MAX456CQH-TD [MAXIM]

Cross Point Switch, 1 Func, 8 Channel, CMOS, PQCC44, PLASTIC, LCC-44;
MAX456CQH-TD
型号: MAX456CQH-TD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Cross Point Switch, 1 Func, 8 Channel, CMOS, PQCC44, PLASTIC, LCC-44

开关
文件: 总12页 (文件大小:100K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2858; Rev 2; 2/94  
8 x 8 Vid e o Cro s s p o in t S w it c h  
MAX456  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Routes Any Input Channel to Any Output Channel  
Switches Standard Video Signals  
The MAX456 is the first monolithic CMOS 8 x 8 video  
crosspoint switch that significantly reduces component  
count, board space, and cost. The crosspoint switch  
contains a digitally controlled matrix of 64 T-switches  
that connect eight video input signals to any, or all, out-  
put channels. Each matrix output connects to eight  
internal, high-speed (250V/µs), unity-gain-stable buffers  
capable of driving 400and 20pF to ±1.3V. For appli-  
c a tions re q uiring inc re a s e d d rive c a p a b ility, the  
MAX456 outp uts c a n b e c onne c te d d ire c tly to two  
MAX470 quad, gain-of-two video buffers, which are  
capable of driving 75loads.  
Serial or Parallel Digital Interface  
Expandable for Larger Switch Matrices  
80dB All-Channel Off Isolation at 5MHz  
8 Internal Buffers with:  
250V/µs Slew Rate, Three-State Output Capability,  
Power-Saving Disable Feature, 35MHz Bandwidth  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
40 Plastic DIP  
44 PLCC  
Three-state output capability and internal, programma-  
ble active loads make it feasible to parallel multiple  
MAX456s and form larger switch matrices.  
MAX456CPL  
MAX456CQH  
MAX456C/D  
Dice*  
In the 40-pin DIP package, crosstalk (70dB at 5MHz) is  
minimized, and board area and complexity are simpli-  
fied by using a straight-through pinout. The analog  
inputs and outputs are on opposite sides, and each  
channel is separated by a power-supply line or quiet  
digital logic line.  
Ordering Information continued on last page.  
* Dice are specified at TA = +25°C, DC parameters only.  
_________________P in Co n fig u ra t io n s  
TOP VIEW  
________________________Ap p lic a t io n s  
Video Test Equipment  
D1/SER OUT  
V+  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
D0/SER IN  
OUT0  
D2  
Video Security Systems  
A2  
A1  
3
Video Editing  
OUT1  
D3  
4
MAX456  
IN0  
A0  
5
________Typ ic a l Ap p lic a t io n Circ u it  
OUT2  
V-  
6
8 INPUT CHANNELS  
IN1  
7
LOAD  
IN2  
MAX470  
OUT3  
AGND  
OUT4  
AGND  
OUT5  
AGND  
OUT6  
V+  
8
A = 2  
V
75  
9
WR  
DGND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
LATCH  
75Ω  
IN3  
DGND  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
MAX456  
IN4  
A2  
A1  
EDGE/LEVEL  
OUTPUT  
SELECT  
A0  
IN5  
V+  
8 X 8  
OUT7  
CE  
T-SWITCH  
MATRIX  
IN6  
INPUT  
SELECT  
OR  
SERIAL  
I/O  
D3  
D2  
SER/PAR  
IN7  
CE  
D1/SER OUT  
D0/SER IN  
LATCH  
WR  
V-  
A = 2  
V
MAX470  
DIP  
PLCC on last page  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
8 x 8 Vid e o Cro s s p o in t S w it c h  
ABSOLUTE MAXIMUM RATINGS  
Total Supply Voltage (V+ to V-) ...........................................+12V  
Positive Supply Voltage V+ Referred to AGND......-0.3V to +12V  
Negative Supply Voltage V- Referred to AGND.....-12V to +0.3V  
DGND Voltage .........................................................AGND ±0.3V  
Buffer Short Circuit to Ground when  
Continuous Power Dissipation (T = +70°C)  
40-Pin Plastic DIP (derate 11.3mW/°C above +70°C)....889mW  
40-Pin CERDIP (derate 20.0mW/°C above +70°C)....1600mW  
44-Pin PLCC (derate 13.3mW/°C above +70°C) .......1066mW  
Operating Temperature Ranges:  
A
Not Exceeding Package Power Dissipation .............Indefinite  
Analog Input Voltage ............................(V+ + 0.3V) to (V- - 0.3V)  
Digital Input Voltage .............................(V+ + 0.3V) to (V- - 0.3V)  
Input Current, Power On or Off  
MAX456C _ _ ......................................................0°C to +70°C  
MAX456E _ _ ...................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10 sec) ............................+300°C  
MAX456  
Digital Inputs.................................................................±20mA  
Analog Inputs ...............................................................±50mA  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = 5.0V, V- = -5.0V, -1.3V V +1.3V; LOAD = +5V; internal load resistors on; AGND = DGND = 0V; T = +25°C,  
IN  
A
unless otherwise noted.)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage Range  
-1.3  
1.3  
V
Internal load  
resistors on, no  
external load,  
T
= +25°C  
0.99  
0.98  
1.0  
1.0  
1.01  
1.02  
A
Voltage Gain  
V/V  
T
A
= T  
to T  
MIN MAX  
V
IN  
= 0V to 1V  
T
= +25°C  
±7  
A
Buffer Offset Voltage  
mV  
T
A
= T  
to T  
MAX  
±12  
MIN  
Offset Voltage Drift  
T
= T  
to T  
MAX  
20  
39  
µV/°C  
V
A
MIN  
Operating Supply Voltage  
±4.5  
±5.5  
45  
T
A
= +25°C  
Supply Current, All Buffers On  
(No External Load)  
mA  
mA  
T
A
= T  
MIN  
to T  
MAX  
60  
T
A
= +25°C  
1.5  
3.0  
4
Supply Current, All Buffers Off  
T
A
= T  
MIN MAX  
to T  
Power-Supply Rejection Ratio  
Analog Input Current  
±4.5V to ±5.5V, DC measurement  
= T to T  
50  
64  
dB  
nA  
T
A
±0.1  
±10  
MIN  
MAX  
Internal load resistors off, all buffers  
Output Leakage Current  
±100  
nA  
off, T = T  
to T  
MAX  
A
MIN  
T
= +25°C  
250  
200  
400  
10  
600  
765  
A
Internal Amplifier Load Resistor  
(LOAD Pin = 5V)  
T
A
= T  
to T  
MIN MAX  
Buffer Output Voltage Swing  
Digital Input Current  
Internal load resistors on, no external load  
= T to T  
±1.3  
V
µA  
T
A
±1  
0.8  
0.4  
MIN  
MAX  
Output Impedance at DC  
Input Logic Low Threshold  
Input Logic High Threshold  
SER OUT Output Logic Low  
SER OUT Output Logic High  
V
2.4  
4
V
I
= 1.6mA  
= -0.4mA  
Serial mode,  
—–  
SER/PAR = 5V  
OL  
V
I
OH  
2
_______________________________________________________________________________________  
8 x 8 Vid e o Cro s s p o in t S w it c h  
MAX456  
ELECTRICAL CHARACTERISTICS  
(V+ = 5.0V, V- = -5.0V, -1.3V V +1.3V, LOAD = +5V, internal load resistors on, AGND = DGND = 0V, T = +25°C,  
IN  
A
unless otherwise noted.)  
PARAMETER  
CONDITIONS  
MIN  
60  
TYP  
MAX  
UNITS  
DYNAMIC SPECIFICATIONS (Note 1)  
Output-Buffer Slew Rate  
Single-Channel Crosstalk  
All-Channel Crosstalk  
All-Channel Off Isolation  
-3dB Bandwidth  
Internal load resistors on, 10pF load  
250  
70  
57  
80  
35  
1.0  
0.5  
0.3  
6
V/µs  
dB  
5MHz, V = 2V (Note 2)  
IN  
P-P  
5MHz, V = 2V (Notes 2, 3)  
dB  
IN  
P-P  
5MHz, V = 2V (Note 2)  
dB  
IN  
P-P  
10pF load, V = 2V (Note 2)  
25  
MHz  
deg  
%
IN  
P-P  
Differential Phase Error  
Differential Gain Error  
Input Noise  
(Note 4)  
(Note 4)  
DC to 40MHz  
1.0  
mV  
RMS  
Input Capacitance  
All buffer inputs grounded  
pF  
Additional capacitance for each out-  
put buffer connected to channel input  
Buffer Input Capacitance  
Output Capacitance  
2
7
pF  
pF  
Output buffer off  
SWITCHING CHARACTERISTICS (Note 1)  
(Fig ure 4, V+ = 5.0V, V- = -5.0V, -1.3V V + 1.3V, LOAD = + 5V, inte rna l loa d re s is tors on, AGND = DGND = 0V,  
IN  
T
A
= T  
to T , unless otherwise noted.)  
MAX  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
ns  
Chip-Enable to Write Setup  
Write Pulse Width High  
Write Pulse Width Low  
t
CE  
t
80  
80  
240  
160  
0
ns  
WH  
t
ns  
WL  
Parallel mode  
32-bit serial mode  
Data Setup  
t
DS  
ns  
Data Hold  
t
ns  
ns  
ns  
ns  
ns  
ns  
DH  
Latch Pulse Width  
t
L
80  
80  
Latch Delay  
t
D
Switch Break-Before-Make Delay  
LATCH Edge to Switch Off  
LATCH Edge to Switch On  
t
t
15  
35  
50  
ON - OFF  
t
LATCH on  
OFF  
t
ON  
Note 1: Guaranteed by design.  
Note 2: See Dynamic Test Circuits on page 11.  
Note 3: 3dB typical crosstalk improvement when R = 0.  
S
Note 4: Input test signal: 3.58MHz sine wave of amplitude 40IRE superimposed on a linear ramp (0 to 100IRE). IRE is a unit of  
video-signal amplitude developed by the International Radio Engineers. 140IRE = 1.0V.  
_______________________________________________________________________________________  
3
8 x 8 Vid e o Cro s s p o in t S w it c h  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
N.C.  
FUNCTION  
DIP  
PLCC  
1, 12, 23, 34  
No connect. Not internally connected.  
——–  
Parallel Data Bit D1 when SER/PAR = 0V. Serial Output for cascading  
——–  
1
2
D1/SER OUT  
multiple parts when SER/PAR = 5V.  
MAX456  
——–  
Parallel Data Bit D0 when SER/PAR = 0V. A Serial Input when  
SER/PAR = 5V.  
2
3
D0/SER IN  
A2, A1, A0  
IN0–IN7  
——–  
3, 4, 6  
4, 5, 7  
Output Buffer Address Lines  
Video lnput Lines  
5, 7, 9, 11,  
13, 15, 17, 19  
6, 8, 10, 13,  
15, 17, 19, 21  
Asynchronous control line. When LOAD = 1, all the 400internal active  
loads are on. When LOAD = 0, external 400loads must be used. The  
buffers MUST have a resistive load to maintain stability.  
8
9
LOAD  
DGND  
Digital Ground Pins. Both DGND pins must have the same potential and  
be bypassed to AGND. DGND should be within ±0.3V of AGND.  
10, 12  
11, 14  
When this control line is high, the 2nd-rank registers are loaded with the  
rising edge of the LATCH line. If this control line is low, the 2nd-rank reg-  
isters are transparant when LATCH is low, passing data directly from the  
1st-rank registers to the decoders.  
———–  
14  
16  
EDGE/LEVEL  
All V+ pins must be tied to each other and bypassed to AGND  
separately (Figure 2).  
16, 26, 40  
18  
18, 29, 44  
20  
V+  
——–  
SER/PAR  
5V = 32-Bit Serial, 0V = 7-Bit Parallel  
Both V- pins must be tied to each other and bypassed to AGND  
separately (Figure 2).  
20, 34  
22, 38  
V-  
WRITE in the serial mode, shifts data in. In the parallel mode, WR loads  
data into the 1st-rank registers. Data is latched on the rising edge.  
21  
24  
WR  
———–  
If EDGE/LEVEL = 5V, data is loaded from the 1st-rank registers to the 2nd-  
———–  
rank registers on the rising edge of LATCH. If EDGE/LEVEL = 0V, data is  
22  
25  
LATCH  
loaded while LATCH = 0V. In addition, data is loaded during the execution  
of parallel-mode functions 1011 through 1110, or if LATCH = 5V during the  
execution of the parallel-mode "software-LATCH" command (1111).  
—–  
—————–  
–  
23  
24  
26  
27  
CE  
Chip Enable. When CE = 0V and CE = 5V, the WR line is enabled.  
–  
CE  
Chip Enable. When CE = 0V and CE = 5V, the WR line is enabled.  
25, 27, 29, 31,  
33, 35, 37, 39  
28, 30, 32, 35,  
37, 39, 41, 43  
OUT7-OUT0  
Output Buffers 7-0 (Note 1)  
Analog Ground must be at 0.0V since the gain resistors of the buffers are  
tied to these 3 pins.  
28, 30, 32  
31, 33, 36  
AGND  
—–  
Parallel Data Bit D3 when SER/ PAR = 0V. When D3 = 0V, D0-D2 specifies  
36  
38  
40  
42  
D3  
D2  
the input channel to be connected to buffer. When D3 = 5V, then D0-D2  
—–  
specify control codes. D3 is not used when SER/PAR = 5V.  
—–  
Parallel Data Bit D2 when SER/ PAR = 0V. Not used when  
—–  
SER/ PAR = 5V.  
Note 1: Buffer inputs are internally grounded with a 1000 or 1001 command from the D3-D0 lines. AGND must be at 0.0V since the  
gain setting resistors of the buffers are internally tied to AGND.  
4
_______________________________________________________________________________________  
8 x 8 Vid e o Cro s s p o in t S w it c h  
MAX456  
_______________De t a ile d De s c rip t io n  
___________________Dig it a l In t e rfa c e  
The desired switch state can be loaded in a 7-bit paral-  
lel-interface mode or 32-bit serial-interface mode (see  
Table 3 and Figures 4-6). All action associated with the  
Ou t p u t Bu ffe rs  
The MAX456 video crosspoint switch consists of 64  
T-switches in an 8 x 8 grid (Figure 1). The 8 matrix out-  
puts are followed by 8 wideband buffers optimized for  
driving 400and 20pF loads. Each buffer has an  
internal active load on the output that can be readily  
shut off via the LOAD input (off when LOAD = 0V). The  
shut-off is useful when two or more MAX456 circuits are  
connected in parallel to create more input channels.  
With more input channels, only one set of buffers can  
be active and only one set of loads can be driven.  
And , whe n a c tive , the b uffe r mus t ha ve e ithe r  
1) an internal load, 2) the internal load of another buffer  
in another MAX456, or 3) an external load.  
WR line occurs on its rising edge. The same is true for  
———–  
the LATCH line if EDGE/LEVEL is high. Otherwise, the  
s e c ond -ra nk re g is te rs up d a te while LATCH is low  
———–  
(when EDGE/LEVEL is low). WR is logically ANDed with  
–  
CE a nd CE to a llow a c tive -hig h or a c tive -low c hip  
enable.  
7 -Bit P a ra lle l Mo d e  
In the parallel-interface mode, the 7 data bits A2-A0  
and D3-D0 specify an output channel (A2-A0) and the  
input channel to which it connects (D3-D0). The data is  
loaded on the rising edge of WR. The 8 input channels  
a re s e le c te d b y 0000 throug h 0111 (D3-D0). The  
remaining 8 codes (1000-1111) control other MAX456  
functions, as listed in Table 1.  
Each MAX456 output can be disabled under logic con-  
trol. When a buffer is disabled, its output enters a high-  
impedance state. In multichip parallel applications, the  
disable function prevents inactive outputs from loading  
lines driven by other devices. Disabling the inactive  
buffers reduces power consumption.  
3 2 -Bit S e ria l-In t e rfa c e Mo d e  
—–  
In serial mode (SER/PAR = high), all first-rank registers  
are loaded with data, making it unnecessary to specify  
an output address (A2, A1, A0). The input data format  
is D3-D0, starting with OUT0 and ending with OUT7 for  
32 total bits. Only codes 0000 through 1010 are valid.  
Code 1010 disables a buffer, while code 1001 enables  
it. After data is shifted into the 32-bit first-rank register,  
it is transferred to the second rank by the LATCH line  
(see Table 2).  
The MAX456 outputs connect easily to MAX470 quad,  
gain-of-two buffers when 75loads must be driven.  
P o w e r-On RES ET  
The MAX456 has an internal power-on reset (POR) cir-  
cuit that remains low for 5µs when power is applied.  
POR also remains low if the total supply voltage is less  
than 4V. The POR disables all buffer outputs at  
power-up, but the switch matrix is not preset to any ini-  
tial condition. The desired switch state should be pro-  
grammed before the buffer outputs are enabled.  
_______________________________________________________________________________________  
5
8 x 8 Vid e o Cro s s p o in t S w it c h  
Table 1. Parallel-Interface Mode Functions  
A2-A0  
D3-D0  
FUNCTION  
0000 to 0111  
Connect the buffer selected by A2-A0 to the input channel selected by D3-D0.  
Connect the buffer selected by A2-A0 to DGND. Note, if the buffer output is on, its output  
is its offset voltage.  
1000  
1011  
1100  
1101  
1110  
MAX456  
Shut off the buffer selected by A2-A0, and retain 2nd-rank contents.  
Turn on the buffer selected by A2-A0, or restore the previously connected channel.  
Turn off all buffers, or leave 2nd-rank registers unchanged.  
Selects  
Output  
Buffer,  
OUT0  
to  
OUT7  
Turn on all buffers, or restore the previously connected channels.  
Send a pulse to the 2nd-rank registers to load them with the contents of the 1st-rank  
registers. When latch is held high, this "software-LATCH" command performs the same  
function as pulsing LATCH low.  
1111  
Do not use these codes in the parallel-interface mode. These codes are for the serial-  
interface mode only.  
1001 and 1010  
Table 2. Serial-Interface Mode Functions  
D3-D0  
FUNCTION  
Connect the selected buffer to the input  
channel selected by D3-D0.  
0000 to 0111  
Connect the input of the selected buffer to  
GND. Note, if the buffer output remains  
on, its input is its offset voltage.  
1000  
1001  
Turn on the selected buffer and connect  
its input to GND. Use this code to turn on  
buffers after power is applied. The default  
power-up state is all buffers disabled.  
Shut off the selected buffer at the speci-  
fied channel, and erase data stored in the  
2nd rank of registers. The 2nd rank now  
holds the command word 1010.  
1010  
Do not use these codes in the serial-inter-  
face mode. They inhibit the latching of the  
2nd-rank registers, which prevents proper  
data loading.  
1011 to 1111  
6
_______________________________________________________________________________________  
8 x 8 Vid e o Cro s s p o in t S w it c h  
MAX456  
IN4  
IN5  
IN1  
IN2  
IN3  
IN6  
IN7  
IN0  
OUTPUT  
BUFFERS  
A = 1  
OUT0  
400  
MAX456  
8 x 8  
SWITCH  
MATRIX  
LOAD  
A = 1  
OUT7  
LATCH  
400Ω  
2nd-RANK REGISTERS  
1st-RANK REGISTERS  
EDGE/LEVEL  
WR  
CE  
SER/PAR  
CE  
V+ V- AGND DGND  
A0 A1 A2  
D0/SER IN  
D2 D3  
D1/SER OUT  
Figure 1. MAX456 Functional Diagram  
Table 3. Input/Output Line Configurations  
SERIAL/  
PARALLEL  
D3  
D2  
D1  
D0  
A2-A0  
COMMENT  
Serial  
Output  
H
X
X
Serial Input  
X
32-Bit Serial Mode  
Output  
Buffer  
Address  
Parallel  
Input  
Parallel  
Input  
Parallel  
Input  
Parallel Mode,  
D0-D2 = Control Code  
L
L
H
L
Output  
Buffer  
Address  
Parallel  
Input  
Parallel  
Input  
Parallel  
Input  
Parallel Mode,  
D0-D2 = Input Address  
Note : X = Don't Care, H = 5V, L = 0V  
_______________________________________________________________________________________  
7
8 x 8 Vid e o Cro s s p o in t S w it c h  
Each 7-bit word updates only one output buffer at a  
________________Typ ic a l Ap p lic a t io n  
time. If several buffers are to be updated, the data is  
individually loaded into the 1st-rank registers. Then, a  
single LATCH pulse is used to reconfigure all channels  
simultaneously.  
Figure 2 shows a typical application of the MAX456 with  
MAX470 quad, gain-of-two buffers at the outputs to  
drive 75loads. This application shows the MAX456  
digital-switch control interface set up in the 7-bit paral-  
lel mode. The MAX456 uses 7 data lines and 2 control  
lines (WR and LATCH). Two additional lines may be  
needed to control CE and LOAD when using multiple  
MAX456s.  
The short Basic program in Figure 3 loads programming  
data into the MAX456 from any IBM PC or compatible.  
It uses the computers “LPT1” output to interface to the  
circuit, then automatically finds the address for LPT1  
and displays a table of valid input values to be used.  
The program does not keep track of previous com-  
mands, but it does display the last data sent to LPT1,  
which is written and latched with each transmission.  
MAX456  
The input/output information is presented to the chip at  
A2-A0 and D3-D0 by a parallel printer port. The data is  
stored in the 1st-rank registers on the rising edge of  
WR. When the LATCH line goes high, the switch con-  
figuration is loaded into the 2nd-rank registers, and all 8  
outputs enter the new configuration at the same time.  
MAX470  
75Ω  
IN0  
OUT0  
5
39  
1
16  
OUT0  
IN0  
A = 2  
V
7
9
37  
35  
33  
31  
3
6
8
14  
11  
9
IN1  
IN2  
OUT1  
OUT2  
OUT3  
IN1  
IN2  
IN3  
OUT1  
OUT2  
OUT3  
75Ω  
11  
13  
8-INPUT  
VIDEO  
CHANNELS  
IN3  
IN4  
IN5  
IN6  
IN7  
OUT4  
OUT5  
OUT6  
OUT7  
CE  
15  
17  
19  
29  
27  
25  
24  
14  
8
MAX456  
V+  
GND  
V-  
10  
2,7,15 4,5,12,13  
-5V  
EDGE/LEVEL  
DB-25  
22  
21  
LOAD  
V+  
V+  
LATCH  
WR  
1
2
40  
26  
14  
+5V  
3
4
5
2
1
38  
36  
6
28, 30, 32  
10, 12  
20  
34  
23  
AGND  
DGND  
D0/SER IN  
D1/SER OUT  
18  
19  
20  
21  
22  
23  
24  
25  
6
7
8
V-  
V-  
CE  
SER/PAR  
V+  
D2  
D3  
A0  
A1  
A2  
-5V  
4
3
18  
16  
+5V  
ALL BYPASS CAPACITORS 0.1µF CERAMIC  
Figure 2. Typical Application Circuit  
8
_______________________________________________________________________________________  
8 x 8 Vid e o Cro s s p o in t S w it c h  
MAX456  
Figure 3. BASIC Program for Loading Data into the MAX456 from a PC Using Figure 2's Circuit  
____________________________________________________________Tim in g Dia g ra m s  
A0-A2  
VALID DATA N-1  
VALID DATA N  
D0-D3  
t
DS  
t
DH  
t
WL  
t
WH  
WR  
t
D
t
L
LATCH  
Figure 4. Write Timing for Serial- and Parallel-Interface Modes  
_______________________________________________________________________________________  
9
8 x 8 Vid e o Cro s s p o in t S w it c h  
_______________________________________________Tim in g Dia g ra m s (c o n t in u e d )  
SEE FIGURE 4 FOR WR  
AND LATCH TIMING  
DATA (N)  
DATA (N + 1)  
DATA (N + 2)  
MAX456  
WR  
LATCH  
FIRST-RANK REGISTER DATA  
DATA (N)  
DATA (N)  
DATA (N + 1)  
DATA (N + 2)  
SECOND-RANK REGISTER DATA  
(EDGE/LEVEL = Low)  
DATA (N + 1)  
SECOND-RANK REGISTER DATA  
(EDGE/LEVEL = High)  
DATA (N)  
DATA (N + 1)  
—–  
Figure 5. Parallel-Interface Mode Format (SER/ PAR = Low)  
SEE TABLE 2 FOR  
INPUT DATA  
INPUT DATA FOR OUT0  
INPUT DATA FOR OUT1 TO OUT6  
INPUT DATA FOR OUT7  
SEE FIGURE 4 FOR WR  
AND LATCH TIMING  
0D3  
0D2  
0D1  
0D0  
1D3  
1D2  
7D3  
7D2  
7D1  
7D0  
WR  
LATCH  
SECOND-RANK REGISTER DATA  
(EDGE/LEVEL = Low)  
DATA VALID  
SECOND-RANK REGISTER DATA  
(EDGE/LEVEL = High)  
DATA VALID  
—–  
Figure 6. 32-Bit Serial-Mode Interface Format (SER/PAR = High)  
10 ______________________________________________________________________________________  
8 x 8 Vid e o Cro s s p o in t S w it c h  
MAX456  
_______________________________________________________Dyn a m ic Te s t Circ u it s  
IN0  
OUT0  
OUT1  
OUT2  
OUT0  
OUT1  
OUT2  
IN0  
V
OUT  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
V
OUT  
IN1  
IN2  
V
OUT  
V
OUT  
IN3  
IN4  
IN5  
IN6  
IN7  
MAX456  
OUT3  
OUT4  
OUT5  
OUT6  
OUT3  
OUT4  
OUT5  
OUT6  
MAX456  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
OUT7  
LOAD  
OUT7  
LOAD  
V
OUT  
+5V  
+5V  
V
IN  
= 2Vp-p @ 5MHz  
V
IN  
= 2Vp-p, SWEEP FREQUENCY  
R = 75Ω  
S
R = 75Ω  
S
-3dB Bandwidth (Notes 1-4)  
All-Channel Off Isolation (Notes 1, 5-8)  
IN0  
IN0  
OUT0  
OUT1  
OUT2  
V
OUT  
OUT0  
V
OUT  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
V
OUT  
OUT1  
OUT2  
75Ω  
V
OUT  
V
OUT  
OUT3  
OUT4  
OUT5  
OUT6  
OUT3  
OUT4  
OUT5  
OUT6  
MAX456  
MAX456  
7x 75Ω  
V
OUT  
V
OUT  
V
OUT  
OUT7  
LOAD  
OUT7  
LOAD  
+5V  
+5V  
V
IN  
= 2Vp-p @ 5MHz  
V
IN  
= 2Vp-p @ 5MHz  
R = 75Ω  
S
R = 75Ω  
S
Single-Channel Crosstalk (Notes 1, 5, 9-11)  
Connect LOAD (pin 8) to +5V (internal 400loads on at all outputs).  
Program any one input to connect to any one output (see Table 1 or 2 for programming codes).  
Turn on buffer at the selected output (see Table 1 or 2).  
All-Channel Crosstalk (Notes 1, 5, 9, 11, 12)  
Note 1:  
Note 2:  
Note 3:  
Note 4:  
Note 5:  
Drive the selected input with V , and measure V  
at the -3dB frequency at the selected output.  
IN  
OUT  
Program each numbered input to connect to the same numbered output (IN0 to OUT0, IN1 to OUT1, etc.).  
See Table 1 or 2 for programming codes.  
Note 6:  
Note 7:  
Note 8:  
Note 9:  
Turn off all output buffers (see Table 1 or 2).  
Drive all inputs with V and measure V  
at any output.  
IN  
OUT  
Isolation (in dB) = 20log (V  
/V ).  
10 OUT IN  
Turn on all output buffers (see Table 1 or 2).  
Note 10: Drive any one input with V and measure V  
at any undriven output.  
IN  
OUT  
Note 11: Crosstalk (in dB) = 20log (V  
/V ).  
10 OUT IN  
Note 12: Drive all but one input with V and measure V  
at the undriven output.  
IN  
OUT  
______________________________________________________________________________________ 11  
8 x 8 Vid e o Cro s s p o in t S w it c h  
____P in Co n fig u ra t io n s (c o n t in u e d )  
__Ord e rin g In fo rm a t io n (c o n t in u e d )  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
40 Plastic DIP  
44 PLCC  
MAX456EPL  
MAX456EQH  
MAX456EJL  
TOP VIEW  
40 CERDIP  
44  
43 42 41 40  
6
5
4
3
2
1
MAX456  
A0  
IN1  
39 OUT2  
38 V-  
7
8
___________________Ch ip To p o g ra p h y  
LOAD  
IN2  
9
37 OUT3  
36 AGND  
10  
DGND 11  
N.C. 12  
35  
34  
33  
32  
OUT4  
N.C.  
MAX456  
IN3 13  
AGND  
OUT5  
DGND 14  
IN4 15  
31 AGND  
30 OUT6  
EDGE/LEVEL 16  
IN5 17  
V+  
IN0  
29  
V+  
IN6  
SER/PAR  
A1  
A2  
18 19 20 21 22 23 24 25 26 27 28  
IN7  
D0/SER IN  
D1/SER OUT  
V-  
V+  
WR  
LATCH  
CE  
CE  
OUT7  
0. 167"  
(4. 242mm)  
OUT0  
D2  
OUT1  
D3  
PLCC  
0. 184"  
(4. 674mm)  
TRANSISTOR COUNT: 3820;  
SUBSTRATE CONNECTED TO V+.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1994 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX456EJL

8 x 8 Video Crosspoint Switch
MAXIM

MAX456EPL

8 x 8 Video Crosspoint Switch
MAXIM

MAX456EQH

8 x 8 Video Crosspoint Switch
MAXIM

MAX456EQH+D

Cross Point Switch, 1 Func, 8 Channel, CMOS, PQCC44, ROHS COMPLIANT, PLASTIC, LCC-44
MAXIM

MAX456EQH-D

暂无描述
MAXIM

MAX456EQH-TD

Cross Point Switch, 1 Func, 8 Channel, CMOS, PQCC44, PLASTIC, LCC-44
MAXIM

MAX456MJL

Cross-Point Switch
MAXIM

MAX457

Dual.70MHz Video Amplifier
MAXIM

MAX4570

Single/Dual.+3V/+5V Dual-Speed Comparators with Auto Standby[MAX975/MAX977/MAX975/MAX977/MAX975/MAX977/MAX975ESA/MAX975ESA-T/MAX975EUA/MAX975EUA-T/MAX977EEE/MAX977EEE-T/MAX977ESD/MAX977ESD-T ]
MAXIM

MAX4570CAI

Serially Controlled, Dual 4x2, Clickless Audio/Video Analog Crosspoint Switches
MAXIM

MAX4570CAI+

Cross Point Switch, 2 Func, 4 Channel, PDSO28, 5.30 X 0.65 MM, ROHS COMPLIANT, SSOP-28
MAXIM

MAX4570CAI+T

Cross Point Switch, 2 Func, 4 Channel, PDSO28, 5.30 X 0.65 MM, ROHS COMPLIANT, SSOP-28
MAXIM