MAX4567CEE [MAXIM]

Quad/Dual, Low-Voltage, Bidirectional RF/Video Switches; 四核/双通道,低电压,双向RF /视频开关
MAX4567CEE
型号: MAX4567CEE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Quad/Dual, Low-Voltage, Bidirectional RF/Video Switches
四核/双通道,低电压,双向RF /视频开关

复用器 开关 复用器或开关 信号电路 光电二极管
文件: 总16页 (文件大小:169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1252; Rev 0; 7/97  
Qu a d /Du a l, Lo w -Vo lt a g e ,  
Bid ire c t io n a l RF/Vid e o S w it c h e s  
/MAX4567  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
High 50Off Isolation: -83dB at 10MHz  
Low 50Crosstalk: -87dB at 10MHz  
The MAX4565/MAX4566/MAX4567 a re low-volta g e  
T-switches designed for switching RF and video signals  
from DC to 350MHz in 50a nd 75s ys te ms . The  
MAX4565 contains four normally open single-pole/single-  
throw (SPST) switches. The MAX4566 contains two dual  
SPST switches (one normally open, one normally closed.)  
The MAX4567 contains two single-pole/double-throw  
(SPDT) switches.  
DC to 350MHz -3dB Signal Bandwidth  
60Signal Paths with ±5V Supplies  
2.5Signal-Path Matching with ±5V Supplies  
2Signal-Path Flatness with ±5V Supplies  
Low 50Insertion Loss: 2.5dB at 100MHz  
Each switch is constructed in a “T” configuration, ensuring  
excellent high-frequency off isolation and crosstalk of  
®
-83dB at 10MHz. They can handle Rail-to-Rail analog sig-  
±2.7V to ±6V Dual Supplies  
nals in either direction. On-resistance (60max) is  
matched between switches to 2.5max and is flat (2Ω  
max) over the specified signal range, using ±5V supplies.  
The off leakage current is less than 5nA at +25°C and  
50nA at +85°C.  
+2.7V to +12V Single Supply  
Low Power Consumption: <1µW  
Rail-to-Rail Bidirectional Signal Handling  
Pin Compatible with Industry-Standard DG540,  
These CMOS switches can operate with dual power sup-  
plies ranging from ±2.7V to ±6V or a single supply  
between +2.7V and +12V. All digital inputs have 0.8V/2.4V  
logic thresholds, ensuring both TTL- and CMOS-logic com-  
patibility when using ±5V or a single +5V supply.  
DG542, DG643  
>2kV ESD Protection per Method 3015.7  
TTL/CMOS-Compatible Inputs  
with Single +5V or ±5V  
________________________Ap p lic a t io n s  
RF Switching  
______________Ord e rin g In fo rm a t io n  
Video Signal Routing  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
20 Plastic DIP  
20 Wide SO  
MAX4565CPP  
MAX4565CWP  
High-Speed Data Acquisition  
Test Equipment  
Ordering Information continued at end of data sheet.  
ATE Equipment  
____N_e_t_w_o_rk_in_g__________P in Co n fig u ra t io n s /Fu n c t io n a l Dia g ra m s /Tru t h Ta b le s  
TOP VIEW  
IN1  
COM1  
GND1  
N01  
1
2
3
4
5
6
7
8
9
20 IN2  
MAX4566  
MAX4567  
19 COM2  
18 GND2  
17 NO2  
16 V+  
1
2
3
4
5
6
7
8
16  
15  
1
2
3
4
5
6
7
8
16  
15  
IN1  
COM1  
GND1  
N01  
IN2  
IN1  
N01  
N02  
V+  
COM2  
V-  
14 GND2  
13 NO2  
12 V+  
V-  
14 GND2  
13 COM2  
12 GND3  
MAX4565  
GND5  
N04  
15 GND6  
14 N03  
13 GND3  
12 COM3  
11 IN3  
GND1  
COM1  
GND4  
V+  
V-  
GND4  
COM4  
NC4  
NC3  
V-  
11  
10 GND3  
COM3  
11  
10 NC2  
IN2  
GND4  
COM4  
IN4 10  
9
NC1  
9
DIP/SO/SSOP  
DIP/SO/QSOP  
DIP/SO/QSOP  
MAX4567  
MAX4565  
MAX4566  
1, 2  
LOGIC  
SWITCH  
LOGIC  
3, 4  
LOGIC  
NO-COM  
NC-COM  
0
1
OFF  
ON  
0
1
OFF  
ON  
ON  
OFF  
0
1
OFF  
ON  
ON  
OFF  
SWITCHES SHOWN  
FOR LOGIC “0” INPUT  
Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Qu a d /Du a l, Lo w -Vo lt a g e ,  
Bid ire c t io n a l RF/Vid e o S w it c h e s  
ABSOLUTE MAXIMUM RATINGS  
(Voltages Referenced to GND)  
16-Pin Narrow SO  
V+ ...........................................................................-0.3V, +13.0V  
V- ............................................................................-13.0V, +0.3V  
V+ to V-...................................................................-0.3V, +13.0V  
All Other Pins (Note 1)..........................(V- - 0.3V) to (V+ + 0.3V)  
Continuous Current into Any Terminal..............................±25mA  
Peak Current into Any Terminal  
(derate 8.70mW/°C above +70°C)............................696mW  
16-Pin QSOP (derate 8.3mW/°C above +70°C).......... 667mW  
20-Pin Plastic DIP (derate 8.0mW/°C above +70°C) ...640mW  
20-Pin Wide SO (derate 10.00mW/°C above +70°C) .. 800mW  
20-Pin SSOP (derate 8.0mW/°C above +70°C) .......... 640mW  
Operating Temperature Ranges  
(pulsed at 1ms, 10% duty cycle)..................................±50mA  
ESD per Method 3015.7 ..................................................>2000V  
MAX456_C_ E .....................................................0°C to +70°C  
MAX456_E_ E ..................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Continuous Power Dissipation (T = +70°C) (Note 2)  
A
16-Pin Plastic DIP  
(derate 10.53mW/°C above +70°C)..........................842mW  
Note 1: Voltages on all other pins exceeding V+ or V- are clamped by internal diodes. Limit forward diode current to maximum cur-  
rent rating.  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—Dual Supplies  
(V+ = +4.5V to +5.5V, V- = -4.5V to -5.5V, V  
= 0.8V, V  
= 2.4V, V  
= 0V, T = T  
to T , unless otherwise noted. Typical  
MAX  
GND_  
INL  
INH  
A
MIN  
values are at T = +25°C.)  
A
MIN  
TYP  
(Note 2)  
MAX  
PARAMETER  
ANALOG SWITCH  
SYMBOL  
CONDITIONS  
T
A
UNITS  
V
,
COM_  
,V  
Analog Signal Range  
(Note 3)  
C, E  
V-  
V+  
V
V
NO_ NC_  
/MAX4567  
+25°C  
C, E  
46  
1
60  
80  
2.5  
3
V+ = 4.5V, V- = -4.5V,  
= ±2V, I  
Signal-Path On-Resistance  
R
ON  
V
COM_  
= 10mA  
= 10mA  
COM_  
+25°C  
C, E  
Signal-Path On-Resistance Match  
Between Channels (Note 4)  
V+ = 4.5V, V- = -4.5V,  
= ±2V, I  
R  
ON  
V
COM_  
COM_  
Signal-Path On-Resistance  
Flatness (Note 5)  
V+ = 5V; V- = -5V; V  
= 1V,  
COM_  
R
+25°C  
0.3  
2
FLAT(ON)  
0V, -1V; I  
= 10mA  
COM  
+25°C  
C, E  
-1  
-10  
-1  
0.02  
1
10  
1
NO_, NC_ Off Leakage Current  
(Note 6)  
I
I
,
V+ = 5.5V, V- = -5.5V,  
NO_(OFF)  
nA  
nA  
nA  
±
±
V
COM_  
= ±4.5V, V =  
N_  
4.5V  
4.5V  
NC_(OFF)  
+25°C  
C, E  
0.02  
0.04  
COM_ Off Leakage Current  
(Note 6)  
V+ = 5.5V, V- = -5.5V,  
= ±4.5V, V  
I
COM_(OFF)  
V
COM_  
=
N_  
-10  
-2  
10  
2
+25°C  
C, E  
COM_ On Leakage Current  
(Note 6)  
V+ = 5.5V, V- = -5.5V,  
I
COM_(ON)  
V
COM_  
= ±4.5V  
-20  
20  
LOGIC INPUT  
IN_ Input Logic Threshold High  
IN_ Input Logic Threshold Low  
V
C, E  
C, E  
1.5  
1.5  
2.4  
1
V
V
IN_H  
V
IN_L  
0.8  
-1  
IN_ Input Current Logic High or  
Low  
I
, I  
V
IN_  
= 0.8V or 2.4V  
C, E  
0.03  
µA  
INH_ INL_  
2
_______________________________________________________________________________________  
Qu a d /Du a l, Lo w -Vo lt a g e ,  
Bid ire c t io n a l RF/Vid e o S w it c h e s  
/MAX4567  
ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)  
(V+ = +4.5V to +5.5V, V- = -4.5V to -5.5V, V  
= 0.8V, V  
= 2.4V, V  
= 0V, T = T  
to T  
, unless otherwise noted. Typical  
MAX  
GND_  
INL  
INH  
A
MIN  
values are at T = +25°C.)  
A
MIN  
TYP  
(Note 2)  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
T
UNITS  
A
SWITCH DYNAMIC CHARACTERISTICS  
+25°C  
C, E  
75  
30  
150  
200  
100  
120  
V
= ±3V, V+ = 5V, V- = -5V,  
COM_  
Turn-On Time  
Turn-Off Time  
t
ns  
ns  
ns  
ON  
Figure 3  
+25°C  
C, E  
V
COM_  
= ±3V, V+ = 5V, V- = -5V,  
t
OFF  
Figure 3  
V = ±3V, V+ = 5V, V- = -5V,  
COM_  
Break-Before-Make Time Delay  
(MAX4566/MAX4567 only)  
t
+25°C  
5
30  
BBM  
Q
Figure 4  
Charge Injection  
(Note 3)  
C
= 1.0nF, V  
= 0V, R = 0,  
S
NO_  
L
+25°C  
+25°C  
25  
60  
pC  
pF  
Figure 5  
NO_, NC_ Off Capacitance  
C
V
NO_  
= GND, f = 1MHz, Figure 7  
2.5  
N_(OFF)  
V
= 0V,  
MAX4565,  
MAX4566  
COM_  
COM_ Off Capacitance  
C
f = 1MHz,  
Figure 7  
+25°C  
+25°C  
+25°C  
+25°C  
2.5  
pF  
pF  
dB  
dB  
COM_(OFF)  
MAX4565  
MAX4566  
MAX4567  
MAX4565  
MAX4566  
MAX4567  
MAX4565  
MAX4566  
MAX4567  
6
V
= V  
= 0V,  
COM_  
NO_  
COM_ On Capacitance  
Off Isolation (Note 7)  
C
6
COM_(ON)  
f = 1MHz, Figure 7  
7
-83  
-82  
-83  
-92  
-85  
-87  
350  
R
= 50,  
L
V
ISO  
V
COM_  
= 1V  
,
RMS  
f = 10MHz, Figure 6  
R
= 50, V  
=
COM_  
L
Channel-to-Channel Crosstalk  
(Note 8)  
V
CT  
1V  
Figure 6  
, f = 10MHz,  
RMS  
-3dB Bandwidth (Note 9)  
Distortion  
BW  
Figure 6, R = 50Ω  
+25°C  
+25°C  
MHz  
%
L
V
= 5Vp-p, f < 20kHz,  
IN  
THD+N  
0.02  
600in and out  
POWER SUPPLY  
Power-Supply Range  
V+, V-  
I+  
C, E  
+25°C  
C, E  
-6  
-1  
+6  
1
V
0.05  
0.05  
V+ Supply Current  
V - Supply Current  
V+ = 5.5V, all V = 0V or V+  
IN_  
µA  
-10  
-1  
10  
1
+25°C  
C, E  
I-  
V- = -5.5V  
µA  
-10  
10  
_______________________________________________________________________________________  
3
Qu a d /Du a l, Lo w -Vo lt a g e ,  
Bid ire c t io n a l RF/Vid e o S w it c h e s  
ELECTRICAL CHARACTERISTICS—Single +5V Supply  
(V+ = +4.5V to +5.5V, V- = 0V, V  
= 0.8V, V  
= 2.4V, V  
= 0V, T = T  
to T  
, unless otherwise noted. Typical values are  
MAX  
GND_  
INL  
INH  
A
MIN  
at T = +25°C.)  
A
MIN  
TYP  
(Note 2)  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
T
UNITS  
A
ANALOG SWITCH  
V
,
COM_  
, V  
Analog Signal Range  
(Note 3)  
V+ = 4.5V, V  
+25°C  
0
V+  
V
V
NO_ NC_  
+25°C  
C, E  
68  
2
120  
150  
5
= 3.5V,  
= 3.5V,  
= 1V,  
COM_  
COM_  
COM_  
COM_  
Signal-Path On-Resistance  
R
ON  
I
= 1mA  
COM_  
+25°C  
C, E  
Signal-Path On-Resistance  
Match  
V+ = 4.5V, V  
= 1mA  
R  
ON  
I
COM_  
6
+25°C  
C, E  
-1  
-10  
-1  
1
NO_, NC_ Off Leakage Current  
(Notes 6, 10)  
I
I
,
V+ = 5.5V, V  
= 4.5V  
NO_(OFF)  
nA  
nA  
nA  
V
N_  
NC_(OFF)  
10  
1
+25°C  
C, E  
COM_ Off Leakage Current  
(Notes 6, 10)  
V+ = 5.5V, V  
= 4.5V  
= 1V,  
I
COM_(OFF)  
V
N_  
-10  
-2  
10  
2
+25°C  
C, E  
COM_ On Leakage Current  
(Notes 6, 10)  
I
V+ = 5.5V; V  
= 1V, 4.5V  
COM_(ON)  
COM_  
-20  
20  
LOGIC INPUT  
IN_ Input Logic Threshold High  
IN_ Input Logic Threshold Low  
V
C, E  
C, E  
1.5  
1.5  
2.4  
1
V
V
IN_H  
V
IN_L  
0.8  
-1  
IN_ Input Current Logic High or  
Low  
I
, I  
V
IN_  
= 0.8V or 2.4V  
C, E  
0.001  
µA  
INH_ INL_  
SWITCH DYNAMIC CHARACTERISTICS  
/MAX4567  
+25°C  
C, E  
130  
30  
200  
250  
120  
150  
V
= 3V, V+ = 5V,  
COM_  
Turn-On Time  
Turn-Off Time  
t
ns  
ns  
ON  
Figure 3  
+25°C  
C, E  
V
COM_  
= 3V, V+ = 5V,  
t
OFF  
Figure 3  
V = 3V, V+ = 5V,  
COM_  
Break-Before-Make Time Delay  
(MAX4566/MAX4567 only)  
t
+25°C  
+25°C  
10  
90  
7
ns  
BBM  
Q
Figure 4  
C
R
= 1.0nF, V = 2.5V,  
NO  
= 0, Figure 5  
L
S
Charge Injection  
25  
pC  
R = 50, f = 10MHz,  
L
Off-Isolation  
(Note 7)  
V
ISO  
V
COM_  
= 1V ,  
RMS  
+25°C  
-81  
dB  
Figure 6  
R = 50, f = 10MHz,  
L
Channel-to-Channel Crosstalk  
(Note 8)  
V
CT  
V
COM_  
= 1V ,  
RMS  
+25°C  
+25°C  
-86  
320  
0.05  
dB  
Figure 6  
R
= 50, Figure 6  
-3dB Bandwidth (Note 9)  
BW  
I+  
MHz  
L
POWER SUPPLY  
+25°C  
C, E  
-1  
1
V+ Supply Current  
V+ = 5.5V, all V = 0V or V+  
µA  
IN_  
-10  
10  
4
_______________________________________________________________________________________  
Qu a d /Du a l, Lo w -Vo lt a g e ,  
Bid ire c t io n a l RF/Vid e o S w it c h e s  
/MAX4567  
ELECTRICAL CHARACTERISTICS—Single +3V Supply  
(V+ = +2.7V to +3.6V, V- = 0V, V  
= 0.8V, V  
= 2.4V, V  
= 0V, T = T  
to T  
, unless otherwise noted. Typical values are  
MAX  
GND_  
INL  
INH  
A
MIN  
at T = +25°C.)  
A
MIN  
TYP  
(Note 2)  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
T
UNITS  
A
ANALOG SWITCH  
V
,
COM_  
, V  
Analog Signal Range  
(Note 3)  
V+ = 2.7V, V  
+25°C  
0
V+  
V
V
NO_ NC_  
+25°C  
C, E  
150  
350  
450  
= 1V,  
COM_  
Signal-Path On-Resistance  
R
ON  
I
= 1mA  
COM_  
LOGIC INPUT  
IN_ Input Logic Threshold High  
IN_ Input Logic Threshold Low  
V
(Note 3)  
(Note 3)  
C, E  
C, E  
1.0  
1.0  
2.4  
1
V
V
IN_H  
V
IN_L  
0.8  
-1  
IN_ Input Current Logic High or  
Low  
I
, I  
V
= 0.8V or 2.4V (Note 3)  
C, E  
µA  
INH_ INL_  
IN_  
SWITCH DYNAMIC CHARACTERISTICS (Note 3)  
+25°C  
C, E  
270  
40  
500  
600  
100  
120  
V
= 1.5V, V+ = 2.7V,  
COM_  
Turn-On Time  
Turn-Off Time  
t
ns  
ns  
ns  
ON  
Figure 3 (Note 3)  
+25°C  
C, E  
V
COM_  
= 1.5V, V+ = 2.7V,  
t
OFF  
Figure 3 (Note 3)  
V = 1.5V, V+ = 2.7V,  
COM_  
Break-Before-Make Time Delay  
(MAX4566/MAX4567 only)  
t
+25°C  
10  
120  
BBM  
I+  
Figure 4 (Note 3)  
POWER SUPPLY  
+25°C  
C, E  
-1  
0.05  
1
V+ Supply Current  
V+ = 3.6V, all V = 0V or V+  
µA  
IN_  
-10  
10  
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.  
Note 3: Guaranteed by design.  
Note 4: R  
= R  
- R  
.
ON(MIN)  
ON  
ON(MAX)  
Note 5: Resistance flatness is defined as the difference between the maximum and the minimum value of on-resistance as mea-  
sured over the specified analog signal range.  
Note 6: Leakage parameters are 100% tested at the maximum rated hot temperature and guaranteed by correlation at +25°C.  
Note 7: Off isolation = 20log [V  
/ (V or V )], V  
= output, V or V = input to off switch.  
COM NC NO  
10 COM  
NC  
NO  
Note 8: Between any two switches.  
Note 9: -3dB bandwidth is measured relative to 100kHz.  
Note 10: Leakage testing for single-supply operation is guaranteed by testing with dual supplies.  
_______________________________________________________________________________________  
5
Qu a d /Du a l, Lo w -Vo lt a g e ,  
Bid ire c t io n a l RF/Vid e o S w it c h e s  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V+ = +5V, V- = -5V, T = +25°C, GND = 0V, packages are surface mount, unless otherwise noted.)  
A
ON-RESISTANCE vs. V  
AND TEMPERATURE  
(DUAL SUPPLIES)  
COM  
ON RESISTANCE vs. V  
ON RESISTANCE vs. V  
COM  
COM  
(SINGLE SUPPLY)  
(DUAL SUPPLIES)  
1000  
100  
10  
1000  
100  
10  
65  
55  
45  
V+ = 1.2V,  
V- = -1.2V  
T = +125°C  
A
V+ = 2V  
T = +85°C  
A
V+ = 2V,  
V- = -2V  
V+ = 2.7V,  
V- = -2.7V  
V+ = 2.7V  
V+ = 3.3V  
T = +25°C  
A
V+ = 5V  
35  
25  
15  
5
V+ = 7.5V  
T = 0°C  
A
T = -40°C  
A
V+ = 10V  
V+ = 3.3V,  
V- = -3.3V  
V+ = 5V,  
V- = -5V  
V- = 0V  
0
1
2
3
4
5
6
7
8
9
10  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
-5 -4 -3 -2 -1  
0
1
2
3
4
5
V
COM  
(V)  
V
COM  
(V)  
V
COM  
(V)  
ON-RESISTANCE vs. V  
COM  
ON/OFF-LEAKAGE CURRENT vs.  
TEMPERATURE  
AND TEMPERATURE  
(SINGLE SUPPLY)  
CHARGE INJECTION vs. V  
COM  
10  
1
60  
50  
40  
30  
20  
10  
0
130  
110  
90  
T = +125°C  
A
T = +85°C  
A
ON LEAKAGE  
OFF LEAKAGE  
DUAL  
0.1  
/MAX4567  
SUPPLIES  
T = +25°C  
A
70  
0.01  
0.001  
0.0001  
T = 0°C  
A
SINGLE  
SUPPLY  
50  
T = -55°C  
A
30  
-10  
10  
-5 -4 -3 -2 -1  
V
0
1
2
3
4
5
-75 -50 -25  
0
25 50 75 100 125  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
(V)  
(V)  
COM  
TEMPERATURE (°C)  
V
COM  
POWER-SUPPLY CURRENT  
vs. TEMPERATURE  
ON/OFF TIME vs.  
SUPPLY VOLTAGE  
ON/OFF TIME vs.  
TEMPERATURE  
1
250  
200  
150  
100  
50  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
t
ON  
0.1  
0.01  
t
ON  
I+  
I-  
0.001  
t
OFF  
t
ON  
0.0001  
0.00001  
t
OFF  
t
OFF  
0
-75 -50 -25  
0
25 50 75 100 125  
±2  
±3  
±4  
±5  
±6  
±8  
-75 -50 -25  
0
25 50 75 100 125  
TEMPERATURE (°C)  
V+, V- (V)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
Qu a d /Du a l, Lo w -Vo lt a g e ,  
Bid ire c t io n a l RF/Vid e o S w it c h e s  
/MAX4567  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V+ = +5V, V- = -5V, T = +25°C, GND = 0V, packages are surface mount, unless otherwise noted.)  
A
MAX4567  
LOGIC-LEVEL THRESHOLD VOLTAGE vs.  
V+ SUPPLY VOLTAGE  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
100  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V+ = +5V  
V- = -5V  
SIGNAL = 5Vp-p  
600IN AND OUT  
1
0.1  
0.01  
10  
100  
1k  
10k  
100k  
0
2
4
6
8
10  
12  
FREQUENCY (Hz)  
V+ (V)  
MAX4565  
MAX4566  
FREQUENCY RESPONSE  
FREQUENCY RESPONSE  
MAX14565 TOC11  
MAX4565 TOC12  
120  
100  
80  
0
0
60  
50  
ON LOSS  
-10  
-20  
-10  
-20  
-30  
-40  
-50  
INSERTION LOSS (ON)  
OPPOSITE  
CHANNEL  
CROSSTALK (ON)  
40  
60  
30  
-30  
ADJACENT CHANNEL  
CROSSTALK  
40  
20  
-40  
20  
10  
-50  
ON PHASE  
PHASE (ON)  
0
-60  
0
-60  
-70  
-20  
-40  
-60  
-80  
OFF  
ISOLATION  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
OFF ISOLATION  
-80  
-80  
-90  
-90  
ADJACENT  
CHANNEL  
CROSSTALK  
(ON)  
OPPOSITE  
CHANNEL  
CROSSTALK  
-100  
-100  
-110  
-120  
-100  
-120  
-110  
-120  
1
10  
100  
1000  
0
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
FREQUENCY (MHz)  
MAX4567  
FREQUENCY RESPONSE  
100  
80  
ON LOSS  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
60  
40  
20  
ON PHASE  
0
-20  
-40  
-60  
-80  
OFF  
ISOLATION  
CROSSTALK  
100  
-100  
1
10  
1000  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
Qu a d /Du a l, Lo w -Vo lt a g e ,  
Bid ire c t io n a l RF/Vid e o S w it c h e s  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION*  
MAX4565  
MAX4566  
MAX4567  
1, 10, 11,  
20  
1, 16  
1, 9  
IN_  
Digital Control Input  
3, 6, 8, 13,  
15, 18  
RF and Logic Ground. Grounds are not internally connected to each other,  
and should all be connected to a ground plane (see Grounding section).  
3, 7, 10, 14 4, 6, 12, 14  
GND_  
V+  
16  
5
12  
5
7, 15  
3, 11  
Positive Supply-Voltage Input (analog and digital)  
Negative Supply-Voltage Input. Connect to ground plane for single-supply  
operation.  
V-  
4, 7, 14, 17  
4, 13  
6, 11  
2, 16  
8, 10  
5, 13  
NO_  
NC_  
Analog Switch Normally Open** Terminals  
Analog Switch Normally Closed** Terminals  
Analog Switch Common** Terminals  
2, 9, 12, 19  
2, 8, 9, 15  
COM_  
*
All pins have ESD diodes to V- and V+.  
** NO_ (or NC_) and COM_ pins are identical and interchangeable. Either may be considered as an input or output; signals pass  
equally well in either direction.  
_______________Th e o ry o f Op e ra t io n  
The MAX4565/MAX4566/MAX4567 are high-frequency  
“T” switches. Each T” switch consists of two series  
NORMALLY OPEN SWITCH CONSTRUCTION  
CMOS switches, with a third N-channel switch at the  
N1  
N2  
COM_  
NO_  
D
S
D
S
junction that shunts capacitively-coupled signals to  
ground when the series switches are off. This produces  
s up e rior hig h-fre q ue nc y s ig na l is ola tion whe n the  
switch is turned off.  
/MAX4567  
IN_ COM_ - NO_  
P1  
P2  
0
1
OFF  
ON  
S
D
S
D
V+  
Lo g ic -Le ve l Tra n s la t o rs  
The MAX4565/MAX4566/MAX4567 are constructed as  
high-frequency T” switches, as shown in Figure 1. The  
logic-level input, IN_, is translated by amplifier A1 into a  
V+ to V- logic signal that drives amplifier A2. (Amplifier  
A2 is a n inve rte r for norma lly c los e d s witc he s .)  
Amplifier A2 drives the gates of N-channel MOSFETs  
N1 and N2 from V+ to V-, turning them fully on or off.  
The same signal drives inverter A3 (which drives the  
P-channel MOSFETs P1 and P2) from V+ to V-, turning  
them fully on or off, and drives the N-channel MOSFET  
N3 off and on.  
D
A1  
A2  
A3  
IN_  
N3  
S
GND_  
V-  
V+  
ESD DIODES  
ON GND_, IN_,  
COM_, NO_, AND NC_  
A2  
(NC)  
V-  
Figure 1. T-Switch Construction  
The log ic -le ve l thre s hold is d e te rmine d b y V+ a nd  
GND_. The volta g e on GND_ is us ua lly a t g round  
potential, but it may be set to any voltage between  
(V+ - 2V) and V-. When the voltage between V+ and  
GND_ is less than 2V, the level translators become very  
slow and unreliable. Since individual switches in each  
package have individual GND_ pins, they may be set to  
different voltages. Normally, however, they should all  
be connected to the ground plane.  
S w it c h On Co n d it io n  
When the switch is on, MOSFETs N1, N2, P1, and P2  
are on and MOSFET N3 is off. The signal path is COM_  
to NO_, and because both N-channel and P-channel  
MOSFETs act as pure resistances, it is symmetrical  
(i.e ., s ig na ls ma y p a s s in e ithe r d ire c tion). The off  
MOSFET, N3, has no DC conduction, but has a small  
8
_______________________________________________________________________________________  
Qu a d /Du a l, Lo w -Vo lt a g e ,  
Bid ire c t io n a l RF/Vid e o S w it c h e s  
/MAX4567  
a mount of c a p a c ita nc e to GND_. The four on  
leakages vary as the signal varies. The difference in the  
two diode leakages from the signal path to the V+ and  
V- pins constitutes the analog signal-path leakage cur-  
rent. All analog leakage current flows to the supply ter-  
minals, not to the other switch terminal. This explains  
how both sides of a given switch can show leakage  
currents of either the same or opposite polarity.  
MOSFETs a ls o ha ve c a p a c ita nc e to g round tha t,  
together with the series resistance, forms a lowpass fil-  
ter. All of these capacitances are distributed evenly  
along the series resistance, so they act as a transmis-  
sion line rather than a simple R-C filter. This helps to  
explain the exceptional 350MHz bandwidth when the  
switches are on.  
The re is no c onne c tion b e twe e n the a na log s ig na l  
paths and GND. The analog signal paths consist of an  
N-channel and P-channel MOSFET with their sources  
and drains paralleled and their gates driven out of  
phase with V+ and V- by the logic-level translators.  
Typical attenuation in 50systems is -2.5dB and is  
reasonably flat up to 300MHz. Higher-impedance cir-  
cuits show even lower attenuation (and vice versa), but  
slightly lower bandwidth due to the increased effect of  
the internal and external capacitance and the switchs  
internal resistance.  
V+ and GND power the internal logic and logic-level  
translators, and set the input logic thresholds. The  
log ic -le ve l tra ns la tors c onve rt the log ic le ve ls to  
switched V+ and V- signals to drive the gates of the  
analog switches. This drive signal is the only connec-  
tion between the logic supplies and the analog sup-  
plies. All pins have ESD protection to V+ and to V-.  
The MAX4565/MAX4566/MAX4567 are optimized for  
±5V operation. Using lower supply voltages or a single  
supply increases switching time, increases on-resis-  
tance (and therefore on-state attenuation), and increas-  
es nonlinearity.  
Increasing V- has no effect on the logic-level thresh-  
olds, but it does increase the drive to the P-channel  
switches, reducing their on-resistance. V- also sets the  
negative limit of the analog signal voltage.  
S w it c h Off Co n d it io n  
When the switch is off, MOSFETs N1, N2, P1, and P2  
a re off a nd MOSFET N3 is on. The s ig na l p a th is  
through the off-capacitances of the series MOSFETs,  
but it is shunted to ground by N3. This forms a high-  
pass filter whose exact characteristics are dependent  
on the source and load impedances. In 50systems,  
and below 10MHz, the attenuation can exceed 80dB.  
This value decreases with increasing frequency and  
increasing circuit impedances. External capacitance  
and board layout have a major role in determining over-  
all performance.  
The logic-level thresholds are CMOS and TTL compati-  
ble when V+ is +5V. As V+ is raised, the threshold  
increases slightly; when V+ reaches +12V, the level  
threshold is about 3.1V, which is above the TTL output  
high-level minimum of 2.8V, but still compatible with  
CMOS outputs.  
Bipolar-Supply Operation  
The MAX4565/MAX4566/MAX4567 operate with bipolar  
supplies between ±2.7V and ±6V. The V+ and V- sup-  
plies need not be symmetrical, but their sum cannot  
exceed the absolute maximum rating of 13.0V. Do not  
connect the MAX4565/MAX4566/MAX4567 V+ pin to  
+3V and connect the logic-level input pins to TTL  
logic-level signals. TTL logic-level outputs can  
exceed the absolute maximum ratings, causing  
damage to the part and/or external circuits.  
__________Ap p lic a t io n s In fo rm a t io n  
P o w e r-S u p p ly Co n s id e ra t io n s  
Overview  
The MAX4565/MAX4566/MAX4567 construction is typi-  
cal of most CMOS analog switches. It has three supply  
pins: V+, V-, and GND. V+ and V- are used to drive the  
internal CMOS switches and set the limits of the analog  
voltage on any switch. Reverse ESD protection diodes  
are internally connected between each analog signal  
p in a nd b oth V+ a nd V-. If the volta g e on a ny p in  
exceeds V+ or V-, one of these diodes will conduct.  
During normal operation these reverse-biased ESD  
diodes leak, forming the only current drawn from V-.  
CAUTION:  
The absolute maximum V+ to V- differential  
voltage is 13.0V. Typical “±6-Volt” or “12-Volt”  
supplies with ±10% tolerances can be as high  
as 13.2V. This voltage can damage the  
MAX4565/MAX4566/MAX4567. Even ±5% toler-  
ance supplies may have overshoot or noise  
spikes that exceed 13.0V.  
Virtually all the analog leakage current is through the  
ESD diodes. Although the ESD diodes on a given sig-  
nal pin are identical, and therefore fairly well balanced,  
they are reverse biased differently. Each is biased by  
either V+ or V- and the analog signal. This means their  
_______________________________________________________________________________________  
9
Qu a d /Du a l, Lo w -Vo lt a g e ,  
Bid ire c t io n a l RF/Vid e o S w it c h e s  
Single-Supply Operation  
The MAX4565/MAX4566/MAX4567 operate from a sin-  
gle supply between +2.7V and +12V when V- is con-  
nected to GND. All of the bipolar precautions must be  
observed. Note, however, that these parts are opti-  
mized for ±5V operation, and most AC and DC charac-  
teristics are degraded significantly when departing  
from ±5V. As the overall supply voltage (V+ to V-) is  
lowered, switching speed, on-resistance, off isolation,  
and distortion are degraded. (See Typical Operating  
Characteristics.)  
not a normal logic signal. (The GND_ voltages cannot  
exceed (V+ - 2V) or V-.) Elevating GND_ reduces off  
isolation. For example, using the MAX4565, if GND2–  
GND6 are connected to 0V and GND1 is connected to  
V-, then switches 2, 3, and 4 would be TTL/CMOS com-  
patible, but switch 1 (IN1) could be driven with the rail-  
to-rail output of an op amp operating from V+ and V-.  
Note, however, that IN_ can be driven more negative  
than GND_, as far as V-. GND_ does not have to be  
re move d from 0V whe n IN_ is d rive n from b ip ola r  
sources, but the voltage on IN_ should never exceed V-.  
GND_ should be separated from 0V only if the logic-  
level threshold has to be changed.  
Single-supply operation also limits signal levels and  
interferes with grounded signals. When V- = 0V, AC sig-  
nals are limited to -0.3V. Voltages below -0.3V can be  
clipped by the internal ESD-protection diodes, and the  
parts can be damaged if excessive current flows.  
Any GND_ p in not c onne c te d to 0V s hould b e  
bypassed to the ground plane with a surface-mount  
10nF capacitor to maintain good RF grounding. DC  
current in the IN_ and GND_ pins is less than 1nA, but  
increases with switching frequency.  
Power Off  
When power to the MAX4565/MAX4566/MAX4567 is off  
(i.e., V+ = 0V and V- = 0V), the Absolute Maximum  
Ratings still apply. This means that neither logic-level  
inputs on IN_ nor signals on COM_, NO_, or NC_ can  
exceed ±0.3V. Voltages beyond ±0.3V cause the inter-  
nal ESD-protection diodes to conduct, and the parts  
can be damaged if excessive current flows.  
On the MAX4565 only, two extra ground pins—GND5  
a nd GND6—a re p rovid e d to imp rove is ola tion a nd  
crosstalk. They are not connected to the logic-level cir-  
cuit. These pins should always be connected to the  
ground plane with solid copper.  
AC Ground and Bypassing  
A ground plane is mandatory for satisfactory high-  
frequency operation. (Prototyping using hand wiring or  
wire-wrap boards is strongly discouraged.) Connect all  
0V GND_ pins to the ground plane with solid copper.  
(The GND_ pins extend the high-frequency ground  
through the package wire-frame, into the silicon itself,  
thus improving isolation.) The ground plane should be  
solid metal underneath the device, without interruptions.  
There should be no traces under the device itself. For  
DIP packages, this applies to both sides of a two-  
sided board. Failure to observe this will have a minimal  
effect on the “on” characteristics of the switch at high  
frequencies, but it will degrade the off isolation and  
crosstalk.  
Gro u n d in g  
DC Ground Considerations  
Satisfactory high-frequency operation requires that  
careful consideration be given to grounding. For most  
applications, a ground plane is strongly recom-  
mended, and all GND_ pins should be connected to  
it with solid copper. While the V+ and V- power-supply  
pins are common to all switches in a given package,  
each switch has separate ground pins that are not  
internally connected to each other. This contributes to  
the overall high-frequency performance and provides  
added flexibility in some applications, but it can cause  
problems if it is overlooked. All the GND_ pins have  
ESD diodes to V+ and V-.  
/MAX4567  
Bypass all V+ and V- pins to the ground plane with sur-  
face-mount 10nF capacitors. For DIP packages, mount  
the capacitors as close as possible to the pins on the  
s a me s id e of the b oa rd a s the d e vic e . Do not us e  
feedthroughs or vias for bypass capacitors.  
In systems that have separate digital and analog (sig-  
nal) grounds, connect these switch GND_ pins to ana-  
log ground. Preserving a good signal ground is much  
more important than preserving a digital ground.  
The logic-level inputs, IN_, have voltage thresholds  
determined by V+ and GND_. (V- does not influence  
the logic-level threshold.) With +5V and 0V applied to  
V+ and GND_, the threshold is about 1.6V, ensuring  
compatibility with TTL- and CMOS-logic drivers.  
For s urfa c e -mount p a c ka g e s , b yp a s s c a p a c itors  
should be mounted on the opposite side of the board  
from the device. In this case, use short feedthroughs or  
vias, directly under the V+ and V- pins. Any GND_ pin  
not connected to 0V should be similarly bypassed. If V-  
is 0V, connect it directly to the ground plane with solid  
copper. Keep all leads short.  
The various GND_ pins can be connected to separate  
voltage potentials if any or all of the logic-level inputs is  
10 ______________________________________________________________________________________  
Qu a d /Du a l, Lo w -Vo lt a g e ,  
Bid ire c t io n a l RF/Vid e o S w it c h e s  
/MAX4567  
The MAX4567 has two V+ and two V- pins. Make DC  
S ig n a l Ro u t in g  
Keep all signal leads as short as possible. Separate all  
signal leads from each other and other traces with the  
ground plane on both sides of the board. Where possible,  
use coaxial cable instead of printed circuit board traces.  
connections to only one of each to minimize crosstalk.  
Do not route DC current into one of the V+ or V- pins  
and out the other V+ or V- pin to other devices. The  
second set of V+ and V- pins is for AC bypassing only.  
For dual-supply operation, the MAX4567 should have  
four 10nF bypass capacitors connected to each V+  
and V- pin as close to the package as possible. For sin-  
gle-supply operation, the MAX4567 should have two  
10nF bypass capacitors connected (one to each V+  
pin) as close to the package as possible.  
Bo a rd La yo u t  
IC sockets degrade high-frequency performance and  
should not be used if signal bandwidth exceeds 5MHz.  
Surfa c e -mount p a rts , ha ving s horte r inte rna l le a d  
frames, provide the best high-frequency performance.  
Keep all bypass capacitors close to the device, and  
separate all signal leads with ground planes. Such  
grounds tend to be wedge-shaped as they get closer to  
the device. Use vias to connect the ground planes on  
each side of the board, and place the vias in the apex of  
the wedge-shaped grounds that separate signal leads.  
Logic-level signal lead placement is not critical.  
On the MAX4565, GND5 and GND6 should always be  
connected to the ground plane with solid copper to  
improve isolation and crosstalk.  
V+  
10nF  
V+  
GND5  
1
2
OUT  
1
GND6 MAX4565  
2
COM1  
GND1  
MAX4565  
3
4
3
NO1  
1
2
OUT  
4
50/75Ω  
OUT/IN  
COM2  
GND2  
NO2  
NO3  
NO4  
3
4
MAX4565  
COM3  
GND3  
50/75Ω  
OUT/IN  
ADDRESS  
DECODING  
COM4  
GND4  
IN1  
IN2  
IN3  
IN4  
IN1  
IN2  
IN3  
IN4  
OUT  
1
2
5
TO  
6
ADDITIONAL  
MUXES  
MAX4565  
3
4
7
8
V-  
V-  
10nF  
Figure 2. 4-Channel Multiplexer  
______________________________________________________________________________________ 11  
Qu a d /Du a l, Lo w -Vo lt a g e ,  
Bid ire c t io n a l RF/Vid e o S w it c h e s  
Stray capacitance of traces and the output capacitance  
Mu lt ip le x e r  
With its excellent off isolation, the MAX4565 is ideal for  
us e in hig h-fre q ue nc y vid e o multip le xe rs . Fig ure 2  
shows such an application for switching any one of four  
video inputs to a single output. The same circuit may  
be used as a demultiplexer by simply reversing the sig-  
nal direction.  
of switches placed in parallel reduces bandwidth, so the  
outputs of no more than four individual switches should  
be placed in parallel to maintain a high bandwidth. If  
more than four mux channels are needed, the 4-channel  
circuit should be duplicated and cascaded.  
______________________________________________Te s t Circ u it s /Tim in g Dia g ra m s  
+5V  
10nF  
V+  
0V  
V+  
V
IN_  
50%  
50%  
NO_OR NC_  
3V  
MAX4565  
MAX4566  
MAX4567  
90%  
V
IN_  
V
OUT  
IN_  
COM_  
V-  
V
OUT  
90%  
GND_  
0V  
R = 300  
L
t
t
ON  
OFF  
50Ω  
10nF  
-5V  
ALL GND_ PINS ARE CONNECTED TO GROUND PLANE (OV).  
REPEAT TEST FOR EACH SWITCH.  
V- IS CONNECTED TO GND (OV) FOR SINGLE-SUPPLY OPERATION.  
/MAX4567  
Figure 3. Switching Time  
12 ______________________________________________________________________________________  
Qu a d /Du a l, Lo w -Vo lt a g e ,  
Bid ire c t io n a l RF/Vid e o S w it c h e s  
/MAX4567  
_________________________________Te s t Circ u it s /Tim in g Dia g ra m s (c o n t in u e d )  
10nF +5V  
V+  
* COM3  
* COM2  
3V  
MAX4566  
* N02  
* NC3  
V
IN_  
IN_  
V
OUT  
t
< 20ns  
R
V+  
0V  
GND_  
V-  
t < 20ns  
F
50%  
V
IN_  
R = 300Ω  
L
50Ω  
10nF  
-5V  
80%  
* REPEAT TEST FOR OTHER PAIR OF SWITCHES.  
10nF +5V  
V
OUT  
0V  
t
BBM  
V+  
**NC_  
**NO_  
1V  
ALL GND_ PINS ARE CONNECTED TO GROUND PLANE (OV).  
V+ IS CONNECTED TO GND (OV) FOR SINGLE-SUPPLY OPERATION.  
MAX4567  
V
IN_  
IN_  
**COM_  
V-  
V
OUT  
GND_  
R = 300Ω  
L
50Ω  
10nF  
-5V  
** REPEAT TEST FOR OTHER SWITCH.  
Figure 4. Break-Before-Make Interval (MAX4566/MAX4567 only)  
______________________________________________________________________________________ 13  
Qu a d /Du a l, Lo w -Vo lt a g e ,  
Bid ire c t io n a l RF/Vid e o S w it c h e s  
_________________________________Te s t Circ u it s /Tim in g Dia g ra m s (c o n t in u e d )  
10nF  
+5V  
V+  
V+  
0V  
V
IN_  
NO_ OR NC_  
V
NO  
= 0V  
MAX4565  
MAX4566  
MAX4567  
V
IN_  
V
OUT  
V  
OUT  
IN_  
COM_  
V
OUT  
GND_  
V-  
C = 1000pF  
L
50Ω  
10nF  
V IS THE MEASURED VOLTAGE DUE TO CHARGE TRANSFER  
ERROR Q WHEN THE CHANNEL TURNS OFF.  
OUT  
-5V  
Q = V x C  
OUT  
L
V- IS CONNECTED TO GND (0V) FOR SINGLE-SUPPLY OPERATION.  
Figure 5. Charge Injection  
10nF  
+5V  
V+  
/MAX4567  
V
V
OUT  
OFF ISOLATION = 20log  
ON LOSS = 20log  
IN  
NETWORK  
ANALYZER  
V
50Ω  
50Ω  
OUT  
V
IN  
0V OR V+  
IN_  
V
IN  
NO_  
V
V
OUT  
MAX4565  
MAX4566  
MAX4567  
CROSSTALK = 20log  
IN  
MEAS  
REF  
V
OUT  
COM_  
GND_  
V-  
50Ω  
50Ω  
-5V  
10nF  
MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT IC TERMINALS.  
OFF ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" NO_ OR NC_ TERMINAL ON EACH SWITCH.  
ON LOSS IS MEASURED BETWEEN COM_ AND "ON" NO_ OR NC_TERMINAL ON EACH SWITCH.  
CROSSTALK IS MEASURED FROM ONE CHANNEL TO ALL OTHER CHANNELS.  
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.  
V- IS CONNECTED TO GND (0V) FOR SINGLE-SUPPLY OPERATION.  
Figure 6. On Loss, Off Isolation, and Crosstalk  
14 ______________________________________________________________________________________  
Qu a d /Du a l, Lo w -Vo lt a g e ,  
Bid ire c t io n a l RF/Vid e o S w it c h e s  
/MAX4567  
Te s t Circ u it s /Tim in g  
______________Dia g ra m s (c o n t in u e d )  
_________________Ch ip To p o g ra p h ie s  
MAX4565  
10nF +5V  
V+  
COM1 IN1 IN2 COM2  
0V OR V+  
IN_  
NO_  
NC_  
N.C.  
GND2  
MAX4565  
MAX4566  
MAX4567  
GND1  
NO1  
NO2  
V+  
1MHz  
CAPACITANCE  
ANALYZER  
COM_  
0.082"  
GND6  
V-  
(2.08mm)  
GND_  
V-  
GND5  
NO4  
NO3  
10nF  
GND3  
N.C.  
GND4  
-5V  
ALL GND_ PINS ARE CONNECTED TO GROUND PLANE (0V).  
COM4 IN4 IN3  
COM3  
Figure 7. NO_, NC_, COM_ Capacitance  
0.072"  
(1.83mm)  
MAX4566  
MAX4567  
NO1 IN1 NO2 V+  
COM1 IN1 IN2 COM2  
V-  
N.C.  
GND2  
N.C.  
GND2  
NO2  
GND1  
GND1  
N.C.  
N.C.  
NO1  
V-  
N.C.  
V+  
0.082"  
0.082"  
COM2  
N.C.  
(2.08mm)  
(2.08mm)  
COM1  
N.C.  
N.C.  
NC4  
N.C.  
NC3  
GND3  
V-  
N.C.  
N.C.  
GND4  
N.C.  
V+ NC1 IN2  
NC2  
GND4 COM4 COM3  
GND3  
0.072"  
0.072"  
(1.83mm)  
(1.83mm)  
TRANSISTOR COUNT: 257  
SUBSTRATE INTERNALLY CONNECTED TO V+  
______________________________________________________________________________________ 15  
Qu a d /Du a l, Lo w -Vo lt a g e ,  
Bid ire c t io n a l RF/Vid e o S w it c h e s  
___________________________________________Ord e rin g In fo rm a t io n (c o n t in u e d )  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
20 SSOP  
PART  
TEMP. RANGE  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
16 QSOP  
MAX4565CAP  
MAX4565C/D  
MAX4565EPP  
MAX4565EWP  
MAX4565EAP  
MAX4566CPE  
MAX4566CSE  
MAX4566CEE  
MAX4566C/D  
MAX4566EPE  
MAX4566ESE  
MAX4566EEE  
MAX4567CPE  
MAX4567CSE  
MAX4567CEE  
MAX4567C/D  
MAX4567EPE  
MAX4567ESE  
MAX4567EEE  
Dice*  
16 Plastic DIP  
16 Narrow SO  
16 QSOP  
20 Plastic DIP  
20 Wide SO  
20 SSOP  
Dice*  
16 Plastic DIP  
16 Narrow SO  
16 QSOP  
16 Plastic DIP  
16 Narrow SO  
16 QSOP  
Dice*  
*Contact factory for dice specifications.  
16 Plastic DIP  
16 Narrow SO  
________________________________________________________P a c k a g e In fo rm a t io n  
/MAX4567  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY