MAX5035AUSA+ [MAXIM]

暂无描述;
MAX5035AUSA+
型号: MAX5035AUSA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

转换器
文件: 总17页 (文件大小:299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2988; Rev 3; 5/09  
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
MAX035  
General Description  
Features  
The MAX5035 easy-to-use, high-efficiency, high-volt-  
age, step-down DC-DC converter operates from an  
input voltage up to 76V and consumes only 270µA qui-  
escent current at no load. This pulse-width modulated  
(PWM) converter operates at a fixed 125kHz switching  
frequency at heavy loads, and automatically switches  
to pulse-skipping mode to provide low quiescent cur-  
rent and high efficiency at light loads. The MAX5035  
includes internal frequency compensation simplifying  
circuit implementation. The device uses an internal low-  
on-resistance, high-voltage, DMOS transistor to obtain  
high efficiency and reduce overall system cost. This  
device includes undervoltage lockout, cycle-by-cycle  
current limit, hiccup mode output short-circuit protec-  
tion, and thermal shutdown.  
Wide 7.5V to 76V Input Voltage Range  
Fixed (3.3V, 5V, 12V) and Adjustable  
(1.25V to 13.2V) Versions  
1A Output Current  
Efficiency Up to 94%  
Internal 0.4Ω High-Side DMOS FET  
270µA Quiescent Current at No Load, 10µA  
Shutdown Current  
Internal Frequency Compensation  
Fixed 125kHz Switching Frequency  
Thermal Shutdown and Short-Circuit Current  
The MAX5035 delivers up to 1A output current. The out-  
put current may be limited by the maximum power dis-  
sipation capability of the package. External shutdown is  
included, featuring 10µA (typ) shutdown current. The  
MAX5035A/B/C versions have fixed output voltages of  
3.3V, 5V, and 12V, respectively, while the MAX5035D  
features an adjustable output voltage from 1.25V to  
13.2V.  
Limit  
8-Pin SO and PDIP Packages  
Ordering Information  
OUTPUT  
VOLTAGE  
(V)  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
MAX5035AUSA  
MAX5035AUPA  
MAX5035AASA  
0°C to +85°C  
0°C to +85°C  
8 SO  
The MAX5035 is available in space-saving 8-pin SO  
and 8-pin plastic DIP packages and operates over the  
automotive (-40°C to +125°C) temperature range.  
8 PDIP  
3.3  
5.0  
-40°C to +125°C 8 SO  
MAX5035AASA/V+ -40°C to +125°C 8 SO  
Applications  
MAX5035BUSA  
MAX5035BUPA  
MAX5035BASA  
0°C to +85°C  
0°C to +85°C  
8 SO  
8 PDIP  
Automotive  
-40°C to +125°C 8 SO  
Consumer Electronics  
Industrial  
MAX5035BASA/V+ -40°C to +125°C 8 SO  
+Denotes lead(Pb)-free/RoHS-compliant package.  
Ordering Information continued at end of data sheet.  
Distributed Power  
Typical Operating Circuit  
Pin Configuration  
V
IN  
7.5V TO 76V  
TOP VIEW  
V
IN  
68μF  
BST  
LX  
0.1μF  
100μH  
MAX5035  
V
5V  
OUT  
BST  
VD  
1
2
3
4
8
7
6
5
LX  
R1  
R2  
D1  
50SQ100  
V
IN  
MAX5035  
ON/OFF  
68μF  
SGND  
FB  
GND  
ON  
FB  
ON/OFF  
VD  
OFF  
SGND  
GND  
0.1μF  
SO/PDIP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
ABSOLUTE MAXIMUM RATINGS  
(Voltages referenced to GND, unless otherwise specified.)  
V Short-Circuit Duration (V 40V)........................Indefinite  
IN  
OUT  
V
.........................................................................-0.3V to +80V  
VD Short-Circuit Duration ..............................................Indefinite  
IN  
SGND ....................................................................-0.3V to +0.3V  
LX.................................................................-0.8V to (V + 0.3V)  
BST ...............................................................-0.3V to (V + 10V)  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin PDIP (derate 9.1mW/°C above +70°C)...............727mW  
8-Pin SO (derate 5.9mW/°C above +70°C)..................471mW  
Operating Temperature Range  
IN  
IN  
IN  
BST (transient < 100ns)................................-0.3V to (V + 15V)  
BST to LX................................................................-0.3V to +10V  
BST to LX (transient < 100ns) ................................-0.3V to +15V  
MAX5035_U_ _ ...................................................0°C to +85°C  
MAX5035_A_ _ ..............................................-40°C to +125°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
ON/OFF........................................................-0.3V to (V + 0.3V)  
IN  
MAX035  
VD...........................................................................-0.3V to +12V  
FB  
MAX5035A/MAX5035B/MAX5035C ...................-0.3V to +15V  
MAX5035D .........................................................-0.3V to +12V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS (MAX5035_U_ _)  
(V = +12V, V  
= +12V, I  
= 0, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C. See the  
IN  
ON/OFF  
OUT  
A
A
Typical Application Circuit.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
7.5  
7.5  
15  
TYP  
MAX  
76.0  
76.0  
76  
UNITS  
MAX5035A  
MAX5035B  
MAX5035C  
MAX5035D  
Input Voltage Range  
Undervoltage Lockout  
V
V
V
IN  
7.5  
76.0  
UVLO  
5.2  
3.3  
V
= 7.5V to 76V,  
IN  
MAX5035A  
MAX5035B  
MAX5035C  
3.185  
4.85  
3.415  
5.15  
I
= 20mA to 1A  
OUT  
V
= 7.5V to 76V,  
IN  
Output Voltage  
V
5.0  
12  
V
OUT  
I
= 20mA to 1A  
= 15V to 76V,  
OUT  
V
IN  
11.64  
1.192  
12.36  
1.250  
I
= 20mA to 1A  
OUT  
Feedback Voltage  
Efficiency  
V
V
V
V
V
= 7.5V to 76V, MAX5035D  
1.221  
86  
V
FB  
IN  
IN  
IN  
IN  
= 12V, I  
= 12V, I  
= 24V, I  
= 0.5A, MAX5035A  
= 0.5A, MAX5035B  
= 0.5A, MAX5035C  
LOAD  
LOAD  
LOAD  
90  
η
94  
%
V
= 12V, V  
= 5V, I  
= 0.5A,  
IN  
OUT  
LOAD  
90  
MAX5035D  
V
V
V
V
V
= 3.5V, V = 7.5V to 76V, MAX5035A  
270  
270  
270  
270  
10  
440  
440  
440  
440  
45  
FB  
IN  
= 5.5V, V = 7.5V to 76V, MAX5035B  
FB  
IN  
Quiescent Supply Current  
I
µA  
Q
= 13V, V = 15V to 76V, MAX5035C  
IN  
FB  
= 1.3V, MAX5035D  
FB  
Shutdown Current  
I
= 0V, V = 7.5V to 76V  
µA  
A
SHDN  
ON/OFF  
IN  
Peak Switch Current Limit  
Switch Leakage Current  
Switch On-Resistance  
I
(Note 1)  
1.30  
1.80  
1
2.50  
LIM  
I
V
= 76V, V  
= 0V, V = 0V  
µA  
Ω
OL  
IN  
ON/OFF  
LX  
R
I
= 1A  
0.40  
0.80  
DS(ON)  
SWITCH  
2
_______________________________________________________________________________________  
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
MAX035  
ELECTRICAL CHARACTERISTICS (continued) (MAX5035_U_ _)  
(V = +12V, V  
= +12V, I  
= 0, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C. See the  
IN  
ON/OFF  
OUT  
A
A
Typical Application Circuit.)  
PARAMETER  
PFM Threshold  
SYMBOL  
CONDITIONS  
Minimum switch current in any cycle  
MAX5035D  
MIN  
55  
TYP  
85  
MAX  
130  
UNITS  
mA  
I
PFM  
FB Input Bias Current  
ON/OFF CONTROL INPUT  
I
-150  
+0.01  
+150  
nA  
B
ON/OFF Input-Voltage Threshold  
ON/OFF Input-Voltage Hysteresis  
ON/OFF Input Current  
OSCILLATOR  
V
Rising trip point  
1.53  
1.69  
100  
10  
1.85  
150  
135  
V
ON/OFF  
V
mV  
nA  
HYST  
I
V
= 0V to V  
ON/OFF IN  
ON/OFF  
Oscillator Frequency  
Maximum Duty Cycle  
VOLTAGE REGULATOR  
Regulator Output Voltage  
Dropout Voltage  
f
109  
6.9  
125  
95  
kHz  
%
OSC  
D
MAX5035D  
MAX  
VD  
V
= 8.5V to 76V, I = 0  
7.8  
2.0  
150  
8.8  
V
V
IN  
L
7.5V V 8.5V, I = 1mA  
IN  
L
Load Regulation  
ΔVD/ΔI  
0 to 5mA  
Ω
VD  
PACKAGE THERMAL CHARACTERISTICS  
SO package (JEDEC 51)  
DIP package (JEDEC 51)  
170  
110  
Thermal Resistance  
(Junction to Ambient)  
θ
°C/W  
JA  
THERMAL SHUTDOWN  
Thermal-Shutdown Junction  
Temperature  
T
+160  
20  
°C  
°C  
SH  
Thermal-Shutdown Hysteresis  
T
HYST  
ELECTRICAL CHARACTERISTICS (MAX5035_A_ _)  
(V = +12V, V  
= +12V, I  
= 0, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. See  
IN  
ON/OFF  
OUT  
A
J
A
the Typical Application Circuit.) (Note 2)  
PARAMETER SYMBOL  
CONDITIONS  
MIN  
7.5  
7.5  
15  
TYP  
MAX  
76.0  
76.0  
76  
UNITS  
MAX5035A  
MAX5035B  
MAX5035C  
MAX5035D  
Input Voltage Range  
V
V
V
IN  
7.5  
76.0  
Undervoltage Lockout  
Output Voltage  
UVLO  
5.2  
3.3  
V
= 7.5V to 76V,  
IN  
MAX5035A  
MAX5035B  
MAX5035C  
3.185  
4.825  
3.415  
5.175  
I
= 20mA to 1A  
OUT  
V
= 7.5V to 76V,  
IN  
V
V
5.0  
OUT  
I
= 20mA to 1A  
= 15V to 76V,  
OUT  
V
IN  
11.58  
1.192  
12  
12.42  
1.250  
I
= 20mA to 1A  
OUT  
Feedback Voltage  
V
V
= 7.5V to 76V, MAX5035D  
IN  
1.221  
V
FB  
_______________________________________________________________________________________  
3
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
ELECTRICAL CHARACTERISTICS (MAX5035_A_ _)  
(V = +12V, V  
= +12V, I  
= 0, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. See  
IN  
ON/OFF  
OUT  
A
J
A
the Typical Application Circuit.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
86  
MAX  
UNITS  
V
V
V
V
= 12V, I  
= 12V, I  
= 24V, I  
= 0.5A, MAX5035A  
= 0.5A, MAX5035B  
= 0.5A, MAX5035C  
IN  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
90  
Efficiency  
η
%
94  
MAX035  
= 12V, V  
= 5V, I  
= 0.5A,  
OUT  
LOAD  
90  
MAX5035D  
V
V
V
V
V
= 3.5V, V = 7.5V to 76V, MAX5035A  
270  
270  
270  
270  
10  
440  
440  
440  
440  
45  
FB  
IN  
= 5.5V, V = 7.5V to 76V, MAX5035B  
FB  
IN  
Quiescent Supply Current  
I
µA  
Q
= 13V, V = 15V to 76V, MAX5035C  
IN  
FB  
= 1.3V, MAX5035D  
FB  
Shutdown Current  
I
= 0V, V = 7.5V to 76V  
µA  
A
SHDN  
ON/OFF  
IN  
Peak Switch Current Limit  
Switch Leakage Current  
Switch On-Resistance  
PFM Threshold  
I
(Note 1)  
1.30  
1.80  
1
2.50  
LIM  
I
V
= 76V, V  
= 0V, V = 0V  
µA  
Ω
OL  
IN  
ON/OFF  
LX  
R
I
= 1A  
0.40  
85  
0.80  
130  
DS(ON)  
SWITCH  
I
Minimum switch current in any cycle  
MAX5035D  
55  
mA  
nA  
PFM  
FB Input Bias Current  
ON/OFF CONTROL INPUT  
ON/OFF Input-Voltage Threshold  
ON/OFF Input-Voltage Hysteresis  
ON/OFF Input Current  
OSCILLATOR  
I
-150  
+0.01  
+150  
B
V
Rising trip point  
1.50  
1.69  
100  
10  
1.85  
150  
137  
V
ON/OFF  
V
mV  
nA  
HYST  
I
V
= 0V to V  
ON/OFF IN  
ON/OFF  
Oscillator Frequency  
Maximum Duty Cycle  
VOLTAGE REGULATOR  
Regulator Output Voltage  
Dropout Voltage  
f
105  
6.5  
125  
95  
kHz  
%
OSC  
D
MAX5035D  
= 8.5V to 76V, I = 0  
MAX  
VD  
V
7.8  
2.0  
150  
9.0  
V
V
IN  
L
7.5V V 8.5V, I = 1mA  
IN  
L
Load Regulation  
ΔVD/ΔI  
0 to 5mA  
Ω
VD  
PACKAGE THERMAL CHARACTERISTICS  
SO package (JEDEC 51)  
DIP package (JEDEC 51)  
170  
110  
Thermal Resistance  
(Junction to Ambient)  
θ
°C/W  
JA  
THERMAL SHUTDOWN  
Thermal-Shutdown Junction  
Temperature  
T
+160  
20  
°C  
°C  
SH  
Thermal-Shutdown Hysteresis  
T
HYST  
Note 1: Switch current at which current limit is activated.  
Note 2: All limits at -40°C are guaranteed by design, not production tested.  
4
_______________________________________________________________________________________  
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
MAX035  
Typical Operating Characteristics  
(V = 12V, V  
IN  
= 12V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. See the Typical  
A A  
ON/OFF  
Application Circuit, if applicable.)  
V
vs. TEMPERATURE  
V
vs. TEMPERATURE  
OUT  
OUT  
(MAX5035AASA, V  
= 3.3V)  
(MAX5035DASA, V  
= 5V)  
OUT  
OUT  
3.40  
3.36  
3.32  
3.28  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
3.40  
3.36  
3.32  
3.28  
I
= 0.1A  
I
= 0.1A  
OUT  
OUT  
I
= 1A  
OUT  
I
= 1A  
OUT  
I
= 0.1A  
OUT  
I
= 1A  
OUT  
3.24  
3.20  
3.24  
3.20  
25  
75  
125  
100  
150  
-50 -25  
0
50  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
5
20  
35  
50  
65  
80  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
LOAD REGULATION  
(MAX5035AASA, V = 3.3V)  
LINE REGULATION  
(MAX5035DASA, V  
= 5V)  
OUT  
OUT  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
3.40  
5.10  
5.05  
5.00  
4.95  
4.90  
V
= 76V  
IN  
3.36  
3.32  
3.28  
3.24  
3.20  
V
IN  
= 7.5V, 24V  
V
IN  
= 24V  
I
= 0.1A  
OUT  
V
IN  
= 7.5V  
I
= 1A  
OUT  
V
IN  
= 76V  
400  
5
20  
35  
50  
65  
80  
0
200  
400  
600  
(mA)  
800  
1000  
0
200  
600  
(mA)  
800  
1000  
INPUT VOLTAGE (V)  
I
I
LOAD  
LOAD  
_______________________________________________________________________________________  
5
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
(V = 12V, V  
IN  
= 12V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. See the Typical  
ON/OFF  
A
A
Application Circuit, if applicable.)  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
(MAX5035DASA, V  
= 12V)  
(MAX5035AASA, V  
= 3.3V)  
(MAX5035DASA, V  
= 5V)  
OUT  
OUT  
OUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
MAX035  
V
= 15V  
IN  
V
= 7.5V  
V = 7.5V  
IN  
IN  
V
= 24V  
IN  
V
= 12V  
V = 12V  
IN  
IN  
V
= 48V  
IN  
V
= 24V  
V = 24V  
IN  
IN  
V
= 76V  
IN  
V
= 48V  
V = 48V  
IN  
IN  
V
IN  
= 76V  
V
IN  
= 76V  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUTPUT CURRENT LIMIT  
vs. TEMPERATURE  
OUTPUT CURRENT LIMIT  
vs. INPUT VOLTAGE  
QUIESCENT SUPPLY CURRENT  
vs. TEMPERATURE  
2.0  
1.5  
1.0  
0.5  
0
2.0  
350  
320  
290  
260  
230  
200  
1.7  
1.4  
1.1  
0.8  
0.5  
MAX5035DASA  
MAX5035DASA  
= 5V  
V
OUT  
= 5V  
V
OUT  
5% DROP IN V  
OUT  
5% DROP IN VOUT  
-50 -25  
0
25 50 75 100 125 150  
25  
75  
125  
100  
150  
-50 -25  
0
50  
5
20  
35  
50 65  
80  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
QUIESCENT SUPPLY CURRENT  
vs. INPUT VOLTAGE  
SHUTDOWN CURRENT vs. INPUT VOLTAGE  
25  
350  
320  
290  
260  
230  
200  
20  
16  
12  
8
20  
15  
10  
5
4
0
0
25  
75  
125  
100  
150  
-50 -25  
0
50  
6
16  
26  
36  
46  
56  
66  
76  
6
16  
26  
36  
46  
56  
66  
76  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
6
_______________________________________________________________________________________  
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
MAX035  
Typical Operating Characteristics (continued)  
(V = 12V, V  
IN  
= 12V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. See the Typical  
ON/OFF  
A
A
Application Circuit, if applicable.)  
MAX5035DASA  
LOAD-TRANSIENT RESPONSE  
OUTPUT VOLTAGE  
vs. INPUT VOLTAGE  
MAX5035DASA  
LOAD-TRANSIENT RESPONSE  
MAX5035 toc17  
MAX5035 toc18  
15  
MAX5035DASA  
V
= 5V  
V
OUT  
= 5V  
OUT  
V
V
= 12V  
= V  
OUT  
/
12  
9
ON OFF  
IN  
A
B
A
B
6
I
= 1A  
OUT  
3
I
= 0.3A  
OUT  
I
= 0  
9
OUT  
0
0
3
6
12  
15  
400μs/div  
400μs/div  
V
IN  
(V)  
A: V , 200mV/div, AC-COUPLED  
OUT  
A: V , 200mV/div, AC-COUPLED  
OUT  
B: I , 500mA/div, 0.1A TO 1A  
OUT  
B: I , 500mA/div, 0.5A TO 1A  
OUT  
MAX5035DASA  
LOAD-TRANSIENT RESPONSE  
MAX5035DASA LX WAVEFORMS  
MAX5035DASA LX WAVEFORMS  
MAX5035 toc20  
MAX5035 toc21  
MAX5035 toc19  
V
= 5V  
OUT  
A
A
A
0
0
B
0
B
0
B
4μs/div  
4μs/div  
400μs/div  
A: SWITCH VOLTAGE (LX PIN), 20V/div (V = 48V)  
IN  
A: SWITCH VOLTAGE (LX PIN), 20V/div (V = 48V)  
IN  
A: V , 200mV/div, AC-COUPLED  
OUT  
B: I , 500mA/div, 0.1A TO 0.5A  
OUT  
B: INDUCTOR CURRENT, 500mA/div (I  
= 1A)  
B: INDUCTOR CURRENT, 200mA/div (I  
= 100mA)  
OUT  
OUT  
_______________________________________________________________________________________  
7
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
(V = 12V, V  
IN  
= 12V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. See the Typical  
ON/OFF  
A
A
Application Circuit, if applicable.)  
MAX5035DASA STARTUP WAVEFORM  
MAX5035DASA LX WAVEFORMS  
(I = 0)  
O
MAX5035 toc23  
MAX5035 toc22  
A
B
MAX035  
A
0
0
0
B
0
1ms/div  
4μs/div  
A: V  
ON/OFF  
, 2V/div  
A: SWITCH VOLTAGE (LX PIN), 20V/div (V = 48V)  
IN  
B: V , 2V/div  
OUT  
B: INDUCTOR CURRENT, 200mA/div (I  
= 0)  
OUT  
MAX5035DASA STARTUP WAVEFORM  
PEAK SWITCH CURRENT LIMIT  
vs. INPUT VOLTAGE  
(I = 1A)  
O
MAX5035 toc24  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
A
B
0
0
MAX5035DASA  
V
OUT  
= 5V  
5% DROP IN V  
OUT  
1ms/div  
6
16  
26  
36  
46  
56  
66  
76  
INPUT VOLTAGE (V)  
A: V  
ON/OFF  
, 2V/div  
B: V , 2V/div  
OUT  
8
_______________________________________________________________________________________  
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
MAX035  
Pin Description  
PIN  
1
NAME  
BST  
FUNCTION  
Boost Capacitor Connection. Connect a 0.1µF ceramic capacitor from BST to LX.  
Internal Regulator Output. Bypass VD to GND with a 0.1µF ceramic capacitor.  
Internal Connection. SGND must be connected to GND.  
2
VD  
3
SGND  
Output Sense Feedback Connection. For fixed output voltage (MAX5035A, MAX5035B, MAX5035C),  
connect FB to V . For adjustable output voltage (MAX5035D), use an external resistive voltage-divider to  
OUT  
4
FB  
set V  
. V regulating set point is 1.22V.  
OUT FB  
Shutdown Control Input. Pull ON/OFF low to put the device in shutdown mode. Drive ON/OFF high for  
normal operation.  
5
ON/OFF  
6
7
8
GND  
Ground  
V
Input Voltage. Bypass V to GND with a low ESR capacitor as close to the device as possible.  
IN  
IN  
LX  
Source Connection of Internal High-Side Switch  
Block Diagram  
V
IN  
ON/OFF  
ENABLE  
REGULATOR  
(FOR ANALOG)  
I
CPFM  
CILIM  
REF-PFM  
1.69V  
HIGH-SIDE  
CURRENT  
SENSE  
REGULATOR  
(FOR DRIVER)  
VD  
OSC  
V
RAMP  
REF  
I
REF-LIM  
BST  
MAX5035  
CLK  
CONTROL  
LOGIC  
FB  
RAMP  
R
h
TYPE 3  
COMPENSATION  
x1  
THERMAL  
SHUTDOWN  
CPWM  
V
R
REF  
l
EAMP  
GND  
LX  
SGND  
_______________________________________________________________________________________  
9
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
0.1µF, 16V ceramic capacitor located as close to the  
device as possible.  
Detailed Description  
The MAX5035 step-down DC-DC converter operates  
from a 7.5V to 76V input voltage range. A unique volt-  
age-mode control scheme with voltage feed-forward  
and an internal switching DMOS FET provides high effi-  
ciency over a wide input voltage range. This pulse-  
width modulated converter operates at a fixed 125kHz  
switching frequency. The device also features automat-  
ic pulse-skipping mode to provide low quiescent cur-  
rent and high efficiency at light loads. Under no load,  
the MAX5035 consumes only 270µA, and in shutdown  
mode, consumes only 10µA. The MAX5035 also fea-  
tures undervoltage lockout, hiccup mode output short-  
circuit protection, and thermal shutdown.  
On startup, an internal low-side switch connects LX to  
ground and charges the BST capacitor to VD. Once the  
BST capacitor is charged, the internal low-side switch  
is turned off and the BST capacitor voltage provides  
the necessary enhancement voltage to turn on the  
high-side switch.  
MAX035  
Thermal-Overload Protection  
The MAX5035 features integrated thermal overload pro-  
tection. Thermal overload protection limits total power  
dissipation in the device, and protects the device in the  
event of a fault condition. When the die temperature  
exceeds +160°C, an internal thermal sensor signals the  
shutdown logic, turning off the internal power MOSFET  
and allowing the IC to cool. The thermal sensor turns the  
internal power MOSFET back on after the IC’s die tem-  
perature cools down to +140°C, resulting in a pulsed  
output under continuous thermal overload conditions.  
Shutdown Mode  
Drive ON/OFF to ground to shut down the MAX5035.  
Shutdown forces the internal power MOSFET off, turns  
off all internal circuitry, and reduces the V supply cur-  
IN  
rent to 10µA (typ). The ON/OFF rising threshold is  
1.69V (typ). Before any operation begins, the voltage at  
ON/OFF must exceed 1.69V (typ). The ON/OFF input  
has 100mV hysteresis.  
Applications Information  
Setting the Output Voltage  
The MAX5035A/B/C have preset output voltages of 3.3V,  
5.0V, and 12V, respectively. Connect FB to the preset  
output voltage (see the Typical Operating Circuit).  
Undervoltage Lockout (UVLO)  
Use the ON/OFF function to program the UVLO thresh-  
old at the input. Connect a resistive voltage-divider  
The MAX5035D offers an adjustable output voltage. Set  
the output voltage with a resistive voltage-divider con-  
nected from the circuit’s output to ground (Figure 1).  
Connect the center node of the divider to FB. Choose  
R4 less than 15kΩ, then calculate R3 as follows:  
from V to GND with the center node to ON/OFF as  
IN  
shown in Figure 1. Calculate the threshold value by  
using the following formula:  
R1  
R2  
VUVLO(TH) = 1 +  
× 1.85V  
(V  
1.22)  
1.22  
OUT  
R3 =  
× R4  
The minimum recommended V  
is 6.5V, 7.5V,  
UVLO(TH)  
and 13V for the output voltages of 3.3V, 5V, and 12V,  
respectively. The recommended value for R2 is less  
than 1MΩ.  
V
IN  
7.5V TO 76V  
If the external UVLO threshold-setting divider is not  
used, an internal undervoltage-lockout feature monitors  
68μF  
V
5V  
OUT  
100μH  
V
the supply voltage at V and allows operation to start  
IN  
IN  
LX  
R1  
R2  
when V rises above 5.2V (typ). This feature can be  
IN  
0.1μF  
C
68μF  
OUT  
D1  
50SQ100  
used only when V rise time is faster than 2ms. For  
IN  
ON/OFF  
BST  
slower V rise time, use the resistive-divider at  
IN  
R3  
ON/OFF.  
MAX5035D  
41.2kΩ  
FB  
Boost High-Side Gate Drive (BST)  
Connect a flying bootstrap capacitor between LX and  
BST to provide the gate-drive voltage to the high-side  
N-channel DMOS switch. The capacitor is alternately  
charged from the internally regulated output voltage VD  
and placed across the high-side DMOS driver. Use a  
VD  
R4  
SGND GND  
13.3kΩ  
0.1μF  
Figure 1. Adjustable Output Voltage  
10 ______________________________________________________________________________________  
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
MAX035  
The MAX5035 features internal compensation for opti-  
mum closed-loop bandwidth and phase margin. With  
the preset compensation, it is strongly advised to sense  
the output immediately after the primary LC.  
drop (V ) less than 0.45V at +25°C and maximum load  
FB  
current to avoid forward biasing of the internal body  
diode (LX to ground). Internal body diode conduction  
may cause excessive junction temperature rise and  
thermal shutdown. Use Table 1 to choose the proper  
rectifier at different input voltages and output current.  
Inductor Selection  
The choice of an inductor is guided by the voltage dif-  
ference between V and V  
, the required output  
OUT  
Input Bypass Capacitor  
The discontinuous input-current waveform of the buck  
converter causes large ripple currents in the input  
capacitor. The switching frequency, peak inductor cur-  
rent, and the allowable peak-to-peak voltage ripple that  
reflects back to the source dictate the capacitance  
requirement. The MAX5035 high switching frequency  
allows the use of smaller-value input capacitors.  
IN  
current, and the operating frequency of the circuit. Use  
an inductor with a minimum value given by:  
(V V  
) × D  
IN  
OUT  
L =  
0.3 × I  
× f  
SW  
OUTMAX  
where:  
The input ripple is comprised of ΔV (caused by the  
Q
V
V
OUT  
capacitor discharge) and ΔV  
(caused by the ESR of  
ESR  
D =  
the capacitor). Use low-ESR aluminum electrolytic  
capacitors with high ripple-current capability at the input.  
Assuming that the contribution from the ESR and capaci-  
tor discharge is equal to 90% and 10%, respectively, cal-  
culate the input capacitance and the ESR required for a  
specified ripple using the following equations:  
IN  
I
is the maximum output current required, and  
OUTMAX  
f
is the operating frequency of 125kHz. Use an induc-  
SW  
tor with a maximum saturation current rating equal to at  
least the peak switch current limit (I ). Use inductors  
LIM  
with low DC resistance for higher efficiency.  
ΔVESR  
ESR  
=
IN  
Selecting a Rectifier  
The MAX5035 requires an external Schottky rectifier as  
a freewheeling diode. Connect this rectifier close to the  
device using short leads and short PC board traces.  
Choose a rectifier with a continuous current rating  
greater than the highest expected output current. Use a  
rectifier with a voltage rating greater than the maximum  
ΔIL  
I
+
OUT  
2
IOUT × D (1D)  
ΔVQ × fSW  
CIN  
=
where  
expected input voltage, V . Use a low forward-voltage  
IN  
(V VOUT) × VOUT  
Schottky rectifier for proper operation and high efficien-  
cy. Avoid higher than necessary reverse-voltage  
Schottky rectifiers that have higher forward-voltage  
drops. Use a Schottky rectifier with forward-voltage  
IN  
ΔIL =  
,
V
× fSW × L  
IN  
V
V
OUT  
D =  
Table 1. Diode Selection  
IN  
I
is the maximum output current of the converter  
OUT  
and f  
V
(V) DIODE PART NUMBER  
MANUFACTURER  
IR  
IN  
is the oscillator switching frequency (125kHz).  
SW  
15MQ040N  
For example, at V = 48V, V  
= 3.3V, the ESR and  
OUT  
IN  
B240A  
Diodes, Inc.  
input capacitance are calculated for the input peak-to-  
peak ripple of 100mV or less yielding an ESR and  
capacitance value of 80mΩ and 51µF, respectively.  
7.5 to 36  
B240  
MBRS240, MBRS1540  
30BQ060  
Central Semiconductor  
ON Semiconductor  
IR  
Low-ESR, ceramic, multilayer chip capacitors are recom-  
mended for size-optimized application. For ceramic  
capacitors, assume the contribution from ESR and capaci-  
tor discharge is equal to 10% and 90%, respectively.  
B360A  
Diodes, Inc.  
7.5 to 56  
7.5 to 76  
CMSH3-60  
Central Semiconductor  
ON Semiconductor  
IR  
MBRD360, MBR3060  
50SQ100, 50SQ80  
MBRM5100  
The input capacitor must handle the RMS ripple current  
without significant rise in temperature. The maximum  
capacitor RMS current occurs at about 50% duty cycle.  
Diodes, Inc.  
______________________________________________________________________________________ 11  
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
Ensure that the ripple specification of the input capaci-  
tor exceeds the worst-case capacitor RMS ripple cur-  
rent. Use the following equations to calculate the input  
capacitor RMS current:  
capacitance and the ESR required for a specified rip-  
ple using the following equations:  
ΔV  
OESR  
ESR  
=
OUT  
ΔI  
L
2
2
I
=
I
I  
AVGIN  
CRMS  
PRMS  
where  
ΔI  
L
C
OUT  
2.2 × ΔV  
× f  
OQ SW  
D
3
MAX035  
2
2
I
=
I
+ I  
+ I  
× I  
DC  
×
(
)
PRMS  
PK  
DC  
PK  
The MAX5035 has an internal soft-start time (t ) of  
SS  
V
×I  
× η  
OUT OUT  
400µs. It is important to keep the output rise time at  
I
=
AVGIN  
V
startup below t to avoid output overshoot. The output  
SS  
IN  
rise time is directly proportional to the output capacitor.  
Use 68µF or lower capacitance at the output to control  
the overshoot below 5%.  
ΔI  
2
ΔI  
L
2
L
I
=I  
+
, I = I  
PK OUT  
DC  
OUT  
V
OUT  
and D =  
In a dynamic load application, the allowable deviation  
of the output voltage during the fast-transient load dic-  
tates the output capacitance value and the ESR. The  
output capacitors supply the step load current until the  
controller responds with a greater duty cycle. The  
V
IN  
I
is the input switch RMS current, I  
input average current, and η is the converter efficiency.  
is the  
AVGIN  
PRMS  
The ESR of aluminum electrolytic capacitors increases  
significantly at cold temperatures. Use a 1µF or greater  
value ceramic capacitor in parallel with the aluminum  
electrolytic input capacitor, especially for input voltages  
below 8V.  
response time (t  
) depends on the closed-  
RESPONSE  
loop bandwidth of the converter. The resistive drop  
across the capacitor ESR and capacitor discharge  
cause a voltage droop during a step load. Use a com-  
bination of low-ESR tantalum and ceramic capacitors  
for better transient load and ripple/noise performance.  
Keep the maximum output-voltage deviation above the  
tolerable limits of the electronics being powered.  
Assuming a 50% contribution each from the output  
capacitance discharge and the ESR drop, use the fol-  
lowing equations to calculate the required ESR and  
capacitance value:  
Output Filter Capacitor  
The worst-case peak-to-peak and RMS capacitor ripple  
current, allowable peak-to-peak output ripple voltage,  
and the maximum deviation of the output voltage dur-  
ing load steps determine the capacitance and the ESR  
requirements for the output capacitors.  
The output capacitance and its ESR form a zero, which  
improves the closed-loop stability of the buck regulator.  
Choose the output capacitor so the ESR zero frequency  
ΔV  
OESR  
ESR  
=
OUT  
I
STEP  
(f ) occurs between 20kHz to 40kHz. Use the following  
Z
equation to verify the value of f . Capacitors with 100mΩ  
Z
to 250mΩ ESR are recommended to ensure the closed-  
I
× t  
ΔV  
STEP  
RESPONSE  
C
=
OUT  
loop stability, while keeping the output ripple low.  
OQ  
1
fZ =  
where I  
is the load step and t  
is the  
RESPONSE  
STEP  
2 × π × COUT × ESROUT  
response time of the controller. Controller response  
time is approximately one-third of the reciprocal of the  
closed-loop unity-gain bandwidth, 20kHz typically.  
The output ripple is comprised of ΔV  
(caused by the  
OQ  
capacitor discharge) and ΔV  
(caused by the ESR  
OESR  
of the capacitor). Use low-ESR tantalum or aluminum  
electrolytic capacitors at the output. Assuming that the  
contributions from the ESR and capacitor discharge  
equal 80% and 20% respectively, calculate the output  
PC Board Layout Considerations  
Proper PC board layout is essential. Minimize ground  
noise by connecting the anode of the Schottky rectifier,  
the input bypass capacitor ground lead, and the output  
filter capacitor ground lead to a single point (“star”  
12 ______________________________________________________________________________________  
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
MAX035  
ground configuration). A ground plane is required.  
device. Also, place BST and VD bypass capacitors  
very close to the device. Use the PC board copper  
Minimize lead lengths to reduce stray capacitance,  
trace resistance, and radiated noise. In particular,  
place the Schottky rectifier diode right next to the  
plane connecting to V and LX for heatsinking.  
IN  
Application Circuits  
V
IN  
C
IN  
V
IN  
BST  
LX  
0.1μF  
L1  
V
OUT  
D1  
R1  
R2  
C
OUT  
MAX5035  
ON/OFF  
FB  
VD  
SGND GND  
0.1μF  
Figure 2. Fixed Output Voltages  
Table 2. Typical External Components Selection (Circuit of Figure 2)  
V
(V)  
V
(V)  
I (A)  
OUT  
EXTERNAL COMPONENTS  
IN  
OUT  
C
C
C
= 68µF, Panasonic, EEVFK2A680Q  
IN  
= 68µF, Vishay Sprague, 594D686X_010C2T  
= 0.1µF, 0805  
OUT  
BST  
7.5 to 76  
7.5 to 76  
7.5 to 76  
7.5 to 76  
3.3  
0.5  
R1 = 1MΩ 1%, 0805  
R2 = 384kΩ 1%, 0805  
D1 = 50SQ100, IR  
L1 = 100µH, Coilcraft Inc., DO5022P-104  
3.3  
5
1
C
C
C
= 68µF, Panasonic, EEVFK2A680Q  
IN  
= 68µF, Vishay Sprague, 594D68X_010C2T  
= 0.1µF, 0805  
OUT  
0.5  
1
BST  
R1 = 1MΩ 1%, 0805  
R2 = 384kΩ 1%, 0805  
D1 = 50SQ100, IR  
5
L1 = 100µH, Coilcraft Inc., DO5022P-104  
C
C
C
= 68µF, Panasonic, EEVFK2A680Q  
IN  
= 15µF, Vishay Sprague, 594D156X0025C2T  
= 0.1µF, 0805  
OUT  
BST  
R1 = 1MΩ 1%, 0805  
15 to 76  
12  
1
R2 = 139kΩ 1%, 0805  
D1 = 50SQ100, IR  
L1 = 220µH, Coilcraft Inc., DO5022P-224  
______________________________________________________________________________________ 13  
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
Table 2. Typical External Components Selection (Circuit of Figure 2) (continued)  
V
(V)  
V
(V)  
I
(A)  
EXTERNAL COMPONENTS  
IN  
OUT  
OUT  
C
C
C
= 220µF, Panasonic, EEVFK1E221P  
IN  
= 68µF, Vishay Sprague, 594D686X_010C2T  
= 0.1µF, 0805  
OUT  
BST  
3.3  
1
R1 = 1MΩ 1%, 0805  
R2 = 274kΩ 1%, 0805  
D1 = B220, Diodes Inc.  
MAX035  
L1 = 100µH, Coilcraft Inc., DO5022P-104  
9 to 14  
C
C
C
= 220µF, Panasonic, EEVFK1E221P  
IN  
= 68µF, Vishay Sprague, 594D686X_010C2T  
= 0.1µF, 0805  
OUT  
BST  
5
3.3  
5
1
1
1
1
R1 = 1MΩ 1%, 0805  
R2 = 274kΩ 1%, 0805  
D1 = B220, Diodes Inc.  
L1 = 100µH, Coilcraft Inc., DO5022P-104  
C
C
C
= 220µF, Panasonic, EEVFK1H221P  
IN  
= 68µF, Vishay Sprague, 594D686X_010C2T  
= 0.1µF, 0805  
OUT  
BST  
R1 = 1MΩ 1%, 0805  
R2 = 130kΩ 1%, 0805  
D1 = MBRS2040, ON Semiconductor  
L1 = 100µH, Coilcraft Inc., DO5022P-104  
C
C
C
= 220µF, Panasonic, EEVFK1H221P  
IN  
= 68µF, Vishay Sprague, 594D686X_010C2T  
= 0.1µF, 0805  
OUT  
BST  
18 to 36  
R1 = 1MΩ 1%, 0805  
R2 = 130kΩ 1%, 0805  
D1 = MBRS2040, ON Semiconductor  
L1 = 100µH, Coilcraft Inc., DO5022P-104  
C
C
C
= 220µF, Panasonic, EEVFK1H221P  
IN  
= 15µF, Vishay Sprague, 594D156X_0025C2T  
= 0.1µF, 0805  
OUT  
BST  
12  
R1 = 1MΩ 1%, 0805  
R2 = 130kΩ 1%, 0805  
D1 = MBRS2040, ON Semiconductor  
L1 = 220µH, Coilcraft Inc., DO5022P-224  
14 ______________________________________________________________________________________  
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
MAX035  
Table 3. Component Suppliers  
SUPPLIER  
PHONE  
FAX  
WEBSITE  
www.avxcorp.com  
www.coilcraft.com  
www.diodes.com  
AVX  
843-946-0238  
847-639-6400  
805-446-4800  
714-373-7366  
619-661-6835  
847-803-6100  
402-563-6866  
843-626-3123  
847-639-1469  
805-446-4850  
714-737-7323  
619-661-1055  
847-390-4405  
402-563-6296  
Coilcraft  
Diodes Incorporated  
Panasonic  
Sanyo  
www.panasonic.com  
www.sanyo.com  
TDK  
www.component.tdk.com  
www.vishay.com  
Vishay  
MAX5035  
FB  
BST  
PTC*  
ON/OFF  
L1  
100μH  
V
OUT  
0.1μF  
5V AT 1A  
V
12V  
IN  
V
IN  
LX  
C
68μF  
IN  
VD  
Rt  
Ct  
D1  
B240  
SGND GND  
C
OUT  
68μF  
0.1μF  
*LOCATE PTC AS CLOSE TO HEAT-DISSIPATING COMPONENTS AS POSSIBLE.  
Figure 3. Load Temperature Monitoring with ON/OFF (Requires Accurate V  
)
IN  
______________________________________________________________________________________ 15  
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
FB  
MAX5035B  
R1  
BST  
ON/OFF  
L1  
220μH  
V
5V  
OUT  
0.1μF  
V
IN  
V
LX  
IN  
7.5V TO 36V  
C
68μF  
OUT  
MAX035  
C
68μF  
IN  
VD  
Rt  
Ct  
D1  
B240  
SGND GND  
0.1μF  
FB  
MAX5035A  
R1'  
BST  
ON/OFF  
L1'  
100μH  
V'  
3.3V  
OUT  
0.1μF  
V
IN  
LX  
C'  
68μF  
OUT  
C'  
68μF  
IN  
VD  
Rt'  
Ct'  
D1'  
B240  
SGND GND  
0.1μF  
Figure 4. Dual-Sequenced DC-DC Converters (Startup Delay Determined by R1/R1’, Ct/Ct’ and Rt/Rt’)  
Ordering Information (continued)  
Chip Information  
TRANSISTOR COUNT: 4344  
OUTPUT  
VOLTAGE  
(V)  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
PROCESS: BiCMOS  
MAX5035CUSA  
MAX5035CUPA  
MAX5035CASA  
0°C to +85°C  
0°C to +85°C  
8 SO  
8 PDIP  
12  
Package Information  
-40°C to +125°C 8 SO  
For the latest package outline information and land patterns, go  
MAX5035CASA/V+ -40°C to +125°C 8 SO  
to www.maxim-ic.com/packages.  
MAX5035DUSA  
MAX5035DUPA  
MAX5035DASA  
0°C to +85°C  
0°C to +85°C  
8 SO  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
8 PDIP  
ADJ  
8 SO  
S8+2  
P8+1  
21-0041  
21-0043  
-40°C to +125°C 8 SO  
8 PDIP  
MAX5035DASA/V+ -40°C to +125°C 8 SO  
+Denotes lead(Pb)-free/RoHS-compliant package.  
16 ______________________________________________________________________________________  
1A, 76V, High-Efficiency MAXPower  
Step-Down DC-DC Converter  
MAX035  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
9/03  
Initial release  
Modified Absolute Maximum Ratings section, updated Ordering Information,  
style edits.  
3
5/09  
1, 2, 16, 18  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX5035AUSA+T

Switching Regulator, Voltage-mode, 2.5A, 137kHz Switching Freq-Max, BICMOS, PDSO8, 0.150 INCH, LEAD FREE, MS-012-AA, SOIC-8
MAXIM

MAX5035AUSA-T

Switching Regulator, Voltage-mode, 2.5A, 135kHz Switching Freq-Max, BICMOS, PDSO8, SOP-8
MAXIM

MAX5035BASA

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter
MAXIM

MAX5035BASA+T

Switching Regulator, Voltage-mode, 2.5A, 137kHz Switching Freq-Max, BICMOS, PDSO8, 0.150 INCH, LEAD FREE, MS-012-AA, SOIC-8
MAXIM

MAX5035BASA/V+

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter
MAXIM

MAX5035BASV

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter
MAXIM

MAX5035BUPA

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter
MAXIM

MAX5035BUSA

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter
MAXIM

MAX5035BUSA+

暂无描述
MAXIM

MAX5035BUSA+T

Switching Regulator, Voltage-mode, 2.5A, 137kHz Switching Freq-Max, BICMOS, PDSO8, 0.150 INCH, LEAD FREE, MS-012-AA, SOIC-8
MAXIM

MAX5035BUSA-T

Switching Regulator, Voltage-mode, 2.5A, 135kHz Switching Freq-Max, BICMOS, PDSO8, SOP-8
MAXIM

MAX5035CASA

Switching Regulator, Voltage-mode, 2.5A, 137kHz Switching Freq-Max, BICMOS, PDSO8, SOP-8
MAXIM