MAX5054BATA+ [MAXIM]

4A, 20ns, Dual MOSFET Drivers;
MAX5054BATA+
型号: MAX5054BATA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

4A, 20ns, Dual MOSFET Drivers

文件: 总17页 (文件大小:429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3348; Rev 0; 8/04  
4A, 20ns, Dual MOSFET Drivers  
General Description  
Features  
The MAX5054–MAX5057 dual, high-speed MOSFET  
drivers source and sink up to 4A peak current. These  
devices feature a fast 20ns propagation delay and 20ns  
rise and fall times while driving a 5000pF capacitive  
load. Propagation delay time is minimized and matched  
between the inverting and noninverting inputs and  
between channels. High sourcing/sinking peak cur-  
rents, low propagation delay, and thermally enhanced  
packages make the MAX5054–MAX5057 ideal for high-  
frequency and high-power circuits.  
4V to 15V Single Power Supply  
4A Peak Source/Sink Drive Current  
20ns (typ) Propagation Delay  
Matching Delay Between Inverting and  
Noninverting Inputs  
Matching Propagation Delay Between Two  
Channels  
V  
/ 2 CMOS Logic Inputs (MAX5054AATA)  
DD  
The MAX5054–MAX5057 operate from a 4V to 15V single  
power supply and consume 40µA (typ) of supply current  
when not switching. These devices have internal logic  
circuitry that prevents shoot-through during output state  
changes to minimize the operating current at high  
switching frequency. The logic inputs are protected  
TTL Logic Inputs  
(MAX5054B/MAX5055/MAX5056/MAX5057)  
0.1 x V  
(CMOS) and 0.3V (TTL) Logic-Input  
DD  
Hysteresis  
against voltage spikes up to +18V, regardless of the V  
DD  
Up to +18V Logic Inputs (Regardless of V  
DD  
voltage. The MAX5054A is the only version that has  
CMOS input logic levels while the MAX5054B/MAX5055/  
MAX5056/MAX5057 have TTL input logic levels.  
Voltage)  
Low Input Capacitance: 2.5pF (typ)  
40µA (typ) Quiescent Current  
The MAX5055–MAX5057 provide the combination of dual  
inverting, dual noninverting, and inverting/noninverting  
input drivers. The MAX5054 feature both inverting and  
noninverting inputs per driver for greater flexibility. They  
are available in 8-pin TDFN (3mm x 3mm), standard SO,  
and thermally enhanced SO packages. These devices  
operate over the automotive temperature range of -40°C  
to +125°C.  
-40°C to +125°C Operating Temperature Range  
8-Pin TDFN and SO Packages  
Ordering Information  
PIN-  
PACKAGE  
TOP  
MARK  
Applications  
PART  
TEMP RANGE  
Power MOSFET Switching  
Motor Control  
MAX5054AATA  
MAX5054BATA  
MAX5055AASA  
MAX5055BASA  
MAX5056AASA  
MAX5056BASA  
MAX5057AASA  
MAX5057BASA  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
8 TDFN-EP*  
8 TDFN-EP*  
8 SO-EP*  
8 SO  
AGS  
AGR  
Switch-Mode Power Supplies Power-Supply Modules  
DC-DC Converters  
Typical Operating Circuit  
8 SO-EP*  
8 SO  
V
IN  
V
OUT  
8 SO-EP*  
8 SO  
*EP = Exposed pad. Package code S8E-14.  
Selector Guide and Pin Configurations appear at end of  
data sheet.  
MAX5054  
V
DD  
INA+  
INA-  
OUTA  
INB+  
INB-  
OUTB  
GND  
PWM IN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
4A, 20ns, Dual MOSFET Drivers  
ABSOLUTE MAXIMUM RATINGS  
(Voltages referenced to GND.)  
8-Pin SO-EP (derate 19.2mW/°C above +70°C)… ........1538mW  
V
...............................................................................-0.3V to +18V  
Junction-to-Case Thermal Resistance (θ ) ......................6°C/W  
DD  
JC  
INA+, INA-, INB+, INB- ...............................................-0.3V to +18V  
8-Pin SO (derate 5.9mW/°C above +70°C)..................471mW  
OUTA, OUTB...................................................-0.3V to (V + 0.3V)  
OUTA, OUTB Short-Circuit Duration ........................................10ms  
Junction-to-Case Thermal Resistance (θ ) ....................40°C/W  
DD  
JC  
Operating Temperature Range..............................-40°C to +125°C  
Storage Temperature Range .................................-65°C to +150°C  
Junction Temperature...........................................................+150°C  
Lead Temperature (soldering, 10s)......................................+300°C  
Continuous Source/Sink Current at OUT_ (P < P  
).....200mA  
DMAX  
D
Continuous Power Dissipation (T = +70°C)  
A
8-Pin TDFN-EP (derate 24.4mW/°C above +70°C)........1951mW  
Junction-to-Case Thermal Resistance (θ ) ......................2°C/W  
JC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 4V to 15V, T = -40°C to +125°C, unless otherwise noted. Typical values are at V  
= 15V and T = +25°C.) (Note 1)  
DD A  
DD  
A
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Operating Range  
V
4
15  
V
V
DD  
DD  
DD  
Undervoltage Lockout  
UVLO  
V
V
rising  
rising  
3.00  
3.50  
200  
3.85  
DD  
DD  
V
Undervoltage Lockout  
DD  
mV  
µs  
Hysteresis  
V
Undervoltage Lockout to  
DD  
12  
Output Delay  
INA- = INB- = V  
INA+ = INB+ = 0V  
(not switching)  
,
V
V
= 4V  
28  
40  
55  
75  
DD  
DD  
DD  
I
µA  
DD  
= 15V  
V
Supply Current  
DD  
INA- = 0V, INB+ = V  
= 15V,  
DD  
I
INA+ = INB- both channels switching at  
250kHz, C = 0  
1
2.4  
4
mA  
DD-SW  
L
DRIVER OUTPUT (SINK)  
T
T
T
T
= +25°C  
= +125°C  
= +25°C  
= +125°C  
1.1  
1.5  
2.2  
3.0  
4
1.8  
2.4  
3.3  
4.5  
A
A
A
A
V
= 15V,  
= -100mA  
DD  
I
OUT_  
Driver Output Resistance Pulling  
Down  
R
ON-N  
V
= 4.5V,  
= -100mA  
DD  
I
OUT_  
Peak Output Current (Sinking)  
Output-Voltage Low  
I
V
= 15V, C = 10,000pF  
A
V
PK-N  
DD  
L
V
= 4.5V  
= 15V  
0.45  
0.24  
DD  
DD  
I
= -100mA  
OUT_  
V
Latchup Protection  
I
Reverse current I  
(Note 2)  
OUT_  
400  
mA  
LUP  
DRIVER OUTPUT (SOURCE)  
T
T
T
T
= +25°C  
= +125°C  
= +25°C  
= +125°C  
1.5  
1.9  
2.75  
3.75  
4
2.1  
2.75  
4
A
A
A
A
V
= 15V,  
= 100mA  
DD  
I
OUT_  
Driver Output Resistance Pulling  
Up  
R
ON-P  
V
= 4.5V,  
= 100mA  
DD  
I
OUT_  
5.5  
Peak Output Current (Sourcing)  
I
V
= 15V, C = 10,000pF  
A
PK-P  
DD  
L
2
_______________________________________________________________________________________  
4A, 20ns, Dual MOSFET Drivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 4V to 15V, T = -40°C to +125°C, unless otherwise noted. Typical values are at V  
= 15V and T = +25°C.) (Note 1)  
DD A  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
0.55  
-
DD  
V
V
= 4.5V  
= 15V  
DD  
DD  
Output-Voltage High  
LOGIC INPUT (Note 3)  
Logic 1 Input Voltage  
I
= 100mA  
V
OUT_  
V
-
DD  
0.275  
0.7 x  
MAX5054A  
V
DD  
V
V
IH  
MAX5054B/MAX5055/MAX5056/MAX5057  
(Note 4)  
2.1  
0.3 x  
MAX5054A  
V
Logic 0 Input Voltage  
Logic-Input Hysteresis  
V
DD  
V
V
IL  
MAX5054B/MAX5055/MAX5056/MAX5057  
MAX5054A  
0.8  
0.1 x  
V
V
DD  
HYS  
MAX5054B/MAX5055/MAX5056/MAX5057  
0.3  
+0.1  
2.5  
Logic-Input-Current Leakage  
Input Capacitance  
INA+, INB+, INA-, INB- = 0V or V  
-1  
+1  
µA  
pF  
DD  
C
IN  
SWITCHING CHARACTERISTICS FOR V  
= 15V (Figure 1)  
DD  
C = 1000pF  
L
4
OUT_ Rise Time  
OUT_ Fall Time  
t
C = 5000pF  
18  
32  
4
ns  
ns  
R
L
C = 10,000pF  
L
C = 1000pF  
L
t
C = 5000pF  
L
15  
26  
20  
20  
F
C = 10,000pF  
L
Turn-On Delay Time  
Turn-Off Delay Time  
t
C = 10,000pF (Note 2)  
L
10  
10  
34  
34  
ns  
ns  
D-ON  
t
C = 10,000pF (Note 2)  
L
D-OFF  
SWITCHING CHARACTERISTICS FOR V  
= 4.5V (Figure 1)  
DD  
C = 1000pF  
L
7
OUT_ Rise Time  
OUT_ Fall Time  
t
C = 5000pF  
37  
85  
7
ns  
ns  
R
L
C = 10,000pF  
L
C = 1000pF  
L
t
C = 5000pF  
L
30  
75  
35  
35  
F
C = 10,000pF  
L
Turn-On Delay Time  
Turn-Off Delay Time  
t
C = 10,000pF (Note 2)  
L
18  
18  
70  
70  
ns  
ns  
D-ON  
t
C = 10,000pF (Note 2)  
L
D-OFF  
_______________________________________________________________________________________  
3
4A, 20ns, Dual MOSFET Drivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 4V to 15V, T = -40°C to +125°C, unless otherwise noted. Typical values are at V  
= 15V and T = +25°C.) (Note 1)  
DD A  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MATCHING CHARACTERISTICS  
Mismatch Propagation Delays from  
Inverting and Noninverting Inputs  
to Output  
V
V
= 15V, C = 10,000pF  
L
2
4
DD  
DD  
t  
ns  
ns  
ON-OFF  
= 4.5V, C = 10,000pF  
L
V
V
= 15V, C = 10,000pF  
1
2
DD  
DD  
L
Mismatch Propagation Delays  
Between Channel A and Channel B  
t  
A-B  
= 4.5V, C = 10,000pF  
L
Note 1: All devices are 100% tested at T = +25°C. Specifications over -40°C to +125°C are guaranteed by design.  
A
Note 2: Limits are guaranteed by design, not production tested.  
Note 3: The logic-input thresholds are tested at V  
= 4V and V  
= 15V.  
DD  
DD  
Note 4: TTL compatible with reduced noise immunity.  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
PROPAGATION DELAY TIME,  
LOW-TO-HIGH vs. SUPPLY VOLTAGE  
FALL TIME vs. SUPPLY VOLTAGE  
RISE TIME vs. SUPPLY VOLTAGE  
(C = 5000pF)  
L
(C = 5000pF)  
L
(C = 5000pF)  
L
60  
50  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
T
= +125°C  
A
T
= +125°C  
A
T
= +125°C  
A
40  
30  
20  
10  
0
T
= +25°C  
A
T
= +25°C  
A
T
= +25°C  
A
T
= -40°C  
A
T
= -40°C  
A
6
T
= -40°C  
A
4
6
8
10  
12  
14  
16  
4
8
10  
12  
14  
16  
4
6
8
10  
12  
14  
16  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
PROPAGATION DELAY TIME,  
HIGH-TO-LOW vs. SUPPLY VOLTAGE  
I
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
DD-SW  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(C = 5000pF)  
L
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
5
4
3
2
1
0
60  
50  
40  
30  
20  
10  
0
DUTY CYCLE = 50%  
= 15V, C = 0  
1 CHANNEL SWITCHING  
DUTY CYCLE = 50%  
V
V
= 15V, C = 4700pF  
DD  
L
DD  
L
T
= +125°C  
A
1 CHANNEL SWITCHING  
1MHz  
1MHz  
T
= +25°C  
A
500kHz  
500kHz  
50kHz  
50kHz  
100kHz  
100kHz  
T
= -40°C  
A
4
6
8
10  
12  
14  
16  
4
6
8
10  
12  
14  
16  
4
6
8
10  
12  
14  
16  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
4
_______________________________________________________________________________________  
4A, 20ns, Dual MOSFET Drivers  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
I
SUPPLY CURRENT  
vs. TEMPERATURE  
INPUT THRESHOLD VOLTAGE  
vs. SUPPLY VOLTAGE  
INPUT THRESHOLD VOLTAGE  
vs. SUPPLY VOLTAGE  
DD-SW  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10  
9
8
7
6
5
4
3
2
1
0
V
= 15V,  
f = 250kHz, C = 0  
DUTY CYCLE = 50%  
BOTH CHANNELS SWITCHING  
TTL INPUT VERSIONS  
DD  
MAX5054AATA  
(CMOS INPUT)  
L
V
RISING  
V
RISING  
IN  
IN  
V
FALLING  
IN  
V
FALLING  
IN  
-50 -25  
0
25  
50  
75 100 125  
4
6
8
10  
12  
14  
16  
4
6
8
10  
12  
14  
16  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY CURRENT vs. LOGIC-INPUT  
VOLTAGE (INPUT HIGH-TO-LOW)  
SUPPLY CURRENT vs. LOGIC-INPUT  
VOLTAGE (INPUT LOW-TO-HIGH)  
SUPPLY CURRENT vs. LOGIC-INPUT  
VOLTAGE (INPUT LOW-TO-HIGH)  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
5
4
3
2
1
0
TTL INPUT VERSIONS  
TTL INPUT VERSIONS  
MAX5054AATA (CMOS INPUT)  
V
= 15V  
DD  
V
= 15V  
V
= 15V  
DD  
DD  
0
2
4
6
8
10 12 14 16  
0
2
4
6
8
10 12 14 16  
0
2
4
6
8
10 12 14 16  
LOGIC-INPUT VOLTAGE (V)  
LOGIC-INPUT VOLTAGE (V)  
LOGIC-INPUT VOLTAGE (V)  
SUPPLY CURRENT vs. LOGIC-INPUT  
VOLTAGE (INPUT HIGH-TO-LOW)  
DELAY MISMATCH BETWEEN IN_+  
AND IN_- TO OUT_ vs. TEMPERATURE  
DELAY MISMATCH BETWEEN IN_+  
AND IN_- TO OUT_ vs. TEMPERATURE  
5
4
3
2
1
0
6
4
6
4
MAX5054AATA (CMOS INPUT)  
OUTPUT FALLING  
V
= +15V  
DD  
OUTPUT RISING  
2
2
OUTPUT RISING  
0
0
-2  
-4  
-6  
-2  
-4  
-6  
OUTPUT FALLING  
MAX5054AATA (CMOS INPUT)  
MAX5054AATA (CMOS INPUT)  
V
= 4.5V, C = 10,000pF  
V
= 15V, C = 10,000pF  
DD  
L
DD  
L
0
2
4
6
8
10 12 14 16  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
LOGIC-INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
4A, 20ns, Dual MOSFET Drivers  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
DELAY MISMATCH BETWEEN 2 CHANNELS  
vs. TEMPERATURE  
DELAY MISMATCH BETWEEN 2 CHANNELS  
vs. TEMPERATURE  
4
3
4
3
V
= 15V, C = 10,000pF  
L
DD  
V
= 4.5V, C = 10,000pF  
DD  
L
OUTPUT RISING  
OUTPUT FALLING  
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
OUTPUT RISING  
OUTPUT FALLING  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V = 4V, C = 5000pF)  
LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V = 4V, C = 10,000pF)  
DD  
L
DD  
L
MAX5054 toc18  
MAX5054 toc19  
IN_-  
2V/div  
IN_-  
2V/div  
OUT_  
2V/div  
OUT_  
2V/div  
MAX5055 (TTL INPUT)  
20ns/div  
MAX5055 (TTL INPUT)  
40ns/div  
LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE  
LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V = 4V, C = 5000pF)  
(V = 4V, C = 10,000pF)  
DD  
L
DD  
L
MAX5054 toc21  
MAX5054 toc20  
IN_-  
2V/div  
IN_-  
2V/div  
OUT_  
2V/div  
OUT_  
2V/div  
MAX5055 (TTL INPUT)  
MAX5055 (TTL INPUT)  
20ns/div  
40ns/div  
6
_______________________________________________________________________________________  
4A, 20ns, Dual MOSFET Drivers  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V = 15V, C = 10,000pF)  
LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V = 15V, C = 5000pF)  
DD  
L
DD  
L
MAX5054 toc22  
MAX5054 toc23  
IN_-  
2V/div  
IN_-  
2V/div  
OUT_  
5V/div  
OUT_  
5V/div  
MAX5055  
MAX5055  
20ns/div  
40ns/div  
LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V = 15V, C = 5000pF)  
LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V = 15V, C = 10,000pF)  
DD  
L
DD  
L
MAX5054 toc24  
MAX5054 toc25  
IN_-  
IN_-  
2V/div  
2V/div  
OUT_  
5V/div  
OUT_  
5V/div  
MAX5055  
MAX5055  
20ns/div  
40ns/div  
V
DD  
vs. OUTPUT VOLTAGE  
V vs. OUTPUT VOLTAGE  
DD  
MAX5054 toc27  
MAX5054 toc26  
MAX5055  
INA- = INB- = GND  
V
DD  
5V/div  
C
= C = 10,000pF  
LB  
LA  
OUTA  
5V/div  
V
DD  
OUTB  
5V/div  
5V/div  
OUTA  
5V/div  
MAX5055  
INA- = INB- = GND  
OUTB  
5V/div  
C
= C = 10,000pF  
LB  
LA  
2ms/div  
2ms/div  
_______________________________________________________________________________________  
7
4A, 20ns, Dual MOSFET Drivers  
Pin Descriptions  
MAX5054  
PIN  
1
NAME  
INA-  
FUNCTION  
Inverting Logic-Input Terminal for Driver A. Connect to GND when not used.  
Inverting Logic-Input Terminal for Driver B. Connect to GND when not used.  
Ground  
2
INB-  
3
GND  
OUTB  
4
Driver B Output. Sources or sinks current for channel B to turn the external MOSFET on or off.  
Power Supply. Bypass to GND with one or more 0.1µF ceramic capacitors.  
Driver A Output. Sources or sinks current for channel A to turn the external MOSFET on or off.  
5
V
DD  
6
OUTA  
INB+  
INA+  
7
Noninverting Logic-Input Terminal for Driver B. Connect to V when not used.  
DD  
8
Noninverting Logic-Input Terminal for Driver A. Connect to V when not used.  
DD  
Exposed Pad. Internally connected to GND. Do not use the exposed pad as the only electrical  
ground connection.  
EP  
MAX5055/MAX5056/MAX5057  
PIN  
NAME  
FUNCTION  
No Connection. Not internally connected.  
MAX5055 MAX5056 MAX5057  
1, 8  
2
1, 8  
3
1, 8  
2
N.C.  
INA-  
GND  
INB-  
Inverting Logic-Input Terminal for Driver A. Connect to GND if not used.  
Ground  
3
3
4
Inverting Logic-Input Terminal for Driver B. Connect to GND if not used.  
Driver B Output. Sources or sinks current for channel B to turn the external  
MOSFET on or off.  
5
6
7
5
6
7
5
6
7
OUTB  
V
Power Supply. Bypass to GND with one or more 0.1µF ceramic capacitors.  
DD  
Driver A Output. Sources or sinks current for channel A to turn the external  
MOSFET on or off.  
OUTA  
4
2
4
INB+  
INA+  
Noninverting Logic-Input Terminal for Driver B. Connect to V if not used.  
DD  
Noninverting Logic-Input Terminal for Driver A. Connect to V if not used.  
DD  
Exposed Pad. Internally connected to GND. Do not use the exposed pad as  
the only electrical ground connection.  
EP  
8
_______________________________________________________________________________________  
4A, 20ns, Dual MOSFET Drivers  
V
IH  
IN_+  
V
IL  
V
DD  
MAX5055  
MAX5056  
MAX5057  
90%  
10%  
OUT_  
P
BREAK-  
BEFORE-  
MAKE  
t
t
D-OFF1  
D-ON1  
IN_+  
OUT_  
GND  
t
t
R
F
CONTROL  
N
V
IN_-  
IH  
V
IL  
t
t
D-OFF2  
D-ON2  
RISING MISMATCH = t  
- t  
D-ON2 D-ON1  
FALLING MISMATCH = t  
- t  
D-OFF2 D-OFF1  
NONINVERTING INPUT DRIVER  
Figure 1. Timing Diagram  
V
DD  
MAX5055  
MAX5056  
MAX5057  
V
DD  
MAX5054  
P
BREAK-  
BEFORE-  
MAKE  
IN_-  
P
IN_-  
OUT_  
GND  
BREAK-  
BEFORE-  
MAKE  
CONTROL  
OUT_  
GND  
N
CONTROL  
IN_+  
N
INVERTING INPUT DRIVER  
Figure 2. MAX5054 Block Diagram (1 Driver)  
Figure 3. MAX5055/MAX5056/MAX5057 Functional Diagrams  
(1 Driver)  
Logic Inputs  
The MAX5054B–MAX5057 have TTL-compatible logic  
inputs, while the MAX5054A is a CMOS logic-input dri-  
ver. The logic-input signals can be independent of the  
Detailed Description  
V
Undervoltage Lockout (UVLO)  
DD  
The MAX5054–MAX5057 have internal undervoltage  
lockout for V . When V  
is below the UVLO thresh-  
DD  
DD  
V
voltage. For example, the device can be powered  
DD  
old, OUT_ is low, independent of the state of the inputs.  
The undervoltage lockout is typically 3.5V with 200mV  
by a 5V supply while the logic inputs are provided from  
CMOS logic. Also, the logic inputs are protected against  
typical hysteresis to avoid chattering. When V  
rises  
DD  
the voltage spikes up to 18V, regardless of the V  
volt-  
DD  
above the UVLO threshold, the outputs go high or low  
age. The TTL and CMOS logic inputs have 300mV and  
0.1 x V hysteresis, respectively, to avoid possible dou-  
depending upon the logic-input levels. Bypass V  
DD  
DD  
using low-ESR ceramic capacitors for proper operation  
ble pulsing during transition. The low 2.5pF input capaci-  
tance reduces loading and increases switching speed.  
(see the Applications Information section).  
_______________________________________________________________________________________  
9
4A, 20ns, Dual MOSFET Drivers  
Table 1. MAX5054 Truth Table  
INA+/INB+  
Low  
INA-/INB-  
Low  
OUTA/OUTB  
Low  
V
DD  
Low  
High  
Low  
MAX5054A  
PWM  
INPUT  
High  
Low  
High  
INA+  
OUTA  
High  
High  
Low  
OFF  
Table 2. MAX5055/MAX5056/MAX5057  
Truth Table  
INA-  
GND  
ON  
NONINVERTING  
Figure 4. Unused Input as an ON/OFF Function (1/2 MAX5054A)  
IN_+  
Low  
OUT_  
Low  
Applications Information  
High  
High  
RLC Series Circuit  
INVERTING  
The driver’s R  
(R ), internal bond and lead  
ON  
DS(ON)  
IN_-  
Low  
High  
OUT_  
High  
Low  
inductance (L ), trace inductance (L ), gate inductance  
P
S
(L ), and gate capacitance (C ) form a series RLC  
G
G
circuit with a second-order characteristic equation. The  
series RLC circuit has an undamped natural frequency  
(ϖ ) and a damping ratio (ζ) where:  
0
The logic inputs are high impedance and must not be left  
floating. If the inputs are left open, OUT_ can go to an  
1
undefined state as soon as V  
rises above the UVLO  
ϖ
=
DD  
0
(L + L + L ) × C  
threshold. Therefore, the PWM output from the controller  
must assume proper state when powering up the device.  
P
S
G
G
The MAX5054 has two logic inputs per driver providing  
greater flexibility in controlling the MOSFET. Use IN_+ for  
noninverting logic and IN_- for inverting logic operation.  
R
ON  
ξ =  
(L + L + L )  
P
S
G
2 ×  
Connect IN_+ to V  
and IN_- to GND if not used.  
DD  
C
G
Alternatively, the unused input can be used as an  
ON/OFF function. Use IN_+ for active-low shutdown logic  
and IN_- for active-high shutdown logic (see Figure 4).  
See Table 1 for all possible input combinations.  
The damping ratio needs to be greater than 0.5 (ideally 1)  
to avoid ringing. Add a small resistor (R ) in series  
with the gate when driving a very low gate-charge  
MOSFET, or when the driver is placed away from the  
MOSFET. Use the following equation to calculate the  
series resistor:  
GATE  
Driver Output  
The MAX5054–MAX5057 have low R  
p-channel  
DS(ON)  
and n-channel devices (totem pole) in the output stage  
for the fast turn-on and turn-off high gate-charge switch-  
ing MOSFETs. The peak source or sink current is typically  
(L + L + L )  
P
S
G
R
R  
ON  
GATE  
4A. The OUT_ voltage is approximately equal to V  
DD  
C
G
when in high state and is ground when in low state. The  
driver R is lower at higher V , thus higher  
DS(ON)  
DD  
L
P
can be approximated as 3nH and 2nH for SO and  
source-/sink-current capability and faster switching  
speeds. The propagation delays from the noninverting  
and inverting logic inputs to outputs are matched to 2ns.  
The break-before-make logic avoids any cross-conduc-  
tion between the internal p- and n-channel devices, and  
eliminates shoot-through currents reducing the quiescent  
supply current.  
TDFN packages, respectively. L is on the order of  
S
20nH/in. Verify L with the MOSFET vendor.  
G
10 ______________________________________________________________________________________  
4A, 20ns, Dual MOSFET Drivers  
where D (duty cycle) is the fraction of the period the  
MAX5054–MAX5057’s output pulls high duty cycle,  
Supply Bypassing and Grounding  
Pay extra attention to bypassing and grounding the  
MAX5054–MAX5057. Peak supply and output currents  
may exceed 8A when both drivers drive large external  
capacitive loads in phase. Supply voltage drops and  
ground shifts create forms of negative feedback for  
inverters and may degrade the delay and transition times.  
Ground shifts due to insufficient device grounding may  
also disturb other circuits sharing the same AC ground  
R
is the maximum on-resistance of the device  
ON(MAX)  
with the output high, and I  
of the MAX5054–MAX5057.  
is the output load current  
LOAD  
Layout Information  
The MAX5054–MAX5057 MOSFET drivers source and  
sink large currents to create very fast rising and falling  
edges at the gate of the switching MOSFET. The high  
di/dt can cause unacceptable ringing if the trace  
lengths and impedances are not well controlled. Use the  
following PC board layout guidelines when designing  
with the MAX5054–MAX5057:  
return path. Any series inductance in the V , OUT_,  
DD  
and/or GND paths can cause oscillations due to the very  
high di/dt when switching the MAX5054–MAX5057 with  
any capacitive load. Place one or more 0.1µF ceramic  
capacitors in parallel as close to the device as possible to  
Place one or more 0.1µF decoupling ceramic  
capacitors from V to GND as close to the device  
bypass V  
to GND. Use a ground plane to minimize  
DD  
DD  
ground return resistance and series inductance. Place  
the external MOSFET as close as possible to the  
MAX5054–MAX5057 to further minimize board induc-  
tance and AC path impedance.  
as possible. Connect V  
and GND to large copper  
DD  
areas. Place one bulk capacitor of 10µF (min) on  
the PC board with a low resistance path to the V  
input and GND of the MAX5054–MAX5057.  
DD  
Power Dissipation  
Power dissipation of the MAX5054–MAX5057 consists  
of three components: caused by the quiescent current,  
capacitive charge/discharge of internal nodes, and the  
output current (either capacitive or resistive load).  
Maintain the sum of these components below the maxi-  
mum power dissipation limit.  
Two AC current loops form between the device and  
the gate of the driven MOSFET. The MOSFET looks  
like a large capacitance from gate to source when the  
gate pulls low. The active current loop is from the  
MOSFET gate to OUT_ of the MAX5054–MAX5057, to  
GND of the MAX5054–MAX5057, and to the source of  
the MOSFET. When the gate of the MOSFET pulls  
The current required to charge and discharge the internal  
nodes is frequency dependent (see the Supply Current  
vs. Supply Voltage graph in the Typical Operating  
high, the active current is from the V  
terminal of the  
DD  
decoupling capacitor, to V  
of the MAX5054–  
DD  
MAX5057, to OUT_ of the MAX5054–MAX5057, to the  
MOSFET gate, to the MOSFET source, and to the  
negative terminal of the decoupling capacitor. Both  
charging current and discharging current loops are  
important. Minimize the physical distance and the  
impedance in these AC current paths.  
Characteristics). The power dissipation (P ) due to the  
Q
quiescent switching supply current (I  
can be calculated as:  
) per driver  
DD-SW  
P
Q
= V  
x I  
DD DD-SW  
For capacitive loads, use the following equation to esti-  
mate the power dissipation per driver:  
Keep the device as close to the MOSFET as possible.  
x (V )2 x f  
In a multilayer PC board, the inner layers should  
consist of a GND plane containing the discharging  
and charging current loops.  
P
= C  
CLOAD  
LOAD DD SW  
where C  
is the capacitive load, V  
SW  
is the supply  
LOAD  
voltage, and f  
DD  
is the switching frequency.  
Pay extra attention to the ground loop and use a  
low-impedance source when using a TTL logic-  
input device. Fast fall time at OUT_ may corrupt the  
input during transition.  
Calculate the total power dissipation (P ) per driver as  
T
follows:  
P = P + P  
CLOAD  
T
Q
Use the following equation to estimate the MAX5054–  
MAX5057 total power dissipation per driver when driving  
a ground-referenced resistive load:  
P = P + P  
RLOAD  
T
Q
2
P
= D x R  
x I  
RLOAD  
ON(MAX) LOAD  
______________________________________________________________________________________ 11  
4A, 20ns, Dual MOSFET Drivers  
ground plane to dissipate 1.5W and 1.9W in SO-EP and  
Exposed Pad  
Both the SO-EP and TDFN-EP packages have an  
exposed pad on the bottom of their package. These  
pads are internally connected to GND. For the best  
thermal conductivity, solder the exposed pad to the  
TDFN-EP packages, respectively. Do not use the  
ground-connected pads as the only electrical ground  
connection or ground return. Use GND (pin 3) as the  
primary electrical ground connection.  
Additional Application Circuits  
V
OUT  
V
IN  
MAX5054  
V
DD  
INA+  
INA-  
OUTA  
MAX5054  
V
DD  
V
DD  
INA+  
INA-  
INB+  
INB-  
PWM IN  
PWM IN  
OUTA  
OUTB  
GND  
PWM IN  
INB+  
INB-  
OUTB  
GND  
Figure 5. Push-Pull Converter with Synchronous Rectification Drive Using MAX5054  
12 ______________________________________________________________________________________  
4A, 20ns, Dual MOSFET Drivers  
Figure 6. Schematic of a 48V Input, 3.3V at 15A Output Synchronously Rectified, Isolated Power Supply  
______________________________________________________________________________________ 13  
4A, 20ns, Dual MOSFET Drivers  
Pin Configurations  
TOP VIEW  
MAX5054  
MAX5055  
INA-  
INB-  
1
2
3
4
8
7
6
5
INA+  
INB+  
OUTA  
N.C.  
INA-  
GND  
INB-  
1
2
3
4
8
7
6
5
N.C.  
OUTA  
GND  
V
DD  
OUTB  
V
OUTB  
DD  
TDFN-EP  
SO/SO-EP  
MAX5056  
MAX5057  
N.C.  
INA+  
GND  
INB+  
1
2
3
4
8
7
6
5
N.C.  
N.C.  
INA-  
GND  
INB+  
1
2
3
4
8
7
6
5
N.C.  
OUTA  
OUTA  
V
DD  
V
DD  
OUTB  
OUTB  
SO/SO-EP  
SO/SO-EP  
Selector Guide  
Chip Information  
TRANSISTOR COUNT: 258  
PROCESS: CMOS  
PIN-  
PACKAGE  
PART  
LOGIC INPUT  
V
/ 2 CMOS Dual Inverting  
DD  
MAX5054AATA 8 TDFN-EP*  
MAX5054BATA 8 TDFN-EP*  
and Dual Noninverting Inputs  
TTL Dual Inverting and Dual  
Noninverting Inputs  
MAX5055AASA 8 SO-EP*  
MAX5055BASA 8 SO  
MAX5056AASA 8 SO-EP*  
MAX5056BASA 8 SO  
TTL Dual Inverting Inputs  
TTL Dual Inverting Inputs  
TTL Dual Noninverting Inputs  
TTL Dual Noninverting Inputs  
TTL Inverting and  
Noninverting Inputs  
MAX5057AASA 8 SO-EP*  
TTL Inverting and  
Noninverting Inputs  
MAX5057BASA 8 SO  
*EP = Exposed pad.  
14 ______________________________________________________________________________________  
4A, 20ns, Dual MOSFET Drivers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
INCHES  
MILLIMETERS  
DIM  
A
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
MIN  
1.35  
0.10  
0.35  
0.19  
MAX  
1.75  
0.25  
0.49  
0.25  
0.053  
0.004  
0.014  
0.007  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.228  
0.016  
0.157  
0.244  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
DIM  
D
MIN  
MAX  
0.197  
0.344  
0.394  
MIN  
4.80  
8.55  
9.80  
MAX  
5.00  
N
8
MS012  
AA  
TOP VIEW  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
B
0-8∞  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
______________________________________________________________________________________ 15  
4A, 20ns, Dual MOSFET Drivers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
8L SOIC, .150" EXPOSED PAD  
1
21-0111  
B
1
16 ______________________________________________________________________________________  
4A, 20ns, Dual MOSFET Drivers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
D
N
PIN 1  
INDEX  
AREA  
E
E2  
DETAIL A  
C
C
L
L
L
L
A
e
e
PACKAGE OUTLINE, 6, 8, 10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY  
21-0137  
F
2
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
0.80  
3.10  
3.10  
0.05  
0.40  
A
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
PKG. CODE  
T633-1  
N
6
D2  
E2  
e
JEDEC SPEC  
b
[(N/2)-1] x e  
1.50 0.10 2.30 0.10 0.95 BSC  
1.50 0.10 2.30 0.10 0.65 BSC  
MO229 / WEEA  
MO229 / WEEC  
0.40 0.05  
0.30 0.05  
1.90 REF  
1.95 REF  
2.00 REF  
2.40 REF  
2.40 REF  
T833-1  
8
T1033-1  
T1433-1  
T1433-2  
10  
14  
14  
1.50 0.10 2.30 0.10 0.50 BSC MO229 / WEED-3 0.25 0.05  
1.70 0.10 2.30 0.10 0.40 BSC  
1.70 0.10 2.30 0.10 0.40 BSC  
- - - -  
- - - -  
0.20 0.03  
0.20 0.03  
PACKAGE OUTLINE, 6, 8, 10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
21-0137  
F
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5054BATA+T

Buffer/Inverter Based MOSFET Driver, 4A, CMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEEC, TDFN-8
MAXIM

MAX5054BATA-T

Buffer/Inverter Based MOSFET Driver, 4A, CMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEEC, TDFN-8
MAXIM

MAX5054BATA-T

4A 2 CHANNEL, BUF OR INV BASED MOSFET DRIVER, DSO8, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEEC, TDFN-8
ROCHESTER

MAX5054_10

4A, 20ns, Dual MOSFET Drivers
MAXIM

MAX5054_11

4A, 20ns, Dual MOSFET Drivers TTL Logic Inputs 8-Pin TDFN and SO Packages
MAXIM

MAX5055

4A, 20ns, Dual MOSFET Drivers
MAXIM

MAX5055AASA

4A, 20ns, Dual MOSFET Drivers
MAXIM

MAX5055AASA+

Buffer/Inverter Based MOSFET Driver, 4A, CMOS, PDSO8, ROHS COMPLIANT, SOP-8
MAXIM

MAX5055BASA

4A, 20ns, Dual MOSFET Drivers
MAXIM

MAX5055BASA

4 A 2 CHANNEL, BUF OR INV BASED MOSFET DRIVER, PDSO8, 0.150 INCH, MS-012AA, SOIC-8
ROCHESTER

MAX5055BASA+

Buffer/Inverter Based MOSFET Driver, 4A, CMOS, PDSO8, ROHS COMPLIANT, SOP-8
MAXIM

MAX5055BASA+T

暂无描述
MAXIM