  
up, or a power failure.  
N1  
IN  
OUT  
CLAMP P2  
+V(+15V)  
P1  
P3  
SENSE  
SWITCH  
P-CHANNEL  
DRIVER  
+15V  
COMPARATOR  
+15V  
Figure 1. Simplified Internal Structure  
Figure 1 shows the normal complementary pair (N1 and  
P1) found in many common analog switches. In addi-  
tion to these transistors, the MAX4506/MAX4507 also  
contain comparators and sensing and clamping circuitry  
to control the state of N1 and P1. During normal opera-  
tion, N1 and P1 remain on with a typical 65on-resis-  
tance between IN and OUT.  
The on-board comparators and sensing circuitry moni-  
tor the input voltage for possible overvoltage faults.  
_______________________________________________________________________________________  
7
Fault-Protected, High-Voltage  
Signal-Line Protectors  
Two clamp circuits limit the output voltage to within the  
supply voltages. When the power supplies are off, any  
input voltage applied at IN turns off both N1 and P1,  
and OUT is clamped to 0V.  
MAX4506  
Normal Operation  
When power is applied, each protector acts as a resis-  
4
1
8
tor in series with the signal path. Any voltage source on  
the “input” side of the switch will be conducted through  
the protector to the output (Figure 2).  
V-  
V-  
V+  
V+  
R
IN1  
OUT1  
7
When the output load is resistive, it draws current  
through the protector. The internal resistance is typically  
less than 100. High-impedance loads are relatively  
unaffected by the presence of the MAX4506/MAX4507.  
The protector’s path resistance is a function of the supply  
voltage and the signal voltage (see Typical Operating  
Characteristics).  
V
IN  
OUT  
Figure 2. Application Circuit  
Fault Protection, Power Off  
When power is off (i.e., V+ = V- = 0), the protector is a  
virtual open circuit. With up to ±40V applied to the input  
pin, the output pin will be 0V.  
6/MAX4507  
+15V  
Fault Protection, Power On  
A fault condition exists when the voltage on the IN_  
exceeds either supply rail. This definition is valid when  
power is on or off, as well as during all states while  
power ramps up or down.  
MAX4506  
8
V+  
10µF  
100k  
IN1  
IN2  
OUT1  
OUT2  
OUT3  
1
2
7
6
5
Applications Information  
Supplying Power Through External ICs  
The MAX4506/MAX4507 have low supply currents  
(<250µA), which allows the supply pins to be driven by  
other active circuitry instead of connected directly to  
the power sources. In this configuration, the parts can  
be used as driven fault-protected switches with V+ or  
V- used as the control pins. For example, with the V-  
pin grounded, the output of a CMOS gate can drive the  
V+ pin to turn the device on and off. This can effectively  
connect and disconnect three (MAX4506) or eight  
(MAX4507) separate signal lines at once. Ensure that  
the driving source(s) does not drive the V+ pin more  
negative than the V- pin.  
OP AMP  
IN3  
V-  
3
4
100k  
10µF  
-15V  
Figure 3. Turn-On Delay  
two diodes discharge the two capacitors rapidly when  
the power turns off. Note that the IC used to supply  
power to the MAX4506/MAX4507 must be able to sup-  
ply enough current to maintain the load voltage at the  
supply rail in a fault condition.  
Figure 3 shows a simple turn-on delay that takes  
advantage of the MAX4506’s low power consumption.  
The two RC networks cause gradual application of  
power to the MAX4506, which in turn applies the input  
signals smoothly after the amplifier has stabilized. The  
8
_______________________________________________________________________________________  
Fault-Protected, High-Voltage  
Signal-Line Protectors  
6/MAX4507  
Use the MAX4506 with a MAX338 to enhance voltage  
handling capability (Figure 6). The MAX4506 and  
MAX338 share almost equal voltage drops in this con-  
figuration. For example, applying ±40V on pins 1 and 2  
of the MAX4506 causes a voltage drop of about 26V  
across pin 1 of the MAX4506 to pin 4 of the MAX338,  
and a voltage drop of about 28V across pin 4 of the  
MAX4506 to pin 8 of the MAX338. Similarly, there is a  
26V drop from pin 2 of the MAX4506 to pin 5 of the  
MAX338. The system’s performance exceeds each  
individual part’s specification because of shared volt-  
age drops.  
Protectors as Circuit Elements  
Each of the protectors in a MAX4506/MAX4507 may be  
used as a switched resistor, independent of the func-  
tions of other elements in the same package. For exam-  
ple, Figure 4 shows a MAX4506 with two of the  
protectors used to protect the input of an op amp, and  
the third element used to sequence a power supply.  
Combining the circuits of Figures 3 and 4 produces a  
delayed action on the switched +15V, as well as  
smooth application of signals to the amplifier input.  
Figure 5 shows MAX4506 used in front of a MAX338  
unprotected 1-to-8 multiplexer. With supplies at ±15V,  
V
of the MAX4506 clamps to ±15V; V  
of the  
OUT  
OUT  
Multiplexer and Demultiplexer  
As shown in Figure 7, the MAX4506 can be used in  
series with the output of a MAX4508 (1-to-8 multiplexer)  
to act as multiplexer or demultiplexer. The MAX4508 is a  
fault-protected multiplexer whose inputs are designed to  
interface with harsh environments; however, its common  
output is not fault protected if connected to outside sig-  
nals (i.e., demultiplexer use). If the common output can  
see fault signals, then it needs to be protected, and the  
MAX4506 can be added to provide complete protection.  
MAX338 goes to ±14V. With supplies off, V  
goes to  
OUT  
0V while the inputs remain at ±25V.  
SWITCHED +15V  
P
+15V  
MAX4506  
8
V+  
IN1  
IN2  
OUT1  
OUT2  
OUT3  
1
2
7
6
5
100k  
V
OUT  
= -14V  
10k  
+40V  
-40V  
OP AMP  
1
2
7
6
4
5
8
IN3  
V-  
3
4
MAX4506  
MAX338  
-15V  
Figure 4. Power-Supply Sequencing  
Figure 6. SPDT Switch Application  
+3V  
+3V  
O
1
A
A1 16  
A2 15  
O
OV  
1
2
3
4
5
6
7
8
A
A1 16  
A2 15  
O
+5V  
-5V  
2
3
4
5
6
7
8
EN  
V-  
+5V  
EN  
V-  
GND  
GND  
14  
NEW COM  
-15V  
14  
+25V  
-25V  
1
2
3
4
8 +15V  
NO1 MAX338 V+ 13 +15V  
1
2
8 +15V  
NO1 MAX4508 V+ 13 +15V  
NO2  
NO3  
NO4  
NO5 12  
NO6 11  
NO7 10  
7
6
5
NO2  
NO3  
NO4  
COM  
NO5 12  
NO6 11  
NO7 10  
7
6
5
MAX4506  
MAX4506  
3
-15V  
-15V  
4
V
OUT  
NO9 9  
NO9  
9
R
L
Figure 7. Multiplexer and Demultiplexer Application Using  
MAX4506 (or MAX4507) with MAX4508  
Figure 5. Protecting a MAX338 with a MAX4506  
_______________________________________________________________________________________  
9
Fault-Protected, High-Voltage  
Signal-Line Protectors  
As seen in Figure 7, the signal input can now be put  
into pin 1 of the MAX4506 (new common output for sys-  
tem), and outputs can be taken at MAX4508 pins 4 to  
7, and 9 to 12. This is the classic demultiplexer opera-  
tion. This system now has full protection on both of the  
multiplexers’ inputs and outputs.  
Note: It is important to use a voltage source of 100mV  
or less. As shown in Figure 8, this voltage and the V  
IN  
voltage form the V  
voltage. Using higher voltages  
OUT  
could cause OUT to go into a fault condition prematurely.  
High-Voltage Surge Suppression  
These devices are not high-voltage arresters, nor are  
they substitutes for surge suppressors. However, the  
MAX4506/MAX4507 can fill a vital gap in systems that  
use these forms of protection (Figure 9). Although surge  
suppressors are extremely fast shunt elements, they  
have very soft current knees. Their clamp voltage must  
be chosen well above the normal signal levels, because  
they have excessive leakage currents as the analog  
signal approaches the knee. This leakage current can  
interfere with normal operation when signal levels are  
low or impedance is high. If the clamp voltage is too  
high, the input can be damaged.  
Measuring Path Resistance  
Measuring path resistance requires special techniques,  
since path resistance varies dramatically with the IN  
and OUT voltages relative to the supply voltages.  
Conventional ohmmeters should not be used for the fol-  
lowing two reasons: 1) the applied voltage and currents  
are usually not predictable, and 2) the true resistance is  
a function of the applied voltage, which is dramatically  
altered by the ohmmeter itself. Autoranging ohmmeters  
are particularly unreliable.  
Figure 8 shows a circuit that can give reliable results.  
This circuit uses a 100mV voltage source, a low-volt-  
age-drop ammeter as the measuring circuit, and an  
adjustable supply to sweep the analog voltage across  
its entire range. The ammeter must have a voltage drop  
of less than one millivolt (up to the maximum test cur-  
rent) for accurate results. A Keithley model 617 elec-  
trometer has a suitable ammeter circuit, appropriate  
ranges, and a built-in voltage source designed for this  
type of measurement. Find the path resistance by set-  
ting the analog voltage, measuring the current, and cal-  
culating the path resistance. Repeat the procedure at  
each analog and supply voltage.  
Connecting a MAX4506/MAX4507 after a surge sup-  
pressor allows the surge-suppressor voltage to be set  
above the supply voltage (but within the overvoltage  
limits), dramatically reducing leakage effects (Figure 9).  
During a surge, the surge suppressor clamps the input  
voltage roughly to the ±10V supplies.  
6/MAX4507  
+10V  
MAX4506  
8
V+  
IN1  
IN2  
OUT1  
OUT2  
OUT3  
1
2
7
6
5
A
100mV  
MAX4506  
V
V
8
IN1  
V-  
OUT1  
V+  
IN  
OUT  
OP AMP  
ADJUSTABLE  
IN3  
V-  
3
4
ANALOG  
VOLTAGE  
4
V+  
PATH RESISTANCE = 100mv/A  
SURGE SUPPRESSORS  
-15V  
-10V  
Figure 9. Surge-Suppression Circuit  
Figure 8. Path-Resistance Measuring Circuit  
10 ______________________________________________________________________________________  
Fault-Protected, High-Voltage  
Signal-Line Protectors  
6/MAX4507  
Ordering Information (continued)  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
PIN-PACKAGE  
MAX4507CAP  
MAX4507CWN  
MAX4507CPN  
MAX4507C/D  
MAX4507EAP  
MAX4507EWN  
MAX4507EPN  
MAX4507MJN  
20 SSOP  
18 SO  
18 Plastic DIP  
Dice*  
20 SSOP  
18 SO  
18 Plastic DIP  
18 CERDIP**  
*Contact factory for dice specifications.  
**Contact factory for availability.  
Chip Topographies  
MAX4507  
MAX4506  
V+  
IN1  
V+  
OUT1  
IN2  
IN1  
OUT2  
OUT3  
OUT1  
IN3  
IN4  
IN5  
IN6  
IN2  
0.112"  
(2.84mm)  
OUT4  
0.112"  
(2.84mm)  
OUT2  
OUT5  
OUT6  
IN3  
V-  
IN7  
IN8  
OUT3  
OUT7  
0.071"  
(1.80mm)  
V-  
OUT8  
0.071"  
(1.800mm)  
TRANSISTOR COUNT:  
144 (MAX4506)  
379 (MAX4507)  
SUBSTRATE CONNECTED TO V+  
______________________________________________________________________________________ 11  
Fault-Protected, High-Voltage  
Signal-Line Protectors  
Pin Configurations (continued)  
TOP VIEW  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
IN8  
V-  
1
2
3
4
5
6
7
8
9
18 V+  
IN1  
IN2  
N.C.  
IN3  
IN4  
IN5  
IN6  
IN7  
IN8  
1
2
3
4
5
6
7
8
9
20 V+  
19 OUT1  
18 N.C.  
17 OUT2  
16 OUT3  
15 OUT4  
14 OUT5  
13 OUT6  
12 OUT7  
11 OUT8  
17 OUT1  
16 OUT2  
15 OUT3  
14 OUT4  
13 OUT5  
12 OUT6  
11 OUT7  
10 OUT8  
MAX4507  
MAX4507  
V- 10  
6/MAX4507  
SO/DIP  
SSOP  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX4507EWN

Fault-Protected, High-Voltage Signal-Line Protectors
MAXIM

MAX4507EWN+

SPST, 8 Func, 1 Channel, CMOS, PDSO18, SOP-18
MAXIM

MAX4507MJN

Fault-Protected, High-Voltage Signal-Line Protectors
MAXIM

MAX4508

Fault-Protected, High-Voltage Single 8-to-1/Dual 4-to-1 Multiplexers
MAXIM

MAX4508-MAX4509

Fault-Protected, High-Voltage Single 8-to-1/Dual 4-to-1 Multiplexers
MAXIM

MAX4508C/D

Fault-Protected, High-Voltage Single 8-to-1/Dual 4-to-1 Multiplexers
MAXIM

MAX4508CAE

Fault-Protected, High-Voltage Single 8-to-1/Dual 4-to-1 Multiplexers
MAXIM

MAX4508CPE

Fault-Protected, High-Voltage Single 8-to-1/Dual 4-to-1 Multiplexers
MAXIM

MAX4508CPE+

Single-Ended Multiplexer, 1 Func, 8 Channel, CMOS, PDIP16, 0.300 INCH, ROHS COMPLIANT, PLASTIC, MS-001AA, DIP-16
MAXIM

MAX4508CSE

Fault-Protected, High-Voltage Single 8-to-1/Dual 4-to-1 Multiplexers
MAXIM

MAX4508CSE+

Single-Ended Multiplexer, 1 Func, 8 Channel, CMOS, PDSO16, 0.150 INCH, ROHS COMPLIANT, MS-012AC, SOIC-16
MAXIM

MAX4508CSE-T

暂无描述
MAXIM