MAX4529CSA [MAXIM]

Low-Voltage, Bidirectional RF/Video Switch; 低电压,双向RF /视频开关
MAX4529CSA
型号: MAX4529CSA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Voltage, Bidirectional RF/Video Switch
低电压,双向RF /视频开关

开关
文件: 总12页 (文件大小:125K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1262; Rev 0; 3/98  
Lo w -Vo lt a g e , Bid ire c t io n a l  
RF/Vid e o S w it c h  
MAX4529  
Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
High 50Off Isolation: -80dB at 10MHz  
DC to 300MHz -3dB Signal Bandwidth  
70Signal Paths with ±5V Supplies  
The MAX4529 is a low-voltage T-switch designed for  
switching RF and video signals from DC to 300MHz in  
50and 75systems. This switch is constructed in a  
“T” configuration, ensuring excellent high-frequency off  
isolation of -80dB at 10MHz.  
10Signal-Path Flatness with ±5V Supplies  
®
The MAX4529 can handle Rail-to-Rail analog signals  
±2.7V to ±6V Dual Supplies  
in either direction. On-resistance (70max) is flat (0.5Ω  
max) over the specified signal range, using ±5V sup-  
plies. The off leakage current is less than 1nA at +25°C  
and 20nA at +85°C.  
+2.7V to +12V Single Supply  
Low Power Consumption: <1µW  
Rail-to-Rail Bidirectional Signal Handling  
>2kV ESD Protection per Method 3015.7  
This CMOS switch can operate with dual power sup-  
plies ranging from ±2.7V to ±6V or a single supply  
b e twe e n + 2.7V a nd + 12V. All d ig ita l inp uts ha ve  
0.8V/2.4V logic thresholds, ensuring both TTL- and  
CMOS-logic compatibility when using ±5V or a single  
+5V supply.  
TTL/CMOS-Compatible Inputs with  
Single +5V or ±5V  
Ord e rin g In fo rm a t io n  
PIN-  
PACKAGE  
SOT  
TOP MARK  
PART  
TEMP. RANGE  
________________________Ap p lic a t io n s  
MAX4529CPA  
MAX4529CSA  
MAX4529CUA  
MAX4529CUT-T  
MAX4529C/D  
MAX4529EPA  
MAX4529ESA  
MAX4529EUA  
0°C to +70°C 8 Plastic DIP  
0°C to +70°C 8 Narrow SO  
0°C to +70°C 8 µMAX  
RF Switching  
Video Signal Routing  
High-Speed Data Acquisition  
Test Equipment  
0°C to +70°C 6 SOT23-6  
0°C to +70°C Dice*  
AAAQ  
-40°C to +85°C 8 Plastic DIP  
-40°C to +85°C 8 Narrow SO  
-40°C to +85°C 8 µMAX  
ATE Equipment  
Networking  
MAX4529EUT-T -40°C to +85°C 6 SOT23-6  
*Contact factory for dice specifications.  
AAAQ  
_______________________P in Co n fig u ra t io n s /Fu n c t io n a l Dia g ra m s /Tru t h Ta b le  
MAX4529  
MAX4529  
1
2
3
4
8
7
6
5
1
2
3
6
5
4
N.C.  
NC  
V+  
NC  
V+  
V-  
COM  
GND  
IN  
LOGIC  
SWITCH  
COM  
N.C.  
V-  
0
1
ON  
OFF  
GND  
IN  
SOT23-6  
DIP/SO/µMAX  
N.C. = NOT INTERNALLY CONNECTED  
Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Lo w -Vo lt a g e , Bid ire c t io n a l  
RF/Vid e o S w it c h  
ABSOLUTE MAXIMUM RATINGS  
(Voltages referenced to GND)  
Continuous Power Dissipation (T = +70°C)  
A
V+ ...........................................................................-0.3V, +13.0V  
V- ............................................................................-13.0V, +0.3V  
V+ to V-...................................................................-0.3V, +13.0V  
All Other Pins (Note 1)..........................(V- - 0.3V) to (V+ + 0.3V)  
Continuous Current into Any Terminal..............................±10mA  
Peak Current into Any Terminal  
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ...727mW  
8-Pin SO (derate 5.88mW/°C above +70°C)............... 471mW  
8-Pin µMAX (derate 4.1mW/°C above +70°C)............. 330mW  
6-Pin SOT23-6 (derate 7.1mW/°C above +70°C) ........571mW  
Operating Temperature Ranges  
MAX4529C_ E.....................................................0°C to +70°C  
MAX4529E_ E ..................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
(pulsed at 1ms, 10% duty cycle)..................................±50mA  
ESD per Method 3015.7 ..................................................>2000V  
MAX4529  
Note 1: Voltages on all other pins exceeding V+ or V- are clamped by internal diodes. Limit forward diode current to maximum  
current rating.  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—Dual Supplies  
(V+ = +4.5V to +5.5V, V- = -4.5V to -5.5V, V  
= 0.8V, V  
= 2.4V, V  
= 0V, T = T  
to T , unless otherwise noted. Typical  
MAX  
GND  
INL  
INH  
A
MIN  
values are at T = +25°C.)  
A
MIN  
TYP  
(Note 2)  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
T
A
UNITS  
ANALOG SWITCH  
Analog Signal Range  
V
, V  
(Note 3)  
V+ = 5V, V- = -5V,  
= ±3V, I  
C, E  
V-  
V+  
70  
V
COM NC  
+25°C  
C, E  
45  
Signal-Path On-Resistance  
R
ON  
V
= 1mA  
COM  
COM  
100  
Signal-Path On-Resistance  
Flatness (Note 4)  
V+ = 5V; V- = -5V; V  
= 3V,  
COM  
R
+25°C  
5
10  
FLAT(ON)  
0V, -3V; I  
= 1mA  
COM  
+25°C  
C, E  
-1  
-20  
-1  
0.02  
1
20  
1
NC Off Leakage Current  
(Notes 5, 6)  
V+ = 5.5V, V- = -5.5V,  
I
±
±
nA  
nA  
nA  
NC(OFF)  
V
COM  
= ±4.5V, V  
=
4.5V  
NC  
+25°C  
C, E  
0.02  
0.02  
COM Off Leakage Current  
(Notes 5, 6)  
V+ = 5.5V, V- = -5.5V,  
= ±4.5V, V  
I
COM(OFF)  
V
COM  
=
NC  
4.5V  
-20  
-2  
20  
2
+25°C  
C, E  
COM On Leakage Current  
(Notes 5, 6)  
V+ = 5.5V, V- = -5.5V,  
I
COM(ON)  
V
COM  
= ±4.5V  
-40  
40  
LOGIC INPUT  
IN Input Logic Threshold High  
IN Input Logic Threshold Low  
V
C, E  
C, E  
1.5  
1.5  
2.4  
1
V
V
INH  
V
INL  
0.8  
-1  
IN Input Current Logic High or  
Low  
I
, I  
V
IN  
= 0.8V or 2.4V  
C, E  
0.03  
µA  
INH INL  
2
_______________________________________________________________________________________  
Lo w -Vo lt a g e , Bid ire c t io n a l  
RF/Vid e o S w it c h  
MAX4529  
ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)  
(V+ = +4.5V to +5.5V, V- = -4.5V to -5.5V, V  
= 0.8V, V  
= 2.4V, V  
= 0V, T = T  
to T  
, unless otherwise noted. Typical  
MAX  
GND  
INL  
INH  
A
MIN  
values are at T = +25°C.)  
A
MIN  
TYP  
(Note 2)  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
T
A
UNITS  
SWITCH DYNAMIC CHARACTERISTICS  
+25°C  
C, E  
45  
37  
75  
100  
75  
V
= ±3V, V+ = 5V, V- = -5V,  
COM  
Turn-On Time  
t
ns  
ns  
ON  
Figure 2  
+25°C  
C, E  
V
= ±3V, V+ = 5V, V- = -5V,  
COM  
Turn-Off Time  
t
OFF  
Figure 2  
100  
C
= 1.0nF, V = 0V, R = 0,  
L
NC  
S
Charge Injection (Note 3)  
Q
+25°C  
5
10  
pC  
Figure 3  
NC Off Capacitance  
C
V
= GND, f = 1MHz, Figure 5  
+25°C  
+25°C  
6
6
pF  
pF  
NC(OFF)  
NC  
COM_ Off Capacitance  
C
V
COM  
= 0V, f = 1MHz, Figure 5  
COM(OFF)  
V
= V = 0V, f = 1MHz,  
NC  
COM  
COM_ On Capacitance  
C
+25°C  
11.5  
pF  
COM(ON)  
Figure 5  
R
= 50, V  
= 1V  
,
L
COM  
RMS  
Off Isolation (Note 7)  
-3dB Bandwidth  
Distortion  
V
+25°C  
+25°C  
+25°C  
-80  
300  
dB  
MHz  
%
ISO  
f = 10MHz, Figure 4  
R = 50, Figure 4  
L
BW  
V
= 5Vp-p, f < 20kHz,  
IN  
THD+N  
0.004  
600in and out  
POWER SUPPLY  
Power-Supply Range  
V+, V-  
I+  
C, E  
+25°C  
C, E  
±2.7  
-1  
±6  
1
V
0.05  
0.05  
V+ = 5.5V, V = 0V or V+,  
IN  
V- = -5.5V  
V+ Supply Current  
V - Supply Current  
µA  
-10  
-1  
10  
1
+25°C  
C, E  
V+ = 5.5V, V = 0V or V+,  
IN  
V- = -5.5V  
I-  
µA  
-10  
10  
_______________________________________________________________________________________  
3
Lo w -Vo lt a g e , Bid ire c t io n a l  
RF/Vid e o S w it c h  
ELECTRICAL CHARACTERISTICS—Single +5V Supply  
(V+ = +4.5V to +5.5V, V- = 0V, V  
= 0.8V, V  
= 2.4V, V  
= 0V, T = T  
to T  
, unless otherwise noted. Typical values are  
MAX  
GND  
INL  
INH  
A
MIN  
at T = +25°C.)  
A
MIN  
TYP  
(Note 2)  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
T
UNITS  
A
ANALOG SWITCH  
Analog Signal Range  
V
, V  
(Note 3)  
V+ = 5V, V = 3V,  
COM  
+25°C  
+25°C  
C, E  
0
V+  
120  
150  
1
V
COM NC  
70  
5
Signal-Path On-Resistance  
R
ON  
I
= 1mA  
COM  
+25°C  
C, E  
-1  
-20  
-1  
0.02  
0.02  
0.02  
NC Off Leakage Current  
(Notes 5, 6, 8)  
V+ = 5.5V, V  
= 1V,  
COM  
I
nA  
nA  
nA  
NC(OFF)  
V
NC  
= 4.5V  
20  
1
+25°C  
C, E  
COM Off Leakage Current  
(Notes 5, 6, 8)  
V+ = 5.5V, V  
= 1V,  
COM  
I
COM(OFF)  
V
NC  
= 4.5V  
-20  
-2  
20  
2
+25°C  
C, E  
COM On Leakage Current  
(Notes 5, 6, 8)  
I
V+ = 5.5V; V  
= 1V, 4.5V  
COM(ON)  
COM  
-40  
40  
LOGIC INPUT  
IN Input Logic Threshold High  
IN Input Logic Threshold Low  
V
C, E  
C, E  
1.5  
1.5  
2.4  
1
V
V
INH  
V
INL  
0.8  
-1  
IN Input Current Logic High or  
Low  
I
, I  
V
IN  
= 0.8V or 2.4V  
C, E  
0.03  
µA  
INH INL  
SWITCH DYNAMIC CHARACTERISTICS  
+25°C  
C, E  
65  
43  
100  
120  
90  
V
= 3V, V+ = 5V,  
COM  
Turn-On Time (Note 3)  
Turn-Off Time (Note 3)  
Charge Injection (Note 3)  
Off-Isolation (Note 7)  
t
ns  
ns  
ON  
Figure 2  
+25°C  
C, E  
V
= 3V, V+ = 5V,  
COM  
t
OFF  
Q
Figure 2  
110  
C
L
R
S
= 1.0nF, V = 2.5V,  
NC  
= 0, Figure 3  
+25°C  
+25°C  
1.5  
-75  
10  
pC  
dB  
R
= 50, V  
= 1V  
,
L
COM  
RMS  
V
ISO  
f = 10MHz, Figure 4  
POWER SUPPLY  
Power-Supply Range  
V+  
I+  
V- = 0V  
C, E  
+25°C  
C, E  
2.7  
-1  
12.0  
1
V
0.05  
V+ Supply Current  
V+ = 5.5V, V = 0V or V+  
µA  
IN  
-10  
10  
4
_______________________________________________________________________________________  
Lo w -Vo lt a g e , Bid ire c t io n a l  
RF/Vid e o S w it c h  
MAX4529  
ELECTRICAL CHARACTERISTICS—Single +3V Supply  
(V+ = +2.7V to +3.6V, V- = 0V, V  
= 0.4V, V  
= 2.4V, V  
= 0V, T = T  
to T  
, unless otherwise noted. Typical values are  
MAX  
GND  
INL  
INH  
A
MIN  
at T = +25°C.)  
A
MIN  
TYP  
(Note 2)  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
T
A
UNITS  
ANALOG SWITCH  
Analog Signal Range  
V
, V  
(Note 3)  
V+ = 2.7V, V  
+25°C  
+25°C  
C, E  
0
V+  
V
COM NC  
175  
400  
500  
= 1.5V,  
COM  
Signal-Path On-Resistance  
R
ON  
I
= 0.1mA  
COM  
LOGIC INPUT  
IN Input Logic Threshold High  
IN Input Logic Threshold Low  
IN Input Current Logic High or Low  
V
(Note 3)  
(Note 3)  
C, E  
C, E  
C, E  
1.0  
1.0  
2.4  
1
V
V
INH  
V
INL  
0.4  
-1  
I
, I  
V
= 0.4V or 2.4V (Note 3)  
µA  
INH INL  
IN  
SWITCH DYNAMIC CHARACTERISTICS  
+25°C  
C, E  
150  
70  
300  
400  
150  
200  
V
= 1.5V, V+ = 2.7V,  
COM  
Turn-On Time  
t
ns  
ns  
ON  
Figure 2 (Note 3)  
+25°C  
C, E  
V
= 1.5V, V+ = 2.7V,  
COM  
Turn-Off Time  
t
OFF  
Figure 2 (Note 3)  
POWER SUPPLY  
V+ Supply Current  
+25°C  
C, E  
-1  
0.05  
1
I+  
V+ = 3.6V, V = 0V or V+  
µA  
IN  
-10  
10  
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.  
Note 3: Guaranteed by design.  
Note 4: Resistance flatness is defined as the difference between the maximum and the minimum value of on-resistance as  
measured over the specified analog signal range.  
Note 5: Leakage parameters are 100% tested at the maximum rated hot temperature and guaranteed by correlation at +25°C.  
Note 6: Guaranteed by design, not subject to production testing in SOT package.  
Note 7: Off isolation = 20log (V  
/ V ), V  
= output, V = input to off switch.  
COM NC  
10 COM  
NC  
Note 8: Leakage testing for single-supply operation is guaranteed by testing with dual supplies.  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V+ = +5V, V- = -5V, GND = 0V, T = +25°C, packages are surface mount, unless otherwise noted.)  
A
ON-RESISTANCE vs. V  
ON-RESISTANCE vs. V  
ON-RESISTANCE vs. V  
AND  
COM  
COM  
COM  
(DUAL SUPPLIES)  
(SINGLE SUPPLY)  
TEMPERATURE (DUAL SUPPLIES)  
1000  
100  
1000  
100  
70  
60  
50  
40  
30  
20  
10  
0
V- = 0V  
V+ = 1.2V  
V+ = 2.0V  
+125°C  
+85°C  
V+ = 1.2V  
V- = -1.2V  
V+ = 2.0V  
V- = -2.0V  
V+ = 2.7V  
V+ = 3.3V  
V+ = 5.0V  
V+ = 2.7V  
V- = -2.7V  
+70°C +25°C  
0°C  
-40°C  
-55°C  
V+ = 7.5V  
V+ = 3.3V  
V- = -3.3V  
V+ = 5.0V  
V- = -5.0V  
V+ = 10.0V  
V+ = 5V  
V- = -5V  
10  
10  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
0
1
2
3
4
5
6
7
8
9
10  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
V
COM  
(V)  
V
COM  
(V)  
V
COM  
(V)  
_______________________________________________________________________________________  
5
Lo w -Vo lt a g e , Bid ire c t io n a l  
RF/Vid e o S w it c h  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V+ = +5V, V- = -5V, GND = 0V, T = +25°C, packages are surface mount, unless otherwise noted.)  
A
ON-RESISTANCE vs. V  
AND  
SUPPLY, COM, AND NC  
COM  
TEMPERATURE (SINGLE SUPPLY)  
LEAKAGE CURRENTS vs. TEMPERATURE  
CHARGE INJECTION vs. V  
COM  
1,000,000  
100,000  
10,000  
1000  
100  
70  
60  
50  
40  
30  
20  
10  
0
15  
12  
9
V+ = 5V  
V- = -5V  
+125°C  
+85°C  
I+, I-  
MAX4529  
V+ = 5V  
V- = -5V  
+70°C  
+25°C  
I
ON  
V+ = 5V  
V- = 0V  
0°C  
6
10  
-40°C  
-55°C  
1
V+ = 3V  
V- = 0V  
I
OFF  
3
0.1  
V+ = 5V  
V- = -5V  
0.01  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
(V)  
-55 -35 -15  
5
25 45 65 85 105 125  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
V
TEMPERATURE (°C)  
V
(V)  
COM  
COM  
LOGIC-LEVEL THRESHOLD  
vs. SUPPLY VOLTAGE  
OFF-TIME vs. TEMPERATURE  
ON-TIME vs. TEMPERATURE  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
180  
160  
140  
120  
100  
80  
V+ = 3V  
V- = 0V  
V+ = 3V  
V- = 0V  
V+ = 5V  
V- = 0V  
V+ = 5V  
V- = 0V  
V+ = 5V  
V- = -5V  
60  
40  
V+ = 5V  
V- = -5V  
20  
0
-55 -35 -15  
5
25 45 65 85 105 125  
0
1
2
3
4
5
6
7 8 9 10 11 12  
-55 -35 -15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
V+ (V)  
TEMPERATURE (°C)  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
FREQUENCY RESPONSE  
MAX4529-10  
100  
0
-10  
60  
ON LOSS  
50  
-20  
40  
-30  
30  
-40  
20  
10  
1
-50  
10  
-60  
0
ON PHASE  
-70  
-10  
-20  
-30  
-40  
-50  
-80  
-90  
-100  
-110  
-120  
OFF ISOLATION  
0.1  
-60  
10  
100  
1k  
10k 30k  
0.1  
1
10  
100  
1000  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
Lo w -Vo lt a g e , Bid ire c t io n a l  
RF/Vid e o S w it c h  
MAX4529  
P in De s c rip t io n  
PIN  
DIP/SO/µMAX  
NAME  
FUNCTION*  
SOT23-6  
1
1, 6  
2
N.C.  
NC  
Not Internally Connected  
Analog Switch Normally Closed** Terminal  
Positive Supply-Voltage Input (analog and digital). The voltage difference between  
V+ and V- should never exceed 12V.  
2
8
V+  
3
4
5
5
4
3
V-  
IN  
-5V Supply Input. Connect to GND for single-supply operation.  
Logic-Level Control Input. Logic-level voltages should never exceed V+ or V-.  
RF and Logic Ground. Connect to ground plane.  
GND  
Analog Switch Common** Terminal. Analog signal voltages should never exceed  
V+ or V-.  
6
7
COM  
*
All pins except N.C. have ESD diodes to V- and V+.  
** NC and COM pins are identical and interchangeable. Either may be considered as an input or output; signals pass equally well in  
either direction.  
Th e o ry o f Op e ra t io n  
NORMALLY CLOSED SWITCH CONSTRUCTION  
Lo g ic -Le ve l Tra n s la t o rs  
N1  
N2  
COM  
IN  
NC  
D
S
D
S
The MAX4529 is constructed as a high-frequency T”  
switch, as shown in Figure 1. The logic-level input, IN,  
is translated by amplifier A1 into a V+ to V- logic signal  
that drives inverter A2. Amplifier A2 drives the gates of  
N-channel MOSFETs N1 and N2 from V+ to V-, turning  
them fully on or off. The same signal drives inverter A3  
(which drives the P-channel MOSFETs P1 and P2) from  
V+ to V-, turning them fully on or off, and drives the N-  
channel MOSFET N3 off and on.  
COM - NC  
P1  
P2  
0
1
ON  
OFF  
S
D
S
D
V+  
IN  
D
A1  
A2  
A3  
N3  
S
GND  
V-  
V+  
The log ic -le ve l thre s hold is d e te rmine d b y V+ a nd  
GND. The voltage on GND is usually at ground poten-  
tia l, b ut it ma y b e s e t to a ny volta g e b e twe e n  
(V+ - 2V) and V-. When the voltage between V+ and  
GND is less than 2V, the level translators become very  
slow and unreliable. Normally, GND should be connect-  
ed to the ground plane.  
ESD DIODES  
ON GND, IN,  
COM, AND NC  
V-  
Figure 1. T-Switch Construction  
tances are distributed evenly along the series resis-  
tance, so they act as a transmission line rather than a  
simple R-C filter. This helps to explain the exceptional  
300MHz bandwidth when the switches are on.  
S w it c h On Co n d it io n  
When the switch is on, MOSFETs N1, N2, P1, and P2  
are on and MOSFET N3 is off. The signal path is COM to  
NC, a nd b e c a us e b oth N-c ha nne l a nd P-c ha nne l  
MOSFETs act as pure resistances, it is symmetrical (i.e.,  
signals may pass in either direction). The off MOSFET,  
N3, has no DC conduction, but has a small amount of  
capacitance to GND. The four on MOSFETs also have  
capacitance to ground that, together with the series  
resistance, forms a lowpass filter. All of these capaci-  
Typical attenuation in 50systems is -2dB and is rea-  
sonably flat up to 100MHz. Higher-impedance circuits  
s how e ve n lowe r a tte nua tion (a nd vic e ve rs a ), b ut  
slightly lower bandwidth due to the increased effect of  
the internal and external capacitance and the switchs  
internal resistance.  
_______________________________________________________________________________________  
7
Lo w -Vo lt a g e , Bid ire c t io n a l  
RF/Vid e o S w it c h  
The MAX4529 is a optimized for ±5V operation. Using  
lower supply voltages or a single supply increases  
switching time, on-resistance (and therefore on-state  
attenuation), and nonlinearity.  
switched V+ and V- signals to drive the gates of the  
analog switches. This drive signal is the only connec-  
tion between the logic supplies and the analog sup-  
plies. All pins have ESD protection to V+ and to V-.  
Increasing V- has no effect on the logic-level thresh-  
olds, but it does increase the drive to the P-channel  
switches, reducing their on-resistance. V- also sets the  
negative limit of the analog signal voltage.  
S w it c h Off Co n d it io n  
When the switch is off, MOSFETs N1, N2, P1, and P2  
a re off a nd MOSFET N3 is on. The s ig na l p a th is  
through the off-capacitances of the series MOSFETs,  
but it is shunted to ground by N3. This forms a high-  
pass filter whose exact characteristics depend on the  
source and load impedances. In 50systems, and  
below 10MHz, the attenuation can exceed 80dB. This  
va lue d e c re a s e s with inc re a s ing fre q ue nc y a nd  
increasing circuit impedances. External capacitance  
and board layout have a major role in determining over-  
all performance.  
5
The logic-level thresholds are CMOS and TTL compati-  
ble when V+ is +5V. As V+ is raised, the threshold  
increases slightly; when V+ reaches +12V, the level  
threshold is about 3.1V, which is above the TTL output  
high-level minimum of 2.8V, but still compatible with  
CMOS outputs.  
Bipolar-Supply Operation  
The MAX4529 operates with bipolar supplies between  
±2.7V and ±6V. The V+ and V- supplies need not be  
symmetrical, but their sum cannot exceed the absolute  
ma ximum ra ting of 13.0V. Do not connect the  
MAX4529 V+ pin to +3V and connect the logic-level  
input pins to TTL logic-level signals. TTL logic-level  
outputs can exceed the absolute maximum ratings,  
causing damage to the part and/or external circuits.  
Ap p lic a t io n s In fo rm a t io n  
P o w e r-S u p p ly Co n s id e ra t io n s  
Overview  
The MAX4529s construction is typical of most CMOS  
analog switches. It has three supply pins: V+, V-, and  
GND. V+ and V- are used to drive the internal CMOS  
switches and set the limits of the analog voltage on any  
switch. Reverse ESD protection diodes are internally  
connected between each analog signal pin and both  
V+ and V-. If the voltage on any pin exceeds V+ or V-,  
one of these diodes will conduct. During normal opera-  
tion these reverse-biased ESD diodes leak, forming the  
only current drawn from V-.  
CAUTION:  
The absolute maximum V+ to V- differential  
voltage is 13.0V. Typical “±6-Volt” or “12-Volt”  
supplies with ±10% tolerances can be as high  
as 13.2V. This voltage can damage the  
MAX4529. Even ±5% tolerance supplies may  
have overshoot or noise spikes that exceed  
13.0V.  
Virtually all the analog leakage current is through the  
ESD diodes. Although the ESD diodes on a given sig-  
nal pin are identical, and therefore fairly well balanced,  
they are reverse biased differently. Each is biased by  
either V+ or V- and the analog signal. This means their  
leakages vary as the signal varies. The difference in the  
two diode leakages from the signal path to the V+ and  
V- pins constitutes the analog signal-path leakage cur-  
rent. All analog leakage current flows to the supply ter-  
minals, not to the other switch terminal. This explains  
how both sides of a given switch can show leakage  
currents of either the same or opposite polarity.  
Single-Supply Operation  
The MAX4529 operates from a single supply between  
+2.7V and +12V when V- is connected to GND. All of  
the bipolar precautions must be observed. Note, how-  
ever, that these parts are optimized for ±5V operation,  
and most AC and DC characteristics are degraded sig-  
nificantly when departing from ±5V. As the overall sup-  
ply voltage (V+ to V-) is lowered, switching speed,  
on-resistance, off isolation, and distortion are degraded  
(see Typical Operating Characteristics).  
When the switch is on, there is no connection between  
the analog signal paths and GND. The analog signal  
paths consist of an N-channel and P-channel MOSFET  
with their sources and drains paralleled and their gates  
driven out of phase with V+ and V- by the logic-level  
translators.  
Single-supply operation also limits signal levels and  
interferes with grounded signals. When V- = 0V, AC sig-  
nals are limited to -0.3V. Voltages below -0.3V can be  
clipped by the internal ESD-protection diodes, and the  
parts can be damaged if excessive current flows.  
V+ and GND power the internal logic and logic-level  
translators, and set the input logic thresholds. The  
log ic -le ve l tra ns la tors c onve rt the log ic le ve ls to  
8
_______________________________________________________________________________________  
Lo w -Vo lt a g e , Bid ire c t io n a l  
RF/Vid e o S w it c h  
MAX4529  
Single-Supply Operation Above 5V  
AC Ground and Bypassing  
A ground plane is mandatory for satisfactory high-  
frequency operation. (Prototyping using hand wiring  
or wire-wrap boards is strongly discouraged.) Connect  
any 0V GND pins to the ground plane with solid cop-  
per. (The GND pin extends the high-frequency ground  
through the package wire-frame, into the silicon itself,  
thus improving isolation.) The ground plane should be  
solid metal underneath the device, without interrup-  
tions. There should be no traces under the device itself.  
For DIP packages, this applies to both sides of a two-  
sided board. Failure to observe this will have a minimal  
effect on the “on” characteristics of the switch at high  
frequencies, but it will degrade the off isolation and  
crosstalk.  
The MAX4529 is designed for operation from single  
+5V or dual ±5V supplies. As V+ is increased above  
5V, the logic-level threshold voltage increases and the  
supply current increases. In addition, if the logic levels  
are not driven rail-to-rail, the analog signal pins, COM  
and NC, can conduct a significant DC current (up to  
1mA) to the s up p ly p ins . This c urre nt c a n a d d a n  
unwanted DC bias to the signal. Therefore, when oper-  
ating V+ above 5V, always drive the IN pin rail-to-rail.  
Power Off  
When power to the MAX4529 is off (i.e., V+ = 0V and V-  
= 0V), the Absolute Maximum Ratings still apply. This  
means that neither logic-level inputs on IN nor signals  
on COM or NC can exceed ±0.3V. Voltages beyond  
±0.3V cause the internal ESD-protection diodes to con-  
duct, and the parts can be damaged if excessive cur-  
rent flows.  
V+ and V- pins should be bypassed to the ground  
plane with surface-mount 10nF capacitors. For DIP  
packages, they should be mounted as close as possi-  
ble to the pins on the same side of the board as the  
device. Do not use feedthroughs or vias for bypass  
capacitors. For surface-mount packages, the pins are  
s o c los e to e a c h othe r tha t the b yp a s s c a p a c itors  
should be mounted on the opposite side of the board  
from the device. In this case, use short feedthroughs or  
vias, directly under the V+ and V- pins. Any GND pin  
not connected to 0V should be similarly bypassed. If V-  
is 0V, connect it directly to the ground plane with solid  
copper. Keep all leads short.  
Gro u n d in g  
DC Ground Considerations  
Satisfactory high-frequency operation requires that  
careful consideration be given to grounding. For most  
applications, a ground plane is strongly recom-  
mended, and GND should be connected to it with  
solid copper.  
In systems that have separate digital and analog (sig-  
nal) grounds, connect these switch GND pins to analog  
ground. Preserving a good signal ground is much more  
important than preserving a digital ground. Ground cur-  
rent is only a few nanoamps.  
S ig n a l Ro u t in g  
Keep all signal leads as short as possible. Separate all  
signal leads from each other and other traces with the  
ground plane on both sides of the board. Where possi-  
ble, use coaxial cable instead of printed circuit board  
traces.  
The logic-level input, IN, has voltage thresholds deter-  
mine d b y V+ a nd GND. (V- d oe s not influe nc e the  
logic-level threshold.) With +5V and 0V applied to V+  
and GND, the threshold is about 1.6V, ensuring com-  
patibility with TTL- and CMOS-logic drivers.  
Bo a rd La yo u t  
IC sockets degrade high-frequency performance and  
should not be used if signal bandwidth exceeds 5MHz.  
Surfa c e -mount p a rts , ha ving s horte r inte rna l le a d  
frames, provide the best high-frequency performance.  
Keep all bypass capacitors close to the device, and  
separate all signal leads with ground planes. Such  
grounds tend to be wedge-shaped as they get closer to  
the device. Use vias to connect the ground planes on  
each side of the board, and place the vias in the apex of  
the wedge-shaped grounds that separate signal leads.  
Logic-level signal lead placement is not critical.  
The GND pin can be connected to separate voltage  
potentials if the logic-level input is not a normal logic  
signal. (The GND voltage cannot exceed (V+ - 2V) or V-.)  
Elevating GND reduces off isolation. Note, however,  
that IN can be driven more negative than GND, as far  
as V-. GND does not have to be removed from 0V when  
IN is driven from bipolar sources, but the voltage on IN  
should never exceed V-. GND should be separated  
from 0V only if the log ic -le ve l thre s hold ha s to b e  
changed.  
If the GND pin is not connected to 0V, it should be  
bypassed to the ground plane with a surface-mount  
10nF capacitor to maintain good RF grounding. DC  
current in the IN and GND pins is less than 1nA, but  
increases with switching frequency.  
_______________________________________________________________________________________  
9
Lo w -Vo lt a g e , Bid ire c t io n a l  
RF/Vid e o S w it c h  
______________________________________________Te s t Circ u it s /Tim in g Dia g ra m s  
+5V  
10nF  
V+  
0V  
V+  
V
IN  
50%  
50%  
NC  
3V  
MAX4529  
MAX4529  
90%  
V
IN  
V
OUT  
IN  
COM  
V
OUT  
90%  
GND  
V-  
0V  
R = 50  
L
t
t
ON  
50Ω  
OFF  
10nF  
-5V  
V- IS CONNECTED TO GND (OV) FOR SINGLE-SUPPLY OPERATION.  
Figure 2. Switching Time  
10nF  
+5V  
V+  
V+  
0V  
V
IN  
NC  
V
NC  
= 0V  
MAX4529  
V
IN  
V
OUT  
V  
OUT  
IN  
COM  
V
OUT  
GND  
V-  
C = 1000pF  
L
50Ω  
10nF  
V IS THE MEASURED VOLTAGE DUE TO CHARGE TRANSFER  
OUT  
ERROR Q WHEN THE CHANNEL TURNS OFF.  
-5V  
Q = V x C  
OUT  
L
V- IS CONNECTED TO GND (0V) FOR SINGLE-SUPPLY OPERATION.  
Figure 3. Charge Injection  
10 ______________________________________________________________________________________  
Lo w -Vo lt a g e , Bid ire c t io n a l  
RF/Vid e o S w it c h  
MAX4529  
_________________________________Te s t Circ u it s /Tim in g Dia g ra m s (c o n t in u e d )  
10nF  
+5V  
V+  
V
V
OUT  
OFF ISOLATION = 20log  
ON LOSS = 20log  
IN  
NETWORK  
ANALYZER  
V
50Ω  
50Ω  
OUT  
V
IN  
0V OR V+  
IN  
V
IN  
NC  
MAX4529  
MEAS  
REF  
V
OUT  
COM  
GND  
V-  
50Ω  
50Ω  
-5V  
10nF  
MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT IC TERMINALS.  
OFF ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" NC TERMINAL.  
ON LOSS IS MEASURED BETWEEN COM_ AND "ON" NC TERMINAL.  
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.  
V- IS CONNECTED TO GND (0V) FOR SINGLE-SUPPLY OPERATION.  
Figure 4. On Loss and Off Isolation  
___________________Ch ip To p o g ra p h y  
V+  
10nF +5V  
V+  
NC  
COM  
0V OR V+  
IN  
NC  
MAX4529  
1MHz  
0.054"  
COM  
CAPACITANCE  
ANALYZER  
(1.372mm)  
GND  
V-  
N.C.  
N.C.  
10nF  
-5V  
GND  
Figure 5. NC and COM Capacitance  
V-  
IN  
0.038"  
(0.965mm)  
TRANSISTOR COUNT: 78  
SUBSTRATE INTERNALLY CONNECTED TO V-  
N.C. = NO CONNECTION  
______________________________________________________________________________________ 11  
Lo w -Vo lt a g e , Bid ire c t io n a l  
RF/Vid e o S w it c h  
________________________________________________________P a c k a g e In fo rm a t io n  
MAX4529  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX4529CUA

Low-Voltage, Bidirectional RF/Video Switch
MAXIM

MAX4529CUA+

Audio/Video Switch, 1 Func, 1 Channel, CMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX4529CUA+T

暂无描述
MAXIM

MAX4529CUA-T

Audio/Video Switch, 1 Func, 1 Channel, CMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX4529CUT+

Audio/Video Switch, 1 Func, 1 Channel, CMOS, PDSO6, SOT-23, 6 PIN
MAXIM

MAX4529CUT+T

Audio/Video Switch, 1 Func, 1 Channel, CMOS, PDSO6, SOT-23, 6 PIN
MAXIM

MAX4529CUT-T

Low-Voltage, Bidirectional RF/Video Switch
MAXIM

MAX4529EPA

Low-Voltage, Bidirectional RF/Video Switch
MAXIM

MAX4529ESA

Low-Voltage, Bidirectional RF/Video Switch
MAXIM

MAX4529ESA+

暂无描述
MAXIM

MAX4529ESA+T

Audio/Video Switch, 1 Func, 1 Channel, CMOS, PDSO8, SO-8
MAXIM

MAX4529ESA-T

Audio/Video Switch, 1 Func, 1 Channel, CMOS, PDSO8, SO-8
MAXIM