MAX503CNG [MAXIM]

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC; 5V ,低功耗,并行输入,电压输出, 10位DAC
MAX503CNG
型号: MAX503CNG
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC
5V ,低功耗,并行输入,电压输出, 10位DAC

文件: 总16页 (文件大小:119K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0279; Rev 0; 8/94  
5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 0 -Bit DAC  
MAX503  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Buffered Voltage Output  
Internal 2.048V Voltage Reference  
The MAX503 is a low-power, 10-bit, voltage-output digital-  
to-analog converter (DAC) that uses single 5V or dual ±5V  
supplies. This device has an internal voltage reference plus  
an output buffer amplifier. Operating current is only 250µA  
from a single 5V supply, making it ideal for portable and  
battery-powered applications. In addition, the shrink small-  
outline package (SSOP) measures only 0.1 square inches,  
using less board area than an 8-pin DIP. 10-bit resolution is  
achieved through laser trimming of the DAC, op amp, and  
reference. No further adjustments are necessary.  
Operates from Single 5V or Dual ±5V Supplies  
Low Power Consumption:  
250µA Operating Current  
40µA Shutdown-Mode Current  
SSOP Package Saves Space  
Relative Accuracy: ±1 2 LSB Max Over  
/
Temperature  
Internal gain-setting resistors can be used to define a DAC  
output voltage range of 0V to +2.048V, 0V to +4.096V, or  
±2.048V. Four-quadrant multiplication is possible without  
the use of external resistors or op amps. The parallel logic  
inputs are double buffered and are compatible with 4-bit, 8-  
bit, and 16-bit microprocessors. For a hardware and soft-  
ware compatible 12-bit upgrade, refer to the MAX530 data  
sheet. For DACs with similar features but with a serial data  
interface, refer to the MAX504/MAX515 data sheet.  
Guaranteed Monotonic Over Temperature  
4-Quadrant Multiplication with No External  
Components  
Power-On Reset  
Double-Buffered Parallel Logic Inputs  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
PIN-PACKAGE  
________________________Ap p lic a t io n s  
Battery-Powered Data-Conversion Products  
Minimum Component-Count Analog Systems  
Digital Offset/Gain Adjustment  
MAX503CNG  
MAX503CWG  
MAX503CAG  
MAX503ENG  
MAX503EWG  
MAX503EAG  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
24 Narrow Plastic DIP  
24 Wide SO  
24 SSOP  
24 Narrow Plastic DIP  
24 Wide SO  
Industrial Process Control  
Arbitrary Function Generators  
24 SSOP  
Automatic Test Equipment  
Refer to the MAX530 for military temperature or die equivalents.  
Microprocessor-Controlled Calibration  
________________Fu n c t io n a l Dia g ra m  
__________________P in Co n fig u ra t io n  
TOP VIEW  
REFOUT  
18  
REFIN ROFS  
13  
22  
D7/S1  
D8/D0  
D9/D1  
D2  
1
2
3
4
5
6
7
8
9
24  
D6/S0  
21  
20  
RFB  
V
DD  
23  
22  
2.048V  
REFERENCE  
ROFS  
RFB  
17  
14  
VOUT  
REFGND  
AGND  
21  
20  
19  
18  
17  
DAC  
MAX503  
D3  
D4  
D5  
A0  
VOUT  
POWER-ON  
RESET  
23  
12  
19  
V
DD  
V
SS  
MAX503  
10-BIT DACLATCH  
DGND  
REFOUT  
REFGND  
LDAC  
15  
8
V
SS  
CLR  
A0  
9
A1  
NBL  
INPUT  
LATCH  
NBM  
INPUT  
LATCH  
NBH  
INPUT  
LATCH  
A1  
16  
15  
14  
13  
CONTROL  
LOGIC  
11  
10  
16  
CS  
WR 10  
WR  
CLR  
LDAC  
CS  
11  
AGND  
REFIN  
24  
D6/S0  
D7/S1  
1
2
3
4
5 6 7  
DGND  
12  
D2  
D8/D0  
D9/D1 D3 D5  
D4  
DIP/SO/SSOP  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 0 -Bit DAC  
VOUT to AGND (Note 1) .............................................. V  
V
SS, DD  
ABSOLUTE MAXIMUM RATINGS  
Continuous Current, Any Input ........................................±20mA  
V
DD  
to DGND and V to AGND ................................-0.3V, +6V  
DD  
Continuous Power Dissipation (T = +70°C)  
A
V
SS  
to DGND and V to AGND .................................-6V, +0.3V  
SS  
Narrow Plastic DIP (derate 13.33mW/°C above +70°C)...1067mW  
Wide SO (derate 11.76mW/°C above +70°C)............... 941mW  
SSOP (derate 8.00mW/°C above +70°C) ......................640mW  
Operating Temperature Ranges  
MAX503C_G .........................................................0°C to +70°C  
MAX503E_G ......................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +165°C  
Lead Temperature (soldering, 10sec) ........................... +300°C  
V
DD  
to V ............................................................... -0.3V, +12V  
SS  
AGND to DGND........................................................-0.3V, +0.3V  
REFGND to AGND.........................................-0.3V, (V + 0.3V)  
Digital Input Voltage to DGND .................... -0.3V, (V + 0.3V)  
DD  
DD  
DD  
DD  
DD  
DD  
REFIN..................................................(V - 0.3V), (V + 0.3V)  
SS  
MAX503  
REFOUT ..............................................(V - 0.3V), (V + 0.3V)  
SS  
REFOUT to REFGND.................................... -0.3V, (V + 0.3V)  
RFB ....................................................(V - 0.3V), (V + 0.3V)  
SS  
ROFS ..................................................(V - 0.3V), (V + 0.3V)  
SS  
DD  
Note 1: The output may be shorted to V , V , DGND, or AGND if the continuous package power dissipation and current ratings  
DD SS  
are not exceeded. Typical short-circuit currents are 20mA.  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—Single +5V Supply  
(V = 5V, V = 0V, AGND = DGND = REFGND = 0V, REFIN = 2.048V (external), RFB = ROFS = VOUT, C  
= 33µF,  
DD  
SS  
REFOUT  
R
= 10k, C = 100pF, T = T  
to T  
, unless otherwise noted.)  
CONDITIONS  
L
L
A
MIN  
MAX  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX UNITS  
STATIC PERFORMANCE  
Resolution  
N
10  
Bits  
Relative Accuracy  
Differential Nonlinearity  
Unipolar Offset Error  
INL  
DNL  
(Note 2)  
±0.5  
±1  
3
LSB  
LSB  
LSB  
Guaranteed monotonic  
V
OS  
0
0.25  
3
Unipolar Offset  
Temperature Coefficient  
TCV  
ppm/°C  
LSB/V  
OS  
Unipolar Offset-Error  
Supply Rejection  
PSRR  
GE  
4.5V V 5.5V  
0.1  
DD  
DAC latch = all 1s,  
VOUT < V - 0.4V (Note 2)  
Gain Error (Note 2)  
±1  
LSB  
DD  
Gain-Error Temperature Coefficient  
Gain-Error Power-Supply Rejection  
DAC VOLTAGE OUTPUT (VOUT)  
Output Voltage Range  
1
ppm/°C  
LSB/V  
PSRR  
4.5V V 5.5V  
0.1  
DD  
0
2
V
DD  
- 0.4  
V
kΩ  
Resistive Load  
VOUT = 2V, load regulation ±0.5LSB  
DC Output Impedance  
0.2  
12  
Short-Circuit Current  
I
SC  
mA  
REFERENCE INPUT (REFIN)  
Reference Input Range  
0
V
DD  
- 2  
V
Reference Input Resistance  
Reference Input Capacitance  
AC Feedthrough  
Code dependent, minimum at code 0101...  
Code dependent (Note 3)  
(Note 4)  
40  
10  
kΩ  
pF  
dB  
50  
-80  
2
_______________________________________________________________________________________  
5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 0 -Bit DAC  
MAX503  
ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)  
(V = 5V, V = 0V, AGND = DGND = REFGND = 0V, REFIN = 2.048V (external), RFB = ROFS = VOUT, C  
= 33µF,  
DD  
SS  
REFOUT  
R
= 10k, C = 100pF, T = T  
to T , unless otherwise noted.)  
MAX  
L
L
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
REFERENCE OUTPUT (REFOUT)  
T
= +25°C  
2.024  
2.015  
2.011  
2.048  
2.072  
2.081  
2.085  
2
A
Reference Tolerance  
V
MAX503C  
MAX503E  
(Note 5)  
V
REFOUT  
Reference Output Resistance  
Power-Supply Rejection Ratio  
Noise Voltage  
R
µV/V  
µVp-p  
ppm/°C  
µF  
REFOUT  
PSRR  
4.5V V 5.5V  
200  
400  
30  
DD  
e
0.1Hz to 10kHz  
n
Temperature Coefficient  
Required External Capacitor  
DYNAMIC PERFORMANCE  
Voltage Output Slew Rate  
Voltage Output Settling Time  
Digital Feedthrough  
C
3.3  
REFOUT  
T
A
= +25°C  
0.15  
0.25  
25  
5
V/µs  
µs  
To ±0.5LSB, VOUT = 2V  
WR = V , digital inputs all 1s to all 0s  
DD  
nV-s  
Unity gain (Note 4)  
Gain = 2 (Note 4)  
68  
68  
Signal-to-Noise Plus  
Distortion Ratio  
SINAD  
dB  
DIGITAL INPUTS (S0, S1, D0–D9, LDAC, CLR, CS, WR, A0, A1)  
Logic High Input  
V
2.4  
4.5  
V
V
IH  
Logic Low Input  
V
IL  
0.8  
±1  
Digital Leakage Current  
Digital Input Capacitance  
POWER SUPPLIES  
Positive Supply-Voltage Range  
Positive Supply Current  
SWITCHING CHARACTERISTICS  
Address to WR Setup  
Address to WR Hold  
CS to WR Setup  
V
= 0V or V  
µA  
pF  
IN  
DD  
8
V
DD  
5.5  
V
I
DD  
Outputs unloaded, all digital inputs = 0V or V  
250  
400  
µA  
DD  
t
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AWS  
t
AWH  
t
0
CWS  
CS to WR Hold  
t
0
CWH  
tDS  
Data to WR Setup  
45  
0
tDH  
Data to WR Hold  
WR Pulse Width  
t
45  
45  
45  
WR  
LDAC Pulse Width  
t
LDAC  
CLR Pulse Width  
t
CLR  
Internal Power-On Reset  
Pulse Width  
t
(Note 3)  
1.3  
10  
µs  
POR  
_______________________________________________________________________________________  
3
5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 0 -Bit DAC  
ELECTRICAL CHARACTERISTICS—Dual ±5V Supplies  
(V = 5V, V = -5V, AGND = DGND = REFGND = 0V, REFIN = 2.048V (external), RFB = ROFS = VOUT, C  
= 33µF,  
DD  
SS  
REFOUT  
R
= 10k, C = 100pF, T = T  
to T , unless otherwise noted.)  
MAX  
L
L
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
STATIC PERFORMANCE  
Resolution  
N
10  
Bits  
MAX503  
Relative Accuracy  
Differential Nonlinearity  
Bipolar Offset Error  
INL  
DNL  
+0.5  
±1  
LSB  
LSB  
LSB  
Guaranteed monotonic  
V
OS  
±3  
Bipolar Offset  
TCV  
3
ppm/°C  
LSB/V  
OS  
Temperature Coefficient  
Bipolar Offset-Error  
Power-Supply Rejection  
PSRR  
4.5V V 5.5V, -5.5V V -4.5V  
0.1  
DD  
SS  
Gain Error  
±1  
LSB  
Gain-Error Temperature Coefficient  
Gain-Error Power-Supply Rejection  
DAC VOLTAGE OUTPUT (VOUT)  
Output Voltage Range  
TC  
1
ppm/°C  
LSB/V  
PSRR  
4.5V V 5.5V, -5.5V V -4.5V  
0.1  
DD  
SS  
V
+ 0.4  
V
DD  
- 0.4  
V
kΩ  
SS  
Resistive Load  
VOUT = 2V, load regulation ±0.5LSB  
2
DC Output Impedance  
0.2  
20  
Short-Circuit Current  
I
SC  
mA  
REFERENCE INPUT (REFIN)  
Reference Input Range  
V
SS  
+ 2  
V
DD  
- 2  
V
Reference Input Resistance  
Reference Input Capacitance  
AC Feedthrough  
Code dependent, minimum at code 0101...  
Code dependent (Note 3)  
(Note 4)  
40  
10  
kΩ  
pF  
dB  
50  
-80  
REFERENCE OUTPUT (REFOUT)—Specifications are identical to those under Single +5V Supply  
DYNAMIC PERFORMANCE—Specifications are identical to those under Single +5V Supply  
DIGITAL INPUTS (S0, S1, D0–D9, LDAC, CLR, CS, WR, A0, A1)—Specifications are identical to those under Single +5V Supply  
POWER SUPPLIES  
Positive Supply Voltage  
Negative Supply Voltage  
Positive Supply Current  
Negative Supply Current  
V
4.5  
5.5  
0
V
V
DD  
V
SS  
-5.5  
I
DD  
Outputs unloaded, all digital inputs = 0V or V  
250  
150  
400  
200  
µA  
µA  
DD  
I
SS  
Outputs unloaded, all digital inputs = 0V or V  
DD  
SWITCHING CHARACTERISTICS—Specifications are identical to those under Single +5V Supply  
Note 2: In single supply, INL and GE are calculated from code 3 to code 1023 (code excludes S0 and S1).  
Note 3: Guaranteed by design.  
Note 4: REFIN = 1kHz, 2.0Vp-p.  
Note 5: Tested at I  
= 100µA. The reference can typically source up to 5mA (see Typical Operating Characteristics).  
OUT  
4
_______________________________________________________________________________________  
5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 0 -Bit DAC  
MAX503  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(Single +5V supply, unity gain, code = all 1s, T = +25°C, unless otherwise noted.)  
A
OUTPUT SINK CAPABILITY vs.  
OUTPUT PULL-DOWN VOLTAGE  
OUTPUT SOURCE CAPABILITY vs.  
OUTPUT PULL-UP VOLTAGE  
ANALOG FEEDTHROUGH vs.  
FREQUENCY  
-110  
-100  
-90  
16  
14  
12  
10  
8
8
7
6
5
4
3
-80  
-70  
REFIN = 2V  
p-p  
-60  
-50  
-40  
6
-30  
-20  
-10  
4
2
1
0
2
CODE = ALL 0s,  
DUAL SUPPLIES (±5V)  
0
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
1
2
3
4
5
1
10  
100  
1k  
10k 100k 1M  
OUTPUT PULL-DOWN VOLTAGE (V)  
OUTPUT PULL-UP VOLTAGE (V)  
FREQUENCY (Hz)  
REFERENCE VOLTAGE vs.  
TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
GAIN vs. FREQUENCY  
300  
290  
4
2
2.055  
REFIN = 4Vp-p  
0
280  
270  
260  
250  
-2  
-4  
2.050  
2.045  
-6  
-8  
DUAL SUPPLIES (±5V)  
-10  
-12  
240  
230  
-14  
-60 -40 -20  
0
20 40 60 80 100 120 140  
1
100  
1k  
10k  
100k  
-60 -40 -20  
0 20 40 60 80 100 120  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
GAIN AND PHASE vs.  
FREQUENCY  
AMPLIFIER SIGNAL-TO- NOISE RATIO  
80  
70  
60  
50  
40  
30  
20  
10  
200  
100  
180  
REFIN = 4Vp-p  
(G = 2)  
(G = 1)  
GAIN  
0
-100  
-200  
0
PHASE  
DUAL SUPPLIES (±5V)  
0
-180  
800  
-300  
10  
100  
1k  
10k  
100k  
1
10  
100  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
5
5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 0 -Bit DAC  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Single +5V supply, unity gain, code = all 1s, T = +25°C, unless otherwise noted.)  
A
REFERENCE OUTPUT VOLTAGE  
vs. REFERENCE LOAD CURRENT  
SUPPLY CURRENT vs. REFIN  
2.0480  
2.0475  
250  
200  
REFGND = AGND  
MAX503  
2.0470  
2.0465  
2.0460  
2.0455  
2.0450  
150  
100  
50  
REFGND = V  
DD  
EXTERNAL REFERENCE  
0
0
50 100 150 200 250 300 350 400 450 500  
REFIN (mV)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
REFERENCE LOAD CURRENT (mA)  
DIGITAL FEEDTHROUGH  
A
B
2µs/div  
A: S0, S1, D0D9 = 100kHz, 4Vp-p  
B: VOUT, 10mV/div  
LDAC = CS = HIGH  
SETTLING TIME (RISING)  
SETTLING TIME (FALLING)  
A
B
A
B
5µs/div  
s/div  
A: DIGITAL INPUTS RISING EDGE,  
A: DIGITAL INPUTS FALLING EDGE, 5V/div  
B: VOUT, NO LOAD, 1V/div  
DUAL SUPPLY (±5V)  
LDAC = LOW  
BIPOLAR CONFIGURATION  
B: VOUT NO LOAD, 1V/div  
,
DUAL SUPPLY (±5V)  
LDAC = LOW  
BIPOLAR CONFIGURATION  
V
REFIN  
= 2V  
V
REFIN  
= 2V  
6
_______________________________________________________________________________________  
5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 0 -Bit DAC  
MAX503  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1
2
3
4
5
6
7
D7/ S1  
D8/ D0  
D9/ D1  
D2  
D7 input when A0 = A1 = 1, or S1 input when A0 = 0 and A1 = 1. Always set S1 to 0.*  
D8 input when A0 = A1 = 1, or D0 input when A0 = 0 and A1 = 1.*  
D9 input when A0 = A1 = 1, or D1 input when A0 = 0 and A1 = 1.*  
D2 Input Data, or tie to S0 and multiplex when A0 = 1 and A1 = 0.*  
D3 Input Data, or tie to S1 and multiplex when A0 = 1 and A1 = 0.*  
D4 Input Data, or tie to D0 and multiplex when A0 = 1 and A1 = 0.*  
D5 Input Data, or tie to D1 and multiplex when A0 = 1 and A1 = 0.*  
D3  
D4  
D5  
Address Line A0. With A1, used to multiplex 4 of 12 data lines to load low (NBL), middle (NBM),  
and high (NBH) 4-bit nibbles. (12 bits can also be loaded as 8+4.)  
8
9
A0  
A1  
Address Line A1. Set A0 = A1 = 0 for NBL and NBM, A0 = 0 and A1 = 1 for NBL, A0 = 1 and A1 =  
0 for NBM, or A0 = A1 = 1 for NBH. See Table 2 for complete input latch addressing.  
10  
11  
12  
WR  
CS  
Write Input (active low). Used with CS to load data into the input latch selected by A0 and A1.  
Chip Select (active low). Enables addressing and writing to this chip from common bus lines.  
Digital Ground  
DGND  
Reference Input. Input for the R-2R DAC. Connect an external reference to this pin or a jumper to  
REFOUT (pin 18) to use the internal 2.048V reference.  
13  
REFIN  
14  
15  
AGND  
CLR  
Analog Ground  
Clear (active low). A low on CLR resets the DAC latches to all 0s.  
Load DAC Input (active low). Driving this asynchronous input low transfers the contents of the input  
latch to the DAC latch and updates VOUT.  
16  
17  
LDAC  
Reference Ground must be connected to AGND when using the internal reference. Connect to V  
DD  
REFGND  
REFOUT  
to disable the internal reference and save power.  
18  
19  
20  
21  
22  
23  
24  
Reference Output. Output of the internal 2.048V reference. Tie to REFIN to drive the R-2R DAC.  
Negative Power Supply. Usually ground for single-supply or -5V for dual-supply operation.  
Voltage Output. Op-amp buffered DAC output.  
V
SS  
VOUT  
RFB  
Feedback Pin. Op-amp feedback resistor. Always connect to VOUT.  
Offset Resistor Pin. Connect to VOUT for G = 1, to AGND for G = 2, or to REFIN for bipolar output.  
Positive Power Supply (+5V)  
ROFS  
V
DD  
D6/S0  
D6 input when A0 = A1 = 1, or S0 input when A0 = 0 and A1 = 1. Always set S0 to 0.*  
* This applies to 4 + 4 + 4 input loading mode. See Table 2 for 8 + 4 input loading mode.  
_______________________________________________________________________________________  
7
5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 0 -Bit DAC  
the reference voltage. The MAX503s topology makes the  
________________De ta ile d De s c ription  
ladder output voltage the same polarity as the reference  
input, making the device suitable for single-supply oper-  
ation. The BiCMOS op amp is then used to buffer, invert,  
or amplify the ladder signal.  
The MAX503 consists of a parallel-input logic interface, a  
10-bit R-2R ladder, a reference, and an op amp. The  
Functional Diagram shows the control lines and signal  
flow through the input data latch to the DAC latch, as well  
as the 2.048V reference and output op amp. Total supply  
current is typically 250µA with a single +5V supply. This  
circuit is ideal for battery-powered, microprocessor-con-  
trolled applications where high accuracy, no adjustments,  
and minimum component count are key requirements.  
Ladder resistors are nominally 80kto conserve power  
and are laser trimmed for gain and linearity. The input  
impedance at REFIN is code dependent. When the DAC  
register is all 0s, all rungs of the ladder are grounded  
and REFIN is open or no load. Maximum loading (mini-  
mum REFIN impedance) occurs at code 010101....  
Minimum reference input impedance at this code is guar-  
anteed to be not less than 40k.  
MAX503  
R-2R La dde r  
The MAX503 uses an inverted” R-2R ladder network with  
a BiCMOS op amp to convert 10-bit digital data to analog  
voltage levels. Figure 1 shows a simplified diagram of the  
R-2R DAC and op amp. Unlike a standard DAC, the  
MAX503 uses an inverted” ladder network. Normally, the  
REFIN pin is the current output of a standard DAC and  
would be connected to the summing junction, or virtual  
ground, of an op amp. In this standard DAC configura-  
tion, however, the output voltage would be the inverse of  
The REFIN and REFOUT pins allow the user to choose  
between driving the R-2R ladder with the on-chip refer-  
ence or an external reference. REFIN may be below ana-  
log ground when using dual supplies. See the External  
Reference and Four-Quadrant Multiplication sections for  
more information.  
In t e rn a l Re fe re n c e  
The on-chip reference is laser trimmed to generate  
2.048V at REFOUT. The output stage can source and  
sink current so REFOUT can settle to the correct volt-  
age quickly in response to code-dependent loading  
changes. Typically, source current is 5mA and sink  
current is 100µA.  
2R  
ROFS  
2R  
MAX503  
RFB  
REFOUT connects the internal reference to the R-2R  
DAC ladder at REFIN. The R-2R ladder draws 50µA  
maximum load current. If any other connection is made  
to REFOUT, ensure that the total load current is less  
than 100µA to avoid gain errors.  
VOUT  
OUTPUT  
R
R
R
BUFFER  
2R 2R  
2R  
2R  
2R  
A separate REFGND pin is provided to isolate refer-  
ence currents from other analog and digital ground  
currents. To achieve specified noise performance, con-  
nect a 33µF capacitor from REFOUT to REFGND (see  
Figure 2). Using smaller capacitance values increases  
noise, and values less than 3.3µF may compromise the  
references stability. For applications requiring the low-  
est noise, insert a buffered RC filter between REFOUT  
a nd REFIN. Whe n us ing the inte rna l re fe re nc e ,  
REFGND must be connected to AGND. In applications  
not requiring the internal reference, connect REFGND  
LSB  
MSB  
*
R = 80kΩ  
REFIN  
AGND  
REFOUT  
2.048V  
CLR  
DAC LATCH  
MSB  
LSB  
NBL  
INPUT  
LATCH  
NBM  
INPUT  
LATCH  
NBH  
INPUT  
LATCH  
REFGND  
to V , which shuts down the reference. This saves  
DD  
typically 100µA of V  
supply current and eliminates  
DD  
.
D6/S0  
D2  
D8/D0  
D4  
the need for C  
*SHOWN FOR ALL 1s  
REFOUT  
D7/S1  
D9/D1  
D3 D5  
Figure 1. Simplified MAX503 DAC Circuit  
8
_______________________________________________________________________________________  
5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 0 -Bit DAC  
MAX503  
Ex t e rn a l Re fe re n c e  
R
S
REFOUT  
An e xte rna l re fe re nc e in the ra ng e (V  
+ 2V) to  
SS  
TOTAL  
REFERENCE  
NOISE  
C
S
(V  
DD  
- 2V) may be used with the MAX503 in dual-sup-  
ply, unity-gain operation. In single-supply, unity-gain  
operation, the reference must be positive and may not  
C
REFOUT  
TEK 7A22  
exceed (V  
the DACs full-scale output.  
- 2V). The reference voltage determines  
DD  
300  
250  
200  
150  
100  
50  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
SINGLE POLE ROLLOFF  
If an upgrade to the internal reference is required, the  
2.5V MAX873A is id e a l: ± 15mV initia l a c c ura c y,  
7ppm/°C (max) temperature coefficient.  
C
= 3.3µF  
REFOUT  
P o w e r-On Re s e t  
An internal power-on reset (POR) circuit forces the  
DAC register to reset to all 0s when V is first applied.  
The POR pulse is typically 1.3µs; however, it may take  
2ms for the internal reference to charge its large filter  
capacitor and settle to its trimmed value.  
DD  
0.6  
0.4  
0.2  
0.0  
C
= 47µF  
REFOUT  
0
In addition to POR, a clear (CLR) pin, when held low,  
sets the DAC register to all 0s. CLR operates asynchro-  
nously and independently from chip select (CS). With  
the DAC input at all 0s, the op-amp output is at zero for  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 2. Reference Noise vs. Frequency  
unity-gain and G = 2 configurations, but it is at -V  
REF  
for the bipolar configuration.  
Ou t p u t Bu ffe r  
S h u t d o w n Mo d e  
The output amplifier uses a folded cascode input stage  
and a type AB output stage. Large output devices with  
low s e rie s re s is ta nc e a llow the outp ut to s wing to  
ground in single-supply operation. The output buffer is  
unity-gain stable. Input offset voltage and supply cur-  
rent are laser trimmed. Settling time is 25µs to 0.01% of  
final value. The output is short-circuit protected and  
can drive a 2kload with more than 100pF of load  
capacitance. The op amp may be placed in unity-gain  
(G = 1), in a gain of two (G = 2), or in a bipolar-output  
mode by using the ROFS and RFB pins. These pins are  
used to define a DAC output voltage range of 0V to  
+2.048V, 0V to +4.096V or ±2.048V, by connecting  
ROFS to VOUT, GND, or REFIN. RFB is always con-  
nected to VOUT. Table 1 summarizes ROFS usage.  
The MAX503 is designed for low power consumption.  
Understanding the circuit allows power consumption  
management for maximum efficiency. In single-supply  
mode (V  
= +5V, V = GND) the initial supply cur-  
DD  
SS  
rent is typically only 160µA, including the reference, op  
a mp , a nd DAC. This low c urre nt oc c urs whe n the  
power-on reset circuit clears the DAC to all 0s and  
forces the op-amp output to zero (unipolar mode only).  
See the Supply Current vs. REFIN graph in the Typical  
Operating Characteristics. Under this condition, there  
is no internal load on the reference (DAC = all 0s,  
REFIN is open circuit) and the op amp operates at its  
minimum quiescent current. The CLR signal resets the  
MAX503 to these same conditions and can be used to  
control a power-saving mode when the DAC is not  
being used by the system.  
Table 1. ROFS Usage  
ROFS  
CONNECTED TO:  
DAC OUTPUT  
RANGE  
OP-AMP  
GAIN  
VOUT  
AGND  
REFIN  
0V to 2.048V  
0V to 4.096V  
G = 1  
G = 2  
-2.048V to +2.048V  
Bipolar  
Note: Assumes RFB = VOUT and REFIN = REFOUT = 2.048V  
_______________________________________________________________________________________  
9
5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 0 -Bit DAC  
REFOUT  
REFIN  
ROFS  
33µF  
2.048V  
REFERENCE  
MAX503  
RFB  
REFGND  
V
OUT  
2N7002  
DAC  
AGND  
DGND  
POWER-ON  
RESET  
MAX503  
V
DD  
+5V  
10-BIT DAC LATCH  
CLR  
CLR  
V
SS  
NBL  
INPUT  
LATCH  
NBM  
INPUT  
LATCH  
NBH  
INPUT  
LATCH  
A0  
A1  
CS  
CONTROL  
LOGIC  
WR  
LDAC  
D6/S0  
D7/S1  
D2  
D8/D0  
D4  
D9/D1  
D3 D5  
Figure 3. Low-Current Shutdown Mode  
An additional 110µA of supply current can be saved  
when the internal reference is not used by connecting  
Table 2. Input Latch Addressing  
REFGND to V . A low on-resistance N-channel FET,  
DD  
CLR CS WR LDAC A0 A1  
DATA UPDATED  
Reset DAC latches  
such as the 2N7002, can be used to turn off the internal  
reference to create a shutdown mode with minimum  
current drain (Figure 3). When CLR is high, the transis-  
tor pulls REFGND to AGND and the reference and DAC  
operate normally. When CLR goes low, REFGND is  
L
H
H
H
H
X
H
X
L
X
X
H
L
X
H
H
H
H
X
X
X
H
H
X
X
X
H
L
No operation  
No operation  
NBH (D6–D9)  
NBM (D2–D5)  
pulled up to V and the reference is shut down. At the  
L
L
DD  
same time, CLR resets the DAC register to all 0s, and  
the op -a mp outp ut g oe s to 0V for unity-g a in a nd  
G = 2 modes. This reduces the total single-supply  
operating current from 250µA (400µA max) to typically  
40µA in shutdown mode.  
NBL (S0 = 0, S1 = 0,  
D0, D1)  
H
H
L
L
H
L
L
H
X
H
H
X
Update DAC only  
NBL and NBM (S0, S1,  
D0–D5), DAC not  
updated  
H
H
L
L
L
L
X
L
L
L
H
H
NBH and update DAC  
10 ______________________________________________________________________________________  
5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 0 -Bit DAC  
MAX503  
ADDRESS BUS VALID  
V
IH  
A0A1  
CS  
V
IL  
t
AWH  
t
CWS  
t
CWH  
WR  
t
WR  
t
AWS  
t
DS  
t
DH  
V
V
IL  
IH  
DATA BITS  
(8-BIT BYTE  
OR 4-BIT NIBBLE)  
DATA BUS  
VALID  
CLR  
t
CLR  
LDAC  
t
LDAC  
V
V
IH + IL  
2
NOTE: TIMING MEASUREMENT REFERENCE LEVEL IS  
Figure 4. MAX503 Write-Cycle Timing Diagram  
A small error voltage is added to the reference output  
by the reference current flowing through the N-channel  
pull-down transistor. The switchs on resistance should  
be less than 5. A typical reference current of 100µA  
would add 0.5mV to REFOUT. Since the reference cur-  
rent and on resistance increase with temperature, the  
overall temperature coefficient will degrade slightly.  
P a ra lle l Lo g ic In t e rfa c e  
In order to provide hardware and software compatibility  
with the 12-bit MAX530, the MAX503 employs a 12-bit  
digital interface. As shown in Figure 3, there is actually  
a 12-bit input latch, and therefore 12 bits of data should  
be written. The two least significant bits (S1 and S0) are  
sub-LSB, and must always be 0s. Designed to interface  
with 4-bit, 8-bit, and 16-bit microprocessors (µPs), the  
MAX503 uses 8 data pins and double-buffered logic  
inputs to load data as 4 + 4 + 4 or 8 + 4. The 12-bit  
DAC latch is updated simultaneously through the con-  
trol signal LDAC. Signals A0, A1, WR, and CS select  
which input latches to update. The 12-bit data is bro-  
ken down into nibbles (NB); NBL is the enable signal  
for the lowe s t 4 b its (S0, S1, D0, D1), NBM is the  
enable for the middle 4 bits, and NBH is the enable for  
the highest and most significant 4 bits. Table 2 lists the  
address decoding scheme.  
As data is loaded into the DAC and the output moves  
above GND, the op-amp quiescent current increases to  
its nominal value and the total operating current aver-  
ages 250µA. Using dual supplies (±5V), the op amp is  
fully biased continuously, and the V supply current is  
DD  
more constant at 250µA. The V current is typically  
SS  
150µA.  
The MAX503 logic inputs are compatible with TTL and  
CMOS logic levels. However, to achieve the lowest  
power dissipation, drive the digital inputs with rail-to-rail  
CMOS logic. With TTL logic levels, the power require-  
ment increases by a factor of approximately 2.  
Refer to Figure 4 for the MAX503 write-cycle timing  
diagram.  
______________________________________________________________________________________ 11  
5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 0 -Bit DAC  
DATA BUS  
D0D7  
D0D7  
D0D3  
DATA BUS  
D0D3  
D0D3  
D2D5  
FROM  
SYSTEM  
RESET  
FROM  
SYSTEM  
RESET  
S0, S1, D0, D1  
CLR  
S0, S1, D0D5  
MAX503  
CLR  
MAX503  
A0, A1  
WR  
MAX503  
A0A1  
WR  
MC6800  
MC6809  
CS LDAC  
CS LDAC  
E
2
DECODER  
R/W  
EN  
EN DECODER  
A13–A15  
R/W  
ADDRESS BUS A0, A1  
A0  
A0A15 ADDRESS BUS  
A13–A15  
A0A15  
Figure 7. 8-Bit and 16-Bit µP Interface  
Figure 5. 4-Bit µP Interface  
A0 = 1, A1 = 1  
NBH  
NBM  
A0 = 1, A1 = 0  
NBL  
CS  
A0 = 0, A1 = 1  
WR  
LDAC  
DAC UPDATE  
Figure 6. 4-Bit µP Timing Sequence  
A0 = A1 = 1  
NBH  
A0 = A1 = 0  
NBL & NBM  
CS  
WR  
LDAC  
DAC UPDATE  
Figure 8a. 8-Bit and 16-Bit µP Timing Sequence Using LDAC  
12 ______________________________________________________________________________________  
5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 0 -Bit DAC  
MAX503  
A0 = A1 = 0  
NBL & NBM  
A0 = A1 = 1  
NBH  
CS  
WR  
LDAC = 0 (DAC LATCH IS TRANSPARENT)  
DAC UPDATE  
Figure 8b. 8-Bit and 16-Bit µP Timing Sequence with LDAC = 0  
+5V  
+5V  
V
DD  
V
DD  
REFIN  
REFIN  
ROFS  
REFOUT  
REFOUT  
33µF  
33µF  
MAX503  
MAX503  
ROFS  
AGND  
RFB  
RFB  
AGND  
DGND  
V
OUT  
VOUT  
DGND  
V
OUT  
VOUT  
REFGND  
REFGND  
G = 2  
V
SS  
V
SS  
G = 1  
0V TO -5V  
0V TO -5V  
Figure 9. Unipolar Configuration (0V to +2.048V Output)  
Figure 10. Unipolar Configuration (0V to +4.096V Output)  
Figure 5 shows the circuit configuration for a 4-bit µP  
application. Figure 6 shows the corresponding timing  
sequence. The 4 low bits (S0, S1, D0, D1) are connect-  
ed in parallel to the other 4 bits (D2–D5) and then to the  
µP bus. Address lines A0 and A1 enable the input data  
latches for the high, middle, or low data nibbles. The µP  
sends chip select (CS) and write (WR) signals to latch  
in each of three nibbles in three cycles when the data is  
valid.  
LDAC is asynchronous with respect to WR. If LDAC is  
brought low before or at the same time WR goes high,  
LDAC must remain low for at least 50ns to ensure the  
correct data is latched. Data is latched into DAC regis-  
ters on LDACs rising edge.  
Un ip o la r Co n fig u ra t io n  
The MAX503 is configured for a 0V to V  
unipolar  
REFIN  
output range by connecting ROFS and RFB to VOUT  
(Figure 9). The converter operates from either single or  
dual supplies in this configuration. See Table 3 for the  
Figure 7 shows a typical interface to an 8-bit or a 16-bit  
µP. Connect 8 data bits from the data bus to pins S0,  
S1, and D0–D5 on the MAX503. With LDAC held high,  
the user can load NBH or NBL + NBM in any order.  
Figure 8a shows the corresponding timing sequence.  
For fa s te s t throug hp ut, us e Fig ure 8b s s e q ue nc e .  
Address lines A0 and A1 are tied together and the DAC  
is loaded in 2 cycles as 8 + 4. In this scheme, with  
LDAC held low, the DAC latch is transparent. Always  
load NBL and NBM first, followed by NBH.  
DAC-latch contents (input) vs. the analog VOUT (output).  
-10  
In this range, 1LSB = V  
(2  
).  
REFIN  
A 0V to 2V  
unipolar output range is set up by con-  
REFIN  
necting ROFS to AGND and RFB to VOUT (Figure 10).  
Table 4 shows the DAC-latch contents vs. VOUT. The  
MAX503 operates from either single or dual supplies in  
-10  
this mode. In this range, 1LSB = (2)(V  
)(2  
) =  
REFIN  
-9  
(V )(2 ).  
REFIN  
______________________________________________________________________________________ 13  
5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 0 -Bit DAC  
Table 3. Unipolar Binary Code Table  
Table 4. Unipolar Binary Code Table  
(0V to V  
Output), Gain = 1  
(0V to 2V  
Output), Gain = 2  
REFIN  
REFIN  
OUTPUT  
INPUT*  
OUTPUT  
INPUT*  
1023  
1024  
1023  
1024  
(V  
)
1111 1111  
11(00)  
01(00)  
00(00)  
REFIN  
+2 (V  
)
1111 1111  
1000 0000  
1000 0000  
11(00)  
01(00)  
00(00)  
REFIN  
MAX503  
513  
1024  
513  
1024  
(V  
REFIN  
)
1000 0000  
1000 0000  
+2 (V  
)
REFIN  
512  
512  
1024  
(V  
)
= +V  
/2  
REFIN  
REFIN  
= +V  
+2 (V  
)
REFIN  
REFIN  
1024  
511  
1024  
511  
1024  
11(00)  
0111 1111  
(V  
)
REFIN  
11(00)  
+2 (V  
)
0111 1111  
REFIN  
1
1024  
1
1024  
0000 0000  
0000 0000  
(V  
)
01(00)  
00(00)  
REFIN  
0000 0000  
0000 0000  
+2 (V  
)
01(00)  
00(00)  
REFIN  
OV  
OV  
* Write 10-bit data words with two sub-LSB 0s because the  
DAC input latch is 12 bits wide.  
* Write 10-bit data words with two sub-LSB 0s because the  
DAC input latch is 12 bits wide.  
Table 5. Bipolar (Offset Binary) Code  
Bip o la r Co n fig u ra t io n  
bipolar range is set up by con-  
necting ROFS to REFIN and RFB to VOUT, and operat-  
ing from d ua l (± 5V) s up p lie s (Fig ure 11). Ta b le 5  
A -V  
to +V  
Table (-V  
to +V  
Output)  
REFIN  
REFIN  
REFIN  
REFIN  
OUTPUT  
INPUT*  
shows the DAC-latch contents (input) vs. VOUT (out-  
-9  
put). In this range, 1LSB = V  
(2 ).  
REFIN  
511  
512  
(+V  
)
1111 1111  
11(00)  
REFIN  
Fo u r-Qu a d ra n t Mu lt ip lic a t io n  
The MAX503 can be used as a four-quadrant multiplier  
by connecting ROFS to REFIN and RFB to VOUT, and  
us ing (1) a n offs e t b ina ry d ig ita l c od e , (2) b ip ola r  
p owe r s up p lie s , a nd (3) a b ip ola r a na log inp ut a t  
1
512  
1000 0000  
1000 0000  
0111 1111  
(+V  
)
01(00)  
00(00)  
11(00)  
REFIN  
0V  
REFIN within the range V + 2V to V - 2V, as shown  
SS  
DD  
in Figure 12.  
1
512  
(-V  
REFIN  
)
In ge ne ra l, a 10-bit DACs output is D(V  
)(G),  
REFIN  
where G is the gain (1 or 2) and D” is the binary rep-  
10  
resentation of the digital input divided by 2 or 1,024.  
511  
512  
0000 0000  
0000 0000  
(-V  
(-V  
)
01(00)  
00(00)  
REFIN  
This formula is precise for unipolar operation. However,  
for bipolar, offset binary operation, the MSB is really a  
polarity bit. No resolution is lost because the number of  
steps is the same. The output voltage, however, has  
b e e n s hifte d from a ra ng e of, for e xa mp le , 0V to  
4.096V (G = 2) to a range of -2.048V to +2.048V.  
512  
512  
)
= -V  
REFIN  
REFIN  
* Write 10-bit data words with two sub-LSB 0s because the  
DAC input latch is 12 bits wide.  
Keep in mind that when using the DAC as a four-quad-  
rant multiplier, the scale is skewed. The negative full  
s c a le is -V  
, while the p os itive full s c a le is  
REFIN  
+V  
- 1LSB.  
REFIN  
14 ______________________________________________________________________________________  
5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 0 -Bit DAC  
MAX503  
+5V  
+5V  
V
DD  
REFIN  
ROFS  
REFIN  
REFIN  
ROFS  
REFOUT  
REFGND  
33µF  
MAX503  
AGND  
DGND  
MAX503  
RFB  
RFB  
AGND  
V
OUT  
V
OUT  
VOUT  
DGND  
VOUT  
REFGND  
V
SS  
-5V  
-5V  
Figure 11. Bipolar Configuration (-2.048V to +2.048V Output)  
Figure 12. Four-Quadrant Multiplying Circuit  
ground connection may be achieved by connecting  
the AGND, REFGND, and DGND pins together and  
connecting that point to the system analog ground  
plane. If DGND is connected to the system digital  
ground, digital noise may get through to the DACs ana-  
log portion.  
__________Ap p lic a t io n s In fo rm a t io n  
S in g le -S u p p ly Lin e a rit y  
As with any amplifier, the MAX503s output op amp off-  
set can be positive or negative. When the offset is posi-  
tive, it is easily accounted for. However, when the offset  
is negative, the output cannot follow linearly when there  
is no negative supply. In that case, the amplifier output  
(VOUT) remains at ground until the DAC voltage is suffi-  
cient to overcome the offset and the output becomes  
positive. The resulting transfer function is shown in  
Figure 13.  
Bypass V  
(and V in dual-supply mode) with a  
SS  
DD  
0.1µF ceramic capacitor connected between V  
and  
DD  
AGND (a nd b e twe e n V  
a nd AGND). Mount the  
SS  
capacitors with short leads close to the device.  
AC Co n s id e ra t io n s  
Normally, linearity is measured after allowing for zero  
error and gain error. Since, in single-supply operation,  
the actual value of a negative offset is unknown, it can-  
not be accounted for during test. In the MAX503, linear-  
ity and gain error are measured from code 3 to code  
1023 (see Note 2 under Electrical Characteristics). The  
output amplifier offset does not affect monotonicity, and  
these DACs are guaranteed monotonic starting with  
code zero. In dual-supply operation, linearity and gain  
error are measured from code 0 to 1023.  
Digital Feedthrough  
High-speed data at any of the digital input pins may  
couple through the DAC package and cause internal  
stray capacitance to appear as noise at the DAC out-  
put, even though LDAC and CS are held high (see  
Typ ic a l Op e ra ting Cha ra c te ris tic s ). This d ig ita l  
feedthrough is tested by holding LDAC and CS high  
and toggling the data inputs from all 1s to all 0s.  
Analog Feedthrough  
Because of internal stray capacitance, higher-frequen-  
cy analog input signals at REFIN may couple to the  
output, even when the input digital code is all 0s, as  
shown in the Typical Operating Characteristics graph  
Analog Feedthrough vs. Frequency. It is tested by set-  
ting CLR to low (which sets the DAC latches to all 0s)  
and sweeping REFIN.  
P o w e r-S u p p ly Byp a s s in g  
a n d Gro u n d Ma n a g e m e n t  
Best system performance is obtained with printed cir-  
cuit boards that use separate analog and digital ground  
planes. Wire-wrap boards are not recommended. The  
two ground planes should be connected together at the  
low-impedance power-supply source.  
AGND and REFGND should be connected together,  
and then to DGND at the chip. For single-supply appli-  
cations, connect V to AGND at the chip. The best  
SS  
______________________________________________________________________________________ 15  
5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 0 -Bit DAC  
5
POSITIVE OFFSET  
4
MAX503  
3
2
NEGATIVE OFFSET  
1
0
1
2
3
4
5
DAC CODE (LSBs)  
Figure 13. Single-Supply DAC Transfer Function  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1994 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX503CNG+

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 25us Settling Time, PDIP24, 0.300 INCH, PLASTIC, DIP-24
MAXIM

MAX503CNG-T

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 25us Settling Time, PDIP24, 0.300 INCH, PLASTIC, DIP-24
MAXIM

MAX503CWG

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC
MAXIM

MAX503EAG

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC
MAXIM

MAX503EAG+

暂无描述
MAXIM

MAX503ENG

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC
MAXIM

MAX503ENG+

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 25us Settling Time, PDIP24, 0.300 INCH, PLASTIC, DIP-24
MAXIM

MAX503ENG-T

暂无描述
MAXIM

MAX503EWG

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC
MAXIM

MAX503EWG+T

暂无描述
MAXIM

MAX503EWG-T

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 25us Settling Time, PDSO24, 0.300 INCH, SOP-24
MAXIM

MAX504

5V, Low-Power, Voltage-Output, Serial 10-Bit DACs
MAXIM