MAX4919B [MAXIM]

Battery Power-Up Logic with Overvoltage and Overcurrent Protection;
MAX4919B
型号: MAX4919B
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Battery Power-Up Logic with Overvoltage and Overcurrent Protection

电池
文件: 总19页 (文件大小:317K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0614; Rev 0; 8/06  
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
General Description  
Features  
The MAX4919B/MAX4920B/MAX4921B overvoltage  
protection controllers protect low-voltage systems  
against high-voltage faults up to +28V. An internal 1.8A  
Input Overvoltage Protection Up to +28V  
Preset Overvoltage Protection Trip Level  
6.38V (MAX4919B)  
(min) pFET with low R  
(100m) switches a battery to  
ON  
5.80V (MAX4920B)  
4.65V (MAX4921B)  
the load and also protects the battery against short-cir-  
cuit faults. When a short circuit occurs, the current  
through the internal pFET is limited for a blanking peri-  
od. If the short condition is present after the blanking  
period, the switch is latched off and remains off until  
one of the input signals (IN, HP_PWR, PWR_ON) is  
cycled. The pFET is turned on by a logic-high voltage  
at PWR_HOLD, HP_PWR, PWR_ON, or IN .  
Adapter/Car-Kit Auto-Selector  
Low-Current Undervoltage Lockout Mode  
Internal 1.8A (min) Battery Switchover FET  
Integrated Low-Battery Detect  
The overvoltage thresholds (OVLO) are preset to  
+6.38V (MAX4919B), +5.80V (MAX4920B), and +4.65V  
(MAX4921B). When the input voltage drops below the  
undervoltage lockout (UVLO) threshold, the devices enter  
a low-current standby mode. In shutdown mode, the  
current is reduced to 0.4µA. The MAX4919B/MAX4920B  
have a +4.27V UVLO threshold, and the MAX4921B has  
a +2.35V UVLO threshold.  
Battery Short-Circuit Protection  
Low-Cost External nMOS Overvoltage FET  
14-Pin TDFN Package (3mm x 3mm)  
Pin Configuration  
TOP VIEW  
The MAX4919B/MAX4920B/MAX4921B are offered in a  
small 14-pin TDFN package (3mm x 3mm) with an  
exposed paddle and are specified over the extended  
-40°C to +85°C temperature range.  
14 13 12 11 10  
9
8
Applications  
Cell Phones  
MAX4919B  
MAX4920B  
MAX4921B  
Digital Still Cameras  
PDAs and Palmtop Devices  
MP3 Players  
*EP  
+
1
2
3
4
5
6
7
TDFN (3mm x 3mm)  
*EXPOSED PADDLE  
+DENOTES LEAD-FREE PACKAGE  
Ordering Information/Selector Guide  
PIN-  
PACKAGE  
PART  
OVLO (V)  
UVLO (V)  
TOP MARK  
PKG CODE  
MAX4919BETD+T  
MAX4920BETD+T  
MAX4921BETD+T  
14 TDFN-EP*  
14 TDFN-EP*  
14 TDFN-EP*  
6.38  
5.80  
4.65  
4.27  
4.27  
2.35  
ABY  
ABZ  
ACA  
T1433-2  
T1433-2  
T1433-2  
Note: All devices are specified over the -40°C to +85°C operating temperature range.  
+Denotes lead-free package.  
*EP = Exposed paddle.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
ABSOLUTE MAXIMUM RATINGS  
IN to GND...............................................................-0.3V to +30V  
GP1, GN1 to GND ..................................................-0.3V to +12V  
IN to GP1................................................................-0.3V to +20V  
BTO to GND ..........................................................-0.3V to +6.1V  
BTI to BTO................................................................-0.3V to +6V  
BTI, ACOK, PWR_ON, EN to GND ...........................-0.3V to +6V  
HP_PWR, ONOK, PWR_HOLD to GND....................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
14-Pin TDFN (derate 18.5mW/°C above +70°C) .......1482mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 5V (MAX4919B/MAX4920B) or V = 4.2V (MAX4921B), V  
= 4V, T = -40°C to +85°C, unless otherwise noted. Typical values  
A
IN  
IN  
BTI  
are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
28  
UNITS  
Input Voltage Range  
V
1.2  
V
IN  
MAX4919B/MAX4920B  
MAX4921B  
77  
75  
120  
110  
22  
Input Supply Current  
I
µA  
µA  
IN  
V
V
V
= 0V; V = 3.9V; MAX4919B/MAX4920B  
10  
EN  
EN  
EN  
IN  
UVLO Supply Current  
I
UVL  
= 0V; V = 2.1V; MAX4921B  
8
18  
IN  
Shutdown Supply Current  
IN Undervoltage Lockout  
I
= 1.6V, V = 3.6V  
0.4  
4.27  
2.35  
2
µA  
V
SHDN  
IN  
MAX4919B/MAX4920B  
MAX4921B  
4.00  
2.20  
4.54  
2.50  
V
V
falling  
UVLO  
IN  
IN  
V
IN Undervoltage Lockout  
Hysteresis  
1
%
V
MAX4919B  
6.00  
5.44  
4.35  
6.38  
5.80  
4.65  
6.76  
6.17  
4.95  
Overvoltage Trip Level  
V
V
rising  
MAX4920B  
MAX4921B  
OVLO  
IN Overvoltage Lockout  
Hysteresis  
1
%
BATTERY SWITCHOVER  
BTI Input Range  
V
2.30  
2.0  
5.50  
2.3  
V
V
BTI  
BTI UVLO  
V
V
V
falling  
falling  
2.15  
1.5  
UVBTI  
BTI  
BTI  
BTI UVLO Hysteresis  
BTI Low-Battery Threshold  
BTI Low-Battery Hysteresis  
%
V
V
2.65  
2.82  
1.5  
3
LVBTI  
%
Adapter out, V  
EN = high  
= high,  
PWR_HOLD  
BTI Supply Current  
7
µA  
µA  
T
A
= +25°C  
2
BTI Shutdown Current  
INTERNAL pFET  
V
= 0V  
BTO  
T
A
= -40°C to +85°C  
2.8  
T
T
= +25°C  
100  
120  
A
V
= 2.7V, I  
= 0.5A  
BTI  
BTI to  
Switch On-Resistance  
Forward-Overload Current Limit  
R
m  
ON  
BTO  
= -40°C to +85°C  
A
I
BTO shorted to GND  
1.8  
A
LIM  
2
_______________________________________________________________________________________  
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V (MAX4919B/MAX4920B) or V = 4.2V (MAX4921B), V  
= 4V, T = -40°C to +85°C, unless otherwise noted. Typical values  
A
IN  
IN  
BTI  
are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GATE DRIVERS  
V
referenced to GND, I  
sourcing 1µA;  
sourcing 1µA;  
GN1  
GN1  
9
10  
MAX4919B/MAX4920B  
GN1 Turn-On Voltage  
V
V
GN1  
V
referenced to GND, I  
GN1  
GN1  
7.8  
8.4  
MAX4921B  
GN1 Pulldown Current  
GP1 Clamp Voltage  
GP1 Pulldown Resistor  
I
V
V
> OVLO, V  
= 5.5V  
GN1  
30  
mA  
V
GPD  
IN  
IN  
V
- V  
when V = 28V  
12.5  
31  
16.5  
51.5  
19.5  
72  
CLAMP  
GP1  
IN  
R
kΩ  
GPD  
LOGIC INPUTS (PWR_HOLD, HP_PWR, PWR_ON, EN)  
Input-High Voltage  
V
V
= 5.50V  
1.5  
V
V
IH  
BTI  
V
= 2.3V for PWR_HOLD, HP_PWR and  
= 3V for PWR_ON  
BTI  
Input-Low Voltage  
V
0.4  
+1  
IL  
EN; V  
BTI  
PWR_HOLD, EN Input Leakage  
Current  
I
EN, PWR_HOLD = GND or 5.5V  
-1  
µA  
LKG  
PWR_ON, HP_PWR Pulldown  
Resistance  
R
IPD  
200  
kΩ  
LOGIC OUTPUTS (ACOK, ONOK)  
Output-Low Voltage  
V
I
= 1mA  
0.4  
1
V
OL  
SINK  
Output-High Leakage Current  
TIMING  
µA  
Time from UVLO < V < OVLO to V  
>
IN  
GN1  
IN Debounce Time  
t
10  
10  
25  
25  
40  
40  
ms  
ms  
ms  
ms  
ms  
ms  
INDBC  
0.3V, C  
= 500pF  
GN1  
Time from V  
> 0.3V to ACOK low,  
GN1  
ACOK Blanking Time  
HP_PWR Debounce Time  
ACOK One-Shot Time  
HP_PWR One-Shot Time  
Current-Limit Blanking Time  
t
BLNKAC  
C
= 500pF  
GN1  
Time for internal pFET to turn on after  
t
10  
25  
40  
HPDBC  
V
> V  
IH  
HP_PWR  
V
= 0V; time for internal pFET to  
PWR_HOLD  
t
488  
488  
4
1220  
1220  
10  
1952  
1952  
16  
1SHAC  
1SHHP  
turn off after ACOK < V (Figure 1)  
OL  
V
= 0V; time for internal pFET to  
PWR_HOLD  
t
turn off after V  
> V (Figure 2)  
IH  
HP_PWR  
V
= 2.7V; V  
shorted to GND; time for  
BTO  
BTI  
t
CLIM  
internal pFET current to reduce to 10mA  
V
= 0.3V to 8V  
GN1  
(MAX4919B/MAX4920B),  
GN1 Turn-On Time  
t
10  
ms  
GON  
V
= 0.3V to 7V (MAX4921B),  
= 500pF  
GN1  
C
GN1  
_______________________________________________________________________________________  
3
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V (MAX4919B/MAX4920B) or V = 4.2V (MAX4921B), V  
= 4V, T = -40°C to +85°C, unless otherwise noted. Typical values  
A
IN  
IN  
BTI  
are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
rising at 1V/µs from 5V to 8V  
MIN  
TYP  
MAX  
UNITS  
V
IN  
(MAX4919B/MAX4920B), or from 4V to 7V  
(MAX4921B); V = 0.3V,  
GN1 Turn-Off Time  
t
6
20  
µs  
GOFF  
OVLO  
ACOK  
GN1  
C
= 500pF  
GN1  
V
V
rising at 1V/µs from 0V to 9V, time from  
IN  
IN  
Initial Overvoltage Fault Delay  
t
1.5  
µs  
= 5V to I  
= 80% of I  
GPD  
GN1  
V
rising at 1V/µs from 5V to 8V  
IN  
(MAX4919B/MAX4920B), or from 4V to 7V  
ACOK Deassertion Delay  
t
5.8  
2
µs  
µs  
(MAX4921B); V  
voltage = 3V; R  
pullup  
= 10k(Figure 3)  
ACOK  
ACOK  
Disable Time  
t
V
= 2.4V, V  
= 0.3V, C  
= 500pF  
DIS  
EN  
GN1  
GN1  
Note 1: All specifications are 100% production tested at T = +25°C, unless otherwise noted. Specifications over T = -40°C to  
A
A
+85°C are guaranteed by design.  
Typical Operating Characteristics  
(V  
= 4V, T = +25°C, unless otherwise noted.)  
BTI  
A
GN1 GATE VOLTAGE  
vs. INPUT VOLTAGE  
GN1 GATE VOLTAGE  
vs. INPUT VOLTAGE  
NORMALIZED BATTERY SWITCH R  
vs. TEMPERATURE  
ON  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
14  
12  
10  
8
14  
MAX4919B  
REFERENCED TO GND  
MAX4921B  
REFERENCED TO GND  
V
V
GN1  
GN1  
12  
10  
8
6
6
4
4
2
2
0
0
2
3
4
5
6
7
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
-40  
-15  
10  
35  
60  
85  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
Typical Operating Characteristics (continued)  
(V  
= 4V, T = +25°C, unless otherwise noted.)  
A
BTI  
NORMALIZED OVLO THRESHOLD  
vs. TEMPERATURE  
CURRENT LIMIT  
vs. TEMPERATURE  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
NORMALIZED UVLO THRESHOLD  
vs. TEMPERATURE  
ADAPTER POWER-UP RESPONSE  
MAX4919/20/21B toc07  
1.020  
V
ADAPTER  
(5V/div)  
MAX4919B  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
V
IN  
(5V/div)  
V
GN1  
(5V/div)  
V
ACOK  
(5V/div)  
V
OUT  
(5V/div)  
10ms/div  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
ADAPTER POWER-UP RESPONSE  
OVERVOLTAGE RESPONSE  
MAX4919/20/21B toc09  
MAX4919/20/21B toc08  
V
ADAPTER  
(5V/div)  
MAX4919B  
MAX4919B  
7V  
5V  
7V  
5V  
V
ADAPTER  
(2V/div)  
V
IN  
(5V/div)  
V
V
IN  
GN1  
(2V/div)  
(5V/div)  
PWR_ON, HP_PWR, PWR_HOLD = 0V  
V
ACOK  
(5V/div)  
V
GN1  
(5V/div)  
V
BTO  
(5V/div)  
V
ACOK  
(5V/div)  
200ms/div  
2µs/div  
_______________________________________________________________________________________  
5
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
Typical Operating Characteristics (continued)  
(V  
= 4V, T = +25°C, unless otherwise noted.)  
BTI  
A
BATTERY-SWITCH TURN-ON RESPONSE  
(PWR_ON RISING)  
UNDERVOLTAGE RESPONSE  
MAX4919/20/21B toc11  
MAX4919/20/21B toc10  
V
PWR_ON  
(5V/div)  
MAX4919B  
C
= C = 0.1µF  
BTO  
BTI  
5V  
3V  
5V  
3V  
V
ADAPTER  
(2V/div)  
V
ONK  
(5V/div)  
V
IN  
(2V/div)  
V
BTI  
(2V/div)  
V
GN1  
(5V/div)  
I
V
BTI  
ACOK  
(5V/div)  
(500mA/div)  
1ms/div  
1µs/div  
BATTERY-SWITCH TURN-ON RESPONSE  
BATTERY-SWITCH TURN-OFF RESPONSE  
(HP_PWR RISING)  
(PWR_ON FALLING)  
MAX4919/20/21B toc13  
MAX4919/20/21B toc12  
V
V
HP_PWR  
(5V/div)  
PWR_ON  
(5V/div)  
C
= C = 0.1µF  
BTO  
BTI  
C
= C = 0.1µF  
BTO  
BTI  
V
BTI  
(2V/div)  
V
ONOK  
(5V/div)  
V
V
BTO  
(2V/div)  
BTO  
(2V/div)  
I
I
BTO  
(500mA/div)  
BTO  
(500mA/div)  
200ms/div  
1ms/div  
BATTERY SWITCH TURN-ON RESPONSE  
(PWR_ON AND PWR_HOLD RISING)  
SHORT-CIRCUIT RESPONSE  
MAX4919/20/21B toc15  
MAX4919/20/21B toc14  
PWR_ON  
(5V/div)  
V
BTI  
(2V/div)  
C
C
= 47µF  
= 0.1µF  
BTI  
BTO  
PWR_HOLD  
(5V/div)  
V
V
BTO  
(2V/div)  
BTO  
(2V/div)  
I
I
BTO  
(500mA/div)  
BTO  
(10A/div)  
400ms/div  
2ms/div  
6
_______________________________________________________________________________________  
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
Pin Description  
PIN  
NAME  
FUNCTION  
p-Channel MOSFET Gate-Drive Output. GP1 pulls the external pFET gate down when the input is above  
ground.  
1
GP1  
Voltage Input. IN powers the charge pump required to turn on GN1. When the correct adapter is  
plugged in, a one-shot turns on the internal pFET for 1.2s, allowing time for the microprocessor (µP) to  
power-up and drive PWR_HOLD high. Bypass IN with a minimum 1µF ceramic capacitor as close as  
possible to the device for 15kV ESD protection. When operating the  
2
IN  
MAX4919B/MAX4920B/MAX4921B with an external pFET at GP1, place the 1µF capacitor to GND as  
close to the drain of the pFET as possible for the 15kV ESD protection. If 15kV ESD protection is not  
required, place a minimum 0.1µF capacitor at IN to GND.  
n-Channel MOSFET Gate-Drive Output. GN1 is the output of an on-chip charge pump. When V  
<
UVLO  
3
4, 5  
6
GN1  
BTI  
V
< V  
, GN1 is driven above the source voltage to turn on the external n-channel MOSFET.  
OVLO  
IN  
Battery Switch Input. BTI powers the internal circuitry. Bypass BTI with a 0.1µF capacitor. Both BTI  
inputs must be externally connected together.  
Car-Kit Detection Input. When a car kit is plugged into HP_PWR, a one-shot turns on the internal pFET  
for 1.2s, allowing time for the µP to power-up and drive PWR_HOLD high.  
HP_PWR  
Power-On Input. Drive PWR_ON high to turn on the internal pFET. The inverse of the PWR_ON logic  
state is represented at the ONOK logic output.  
7
8
9
PWR_ON  
GND  
Ground  
Open-Drain PWR_ON Indicator Output. ONOK is a logic output with the inverse state of the PWR_ON  
input.  
ONOK  
10, 11  
12  
BTO  
Battery Switch Output. Both BTO outputs must be externally connected together.  
PWR_HOLD Power-Hold Input. Drive PWR_HOLD high to turn on internal pFET.  
Open-Drain Adapter Voltage Indicator Output. ACOK pulls low when the adapter voltage is stable  
ACOK  
13  
between UVLO and OVLO for 25ms. Connect a pullup resistor from ACOK to a logic supply.  
Enable Input. Drive EN low for normal operation. Drive EN high to turn off the external MOSFETs and  
enter shutdown mode.  
14  
EP  
EN  
Exposed Paddle. Connect EP to ground.  
Powering the MAX4919B/  
MAX4920B/MAX4921B  
BTI powers the MAX4919B/MAX4920B/MAX4921B inter-  
nal circuitry. BTI also connects internally to a 1.8A (min)  
pFET that conducts an external load to the battery using  
the BTO output. See the Battery Switchover section.  
Detailed Description  
Undervoltage Lockout (UVLO)  
The MAX4919B/MAX4920B have a 4.27V (typ) under-  
voltage threshold (UVLO), while the MAX4921B has  
2.35V (typ) UVLO threshold. When V is less than  
IN  
UVLO, GN1 is held low and ACOK is high impedance.  
GP1 Driver  
When the input voltage goes above ground, GP1 pulls  
low and turns on the pFET. An internal clamp protects  
the pFET by insuring that the GP1 to IN voltage does  
not exceed 19.5V when the input (IN) rises to 28V.  
Overvoltage Lockout Thresholds (OVLO)  
The MAX4919B has a 6.38V (typ) overvoltage threshold  
(OVLO), the MAX4920B has a 5.8V (typ) typical OVLO,  
and the MAX4921B has a 4.65V (typ) OVLO. When V  
IN  
is greater than OVLO, GN1 is held low and ACOK is  
high impedance.  
_______________________________________________________________________________________  
7
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
ADAPTER  
VOLTAGE  
OVLO  
UVLO  
IN  
25ms DEBOUNCE PERIOD  
ACOK  
t
1SHAC  
ACOK  
ONE-SHOT  
OFF  
OFF  
P2  
STATUS  
ON  
Figure 1. ACOK One-Shot Timing Diagram  
GN1 Driver  
ONOK. The ONOK open-drain output is the inverse of  
An internal 5.5V supply powers the on-chip charge  
pump used to drive GN1 above IN, allowing the use of  
a low-cost nFET. The GN1 voltage is approximately two  
times V until V exceeds 5.5V, at which point, GN1  
the PWR_ON input state (see Figure 5). Note that  
ONOK is high impedance when V < V  
, and V  
BTI  
IN  
UVLO  
< 2.82V (typ). If V  
is greater than 2.15V (typ), but  
BTI  
less than 2.82V (typ), PWR_ON and ONOK are dis-  
abled and ONOK pulls high. When BTI rises above  
2.82V (typ) again, PWR_ON is again enabled and  
ONOK goes back to its previous logic level before a  
low condition at BTI (see Figure 6).  
IN  
IN  
clamps to 9.5V (MAX4919B/MAX4920B) or 8.1V  
(MAX4921B).  
ACOK  
ACOK is an active-low open-drain output that asserts  
when V  
<V < V  
for the 25ms debounce  
OVLO  
Battery Switchover  
UVLO  
IN  
period. ACOK deasserts immediately to overvoltage  
and undervoltage faults. Connect a pullup resistor from  
ACOK to the logic I/O voltage of the host system.  
An internal 1.8A (min) pFET with a 100m(typ) R  
ON  
connects BTI to the load at BTO. The internal battery  
switchover FET turns on when either HP_PWR,  
PWR_ON, or PWR_HOLD is high. Note that when BTI  
< 2.15V, the internal switch remains inactive, regard-  
less of the logic control signals.  
PWR_ON  
PWR_ON is one of the logic inputs that enables the  
internal 1.8A switch. Drive PWR_ON high to turn on the  
internal switch. PWR_ON also controls the logic output  
8
_______________________________________________________________________________________  
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
V
OVLO  
IN  
HP_PWR  
t
HPDBC  
t
1SHHP  
GP1  
HP_PWR  
ONE-SHOT  
t
GOFF  
OFF  
OFF  
P2  
STATUS  
t
ACOK  
ON  
80% OF ACOK  
PULLUP VOLTAGE  
ACOK  
Figure 2. HP_PWR One-Shot Timing Diagram  
Figure 3. ACOK Assertion Delay Timing Diagram  
EN  
GP1  
IN  
GN1  
BTI  
25ms  
DEBOUNCER  
CHARGE  
PUMP  
ACOK  
ONOK  
P2  
ONE-SHOT  
ON/OFF  
-CURRENT LIMIT  
- BLANKING TIME  
COUNTER  
PWR_ON  
ONE-SHOT  
PWR_HOLD  
-ON/OFF LOGIC  
BTO  
MAX4919B  
MAX4920B  
MAX4921B  
25ms  
DEBOUNCER  
HP_PWR  
GND  
Figure 4. Functional Diagram  
_______________________________________________________________________________________  
9
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
PWR_HOLD  
PWR_HOLD controls the turn-on of the 1.8A (min) cur-  
rent-limit switch (P2). When a voltage is present at IN,  
and V  
< V < V  
for 25ms, ACOK pulls low  
OVLO  
UVLO  
IN  
PWR_ON  
ONOK  
and issues an internal one-shot pulse that turns on P2  
temporarily for 1.2s (typ). During the 1.2s one-shot peri-  
od, the MAX4919B/MAX4920B/MAX4921B must see a  
low-to-high transition at PWR_HOLD (and PWR_HOLD  
must remain high), for P2 to remain on (see Figure 7).  
P2 turns off when PWR_HOLD and PWR_ON are low,  
and when the HP_PWR and ACOK internal one-shot  
timers have expired.  
Figure 5. ONOK Timing Diagram  
When a voltage at IN is not present, HP_PWR controls  
the turn-on of P2. Upon a low-to-high transition at  
HP_PWR (and HP_PWR remaining high), the  
MAX4919B/MAX4920B/MAX4921B issue an internal  
HP_PWR one-shot signal that turns on P2 temporarily  
for 1.2s (typ). During the 1.2s one-shot period, the  
MAX4919B/MAX4920B/MAX4921B must see a low-to-  
high transition at PWR_HOLD (and PWR_HOLD must  
remain high) for P2 to remain on. P2 turns off when  
PWR_HOLD and PWR_ON are low, and when the  
HP_PWR and ACOK internal one-shot timers have  
expired (see Figure 8).  
BT1  
V
LVBTI  
V
UVBTI  
PWR_ON  
Current Limiting  
The MAX4919B/MAX4920B/MAX4921B feature an inter-  
nal 1.8A (min) current-limiting switch (P2) at BTO. The  
current limit remains in effect throughout BTIs input  
supply-voltage range.  
ONOK  
OFF  
OFF  
The current limit takes care of two situations: when P2 is  
initially turned on, and when P2 is already on and a  
short circuit occurs (see Figure 9). When P2 is turned  
on, the current can be high because BTO = 0 and a  
large load capacitor needs to be charged. The protec-  
tion circuit prevents the load current from exceeding  
the 1.8A (min) current-limit value, and BTO will have a  
smooth turn-on (the larger the capacitor, the slower the  
turn-on). The 10ms blanking time avoids a false fault  
assertion. At the end of the blanking time, if the device  
is still limiting, a fault is asserted and P2 immediately  
turns off. When the switch is already on and a short-cir-  
cuit condition occurs at BTO, the device limits the cur-  
rent. If the fault condition duration is greater than the  
blanking time, P2 turns off.  
ON  
ON  
P2  
Figure 6. BTI Falling and Rising Above Its Thresholds  
Low-Battery Operation  
The MAX4919B/MAX4920B/MAX4921B operate in low-  
battery mode when the battery voltage at BTI is greater  
than 2.15V but less than 2.8V (typ). In low-battery opera-  
tion, PWR_ON does not influence the behavior of the  
internal switch.  
When an adapter and car kit are not present, the internal  
switch is typically controlled by PWR_HOLD. If PWR_ON  
is high (ONOK is low) and BTI falls below 2.8V, ONOK  
pulls high, but the internal switch remains on since  
PWR_HOLD is high. If PWR_ON is high and PWR_HOLD  
Before P2 turns on again, any condition that is attempt-  
ing to turn it on must be first removed, i.e. the one-shot  
(from IN or HP_PWR) must be completed, and PWR_ON  
and PWR_HOLD must be low. If the three conditions are  
satisfied, P2 turns on again only if either IN or  
PWR_HOLD is cycled OFF and ON.  
is low when V  
falls below the 2.8V threshold, the inter-  
BTI  
nal switch turns off immediately. Upon BTI rising above  
2.8V again, PWR_ON is again enabled and ONOK goes  
back to its previous logic level before a low condition at  
BTI occurred.  
10 ______________________________________________________________________________________  
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
ADAPTER  
VOLTAGE  
OVLO  
UVLO  
IN  
25ms DEBOUNCE PERIOD  
ACOK  
1.2s  
ONE-SHOT  
PERIOD  
ACOK  
ONE-SHOT  
PWR_HOLD  
STATUS  
OFF  
OFF  
P2  
ON  
Figure 7. MAX4919B/MAX4920B/MAX4921B Power_Hold Waveform When Voltage at IN is Present  
Note that upon V  
old, the internal switch remains off, irrespective of the  
control signals at HP_PWR, PWR_ON, or PWR_HOLD.  
falling below the 2.15V (min) thresh-  
BTI  
Applications Information  
MOSFET Configuration  
The MAX4919B/MAX4920B/MAX4921B can drive either a  
single n-channel or back-to-back n-channel MOSFET  
(Figure 10). The back-to-back configuration will have  
almost zero reverse current when the adapter is not pre-  
sent or when the adapter voltage is below the undervolt-  
age lockout threshold.  
Thermal Shutdown  
The MAX4919B/MAX4920B/MAX4921B feature thermal  
shutdown circuitry. The internal 1.8A (min) switch turns  
off when the junction temperature exceeds +135°C and  
immediately goes into a fault mode. The device can be  
reset upon the junction temperature dropping below  
+125°C. Before P2 can be turned on again, any condi-  
tion that is attempting to turn it on must be first removed,  
i.e., the one-shot (from IN or HP_PWR) must be complet-  
ed, and PWR_ON and PWR_HOLD must be low. If the  
three conditions are satisfied, P2 turns on again only if  
either IN or PWR_HOLD is cycled OFF and ON.  
If reverse-current leakage is not a concern, a single  
n-channel MOSFET can be used. This approach has  
half the loss of the back-to-back configuration when  
used with similar MOSFET types and is a lower cost  
solution. Note that if the input is actually pulled low, the  
output will be pulled low as well due to the parasitic  
body diode in the MOSFET. If this is a concern, then  
use the back-to-back configuration.  
______________________________________________________________________________________ 11  
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
Table 1. MOSFET Suggestions  
CONFIGURATION/  
PACKAGE  
V (MAX)  
GS  
(V)  
V (MAX)  
DS  
(V)  
R
at 4.5V  
ON  
(m)  
PART  
MANUFACTURER  
143  
(N-FET)  
30  
Complementary  
MOSFET/1206-8  
Si5504DC  
20  
290  
(P-FET)  
-30  
30  
143  
(N-FET)  
Vishay Siliconix  
www.vishay.com  
Si5902DC  
Si1426DH  
Si5435DC  
FDC6561AN  
FDG315N  
FDC658P  
FDC654P  
Dual/1206-8  
Single/µDFN-6  
Single/1206-8  
Dual/SSOT-6  
Single/µDFN-6  
Single/SSOT-6  
Single/SSOT-6  
20  
20  
20  
20  
20  
20  
20  
115  
(N-FET)  
30  
80  
(P-FET)  
-30  
30  
145  
(N-FET)  
160  
(N-FET)  
30  
Fairchild Semiconductor  
www.fairchildsemi.com  
75  
(P-FET)  
-30  
-30  
125  
(P-FET)  
MOSFET Selection  
BTO Bypass Capacitor Considerations  
The MAX4919B/MAX4920B/MAX4921B are designed  
for use with a complementary MOSFET or single  
p-channel and dual back-to-back n-channel MOSFETS.  
In order to guarantee a successful startup of the inter-  
nal p-channel MOSFET, use a capacitance lower than  
C
. If the load capacitance is too large, then  
BTO(MAX)  
In most situations, MOSFETs with R  
specified for  
DS  
current may not have enough time to charge the  
capacitance and the device assumes that there is a  
faulty load condition. The maximum capacitive-load  
value that can be driven by BTO is obtained by the fol-  
lowing formula:  
DS(ON)  
a V  
of 4.5V will work well. Also, the V  
should be  
GS  
30V in order for the MOSFET to withstand the full 28V IN  
range of the MAX4919B/MAX4920B/MAX4921B. Table  
1 shows a selection of MOSFETs which are appropriate  
for use.  
I
× t  
LIM CLIM  
C
IN Bypass Considerations  
For most applications, bypass IN to GND with a 1µF  
ceramic capacitor to enable 15kV ESD protection  
(when GP1 is not utilized). If 15kV is not required,  
place a minimum 0.1µF capacitor at IN to GND. If the  
power source has significant inductance due to long  
lead length, take care to prevent overshoots due to the  
LC tank circuit and provide protection if necessary to  
prevent exceeding the +30V absolute maximum rating  
at IN.  
BTO(MAX)  
V
BTI  
where C  
is the output capacitor at BTO, V  
is  
BTI  
BTO  
the battery voltage, t  
blanking time, and I  
rent-limit value.  
is the minimum current-limit  
is the minimum forward cur-  
CLIM  
CLIM  
12 ______________________________________________________________________________________  
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
Reverse-Polarity Protection  
Figure 11 shows an application where the external  
p-channel MOSFET is added for reverse-polarity protec-  
tion. The reverse-polarity protection works by turning off  
the p-channel MOSFET when the adapter voltage is  
HP_PWR  
t
below ground. The p-channel MOSFET only turns off if  
HPDBC  
the voltage at IN is less than the threshold voltage of the  
p-channel MOSFET. Due to the body diode leakage  
t
1SHHP  
path through the external n-channel MOSFET, the  
reverse-polarity protection operation requires a reverse  
current-limited load. Figure 11 shows a battery charger  
as the load connected to the source of n-channel MOS-  
FET. If the voltage at the load connection (source of the  
n-channel MOSFET) is greater than the drop across the  
n-channel MOSFETs body diode plus the p-channel  
MOSFET threshold voltage, then the p-channel MOSFET  
remains on if the adapter voltage is below ground. If the  
load has reverse-current protection, the voltage at the  
load pulls down and the p-channel MOSFET turns off  
limiting reverse current. If the load allows a large reverse  
current, then this current flows out of the adapter input  
and the reverse-polarity protection is defeated.  
HP_PWR  
ONE-SHOT  
OFF  
OFF  
P2 STATUS  
ON  
PWR_HOLD  
Car-Kit Application  
Figures 13 and 14 illustrate the MAX4921B being uti-  
lized when the car-kit adapter, with built-in charger, is  
plugged in and connected directly to the battery.  
HP_PWR goes through a 25ms debounce period and  
then a 1.2s one-shot is issued.  
Figure 8. MAX4919B/MAX4920B/MAX4921B Power_Hold  
Waveform When Voltage IN is Not Present  
Additional Applications Information  
During this one-shot period, the µP needs to issue a  
PWR_HOLD to keep P2 on before the one-shot period  
expires. The car kit then charges the battery and the  
battery supports the load. Note that the reverse-polarity  
protection p-channel MOSFET cannot be used in this  
application due to the direct connection of the battery  
to the source of the n-channel MOSFET.  
Adapter Application  
Figures 11 and 12 depict the MAX4919B/MAX4920B  
being utilized in an application where the AC adapter  
supplies the input voltage and the car adapter is not  
plugged in. In this case, when the AC adapter (5V) is  
plugged in, the voltage at IN initially makes sure that a  
negative voltage is not present.  
If V remains above the UVLO and below the OVLO  
IN  
ranges for more than 25ms (debouncer), the n-channel  
MOSFET (N1) turns on and after 25ms, ACOK asserts  
low, then a one-shot timer starts that turns P2 on for 1.2s.  
During this duration, the µP needs to issue a PWR_HOLD  
to keep P2 on before the one-shot period expires. The  
adapter then powers the charger to charge the battery  
and the battery supports the load.  
______________________________________________________________________________________ 13  
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
TURN-ON PHASE  
SHORT CIRCUIT  
MAX4919B  
MAX4920B  
MAX4921B  
BTI  
P2  
V
BTO  
I
P2  
BTO  
I
LIM  
I
P2  
t
t
CLIM  
CLIM  
V
ONOK  
Figure 9. MAX4919B/MAX4920B/MAX4921B Current-Limit Diagram  
Chip Information  
PROCESS: BiCMOS  
14 ______________________________________________________________________________________  
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
N
N
OUTPUT  
AC  
ADAPTER  
1µF  
V
IO  
GP1  
IN  
GN1  
BTI  
0.1µF  
MAX4919B  
MAX4920B  
MAX4921B  
µP  
ACOK  
BTO  
GND  
EN  
Figure 10. Back-to-Back External MOSFET Configuration  
OPTIONAL  
P
N
OUT  
AC  
ADAPTER  
CHARGER  
1µF  
0.1µF  
V
IO  
GP1  
IN  
GN1  
BTI  
0.1µF  
V
BAT  
MAX4919B  
MAX4920B  
ACOK  
ONOK  
µP  
DC-DC  
CONVERTER  
BTO  
PWR_HOLD  
PWR_ON  
GND  
EN  
HP_PWR  
V
BAT  
Figure 11. MAX4919B/MAX4920B Always Powered From Battery (Car-Kit Adapter Never Plugged In)  
______________________________________________________________________________________ 15  
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
OVLO  
UVLO  
IN  
25ms DEBOUNCE PERIOD  
ACOK  
1.2s ONE-SHOT PERIOD  
ACOK  
ONE-SHOT  
PWR_HOLD  
OFF  
OFF  
P2  
STATUS  
ON  
ON  
PWR_ON  
ONOK  
Figure 12. MAX4919B/MAX4920B Timing Diagram For Non-Car-Kit Adapter Application  
16 ______________________________________________________________________________________  
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
N
1µF  
V
IO  
GP1  
IN  
GN1  
BTI  
CAR KIT  
WITH CHARGER  
MAX4921B  
P2  
0.1µF  
V
BAT  
NOR'd  
OUTPUT  
ONOK  
µP  
PWR_HOLD  
PWR_ON  
DC-DC  
CONVERTER  
BTO  
HP_PWR  
GND  
EN  
V
BAT  
Figure 13. MAX4920B With Car-Kit Adapter and Built-In Charger Connected  
HP_PWR  
25ms DEBOUNCE PERIOD  
HP_PWR  
1.2s  
ONE-SHOT  
ONE-SHOT PERIOD  
PWR_HOLD  
PWR_ON  
ONOK  
OFF  
P2  
OFF  
STATUS  
ON  
ON  
Figure 14. Timing Diagram For Car-Kit Adapter Application  
______________________________________________________________________________________ 17  
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
Typical Operating Circuits  
N
OUT  
ADAPTER AND  
CHARGER CIRCUITRY  
1µF  
V
IO  
GP1  
IN  
GN1  
BTI  
0.1µF  
V
BAT  
ACOK  
MAX4921B  
µP  
DC-DC  
CONVERTER  
ONOK  
BTO  
PWR_HOLD  
PWR_ON  
GND  
EN  
HP_PWR  
V
BAT  
OPTIONAL  
P
N
OUT  
AC  
ADAPTER  
CHARGER  
0.1µF  
1µF  
V
IO  
GP1  
IN  
GN1  
BTI  
0.1µF  
V
BAT  
MAX4919B  
MAX4920B  
ACOK  
ONOK  
µP  
DC-DC  
CONVERTER  
BTO  
PWR_HOLD  
PWR_ON  
GND  
EN  
HP_PWR  
V
BAT  
18 ______________________________________________________________________________________  
Battery Power-Up Logic with Overvoltage  
and Overcurrent Protection  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
H
21-0137  
2
PACKAGE VARIATIONS  
COMMON DIMENSIONS  
MIN. MAX.  
SYMBOL  
PKG. CODE  
T633-1  
N
6
D2  
1.50–0.10 2.30–0.10 0.95 BSC  
1.50–0.10 2.30–0.10  
E2  
e
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEEC  
b
[(N/2)-1] x e  
1.90 REF  
1.90 REF  
1.95 REF  
1.95 REF  
1.95 REF  
2.00 REF  
2.00 REF  
2.40 REF  
2.40 REF  
0.40–0.05  
0.40–0.05  
0.30–0.05  
0.30–0.05  
0.30–0.05  
A
0.70  
2.90  
2.90  
0.00  
0.20  
0.80  
3.10  
3.10  
0.05  
0.40  
T633-2  
6
D
E
0.95 BSC  
T833-1  
8
1.50–0.10 2.30–0.10 0.65 BSC  
1.50–0.10 2.30–0.10 0.65 BSC  
1.50–0.10 2.30–0.10 0.65 BSC  
T833-2  
8
A1  
L
T833-3  
8
T1033-1  
T1033-2  
T1433-1  
T1433-2  
10  
10  
14  
14  
1.50–0.10 2.30–0.10 0.50 BSC MO229 / WEED-3 0.25–0.05  
k
0.25 MIN.  
0.20 REF.  
1.50–0.10 2.30–0.10  
0.25–0.05  
0.20–0.05  
0.20–0.05  
A2  
0.50 BSC MO229 / WEED-3  
1.70–0.10 2.30–0.10 0.40 BSC  
1.70–0.10 2.30–0.10 0.40 BSC  
- - - -  
- - - -  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
-DRAWING NOT TO SCALE-  
H
21-0137  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19  
© 2006 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX4919BETD+T

Battery Power-Up Logic with Overvoltage and Overcurrent Protection
MAXIM

MAX491C

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers
MAXIM

MAX491C/D

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers
MAXIM

MAX491CPD

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers
MAXIM

MAX491CPD

暂无描述
ROCHESTER

MAX491CSD

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers
MAXIM

MAX491CSD

LINE TRANSCEIVER, PDSO14, SOIC-14
ROCHESTER

MAX491CSD+

暂无描述
MAXIM

MAX491CSD+T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDSO14, 0.150 INCH, SOIC-14
MAXIM

MAX491CSD-T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDSO14, SOIC-14
MAXIM

MAX491E

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers
MAXIM

MAX491ECPA

+15kV ESD-Protected Slew-Rate-Limited Low-Power RS-485/RS-422 Transceivers(122.47 k)
MAXIM