MAX5068AAUE+ [MAXIM]

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, ROHS COMPLIANT, MO-153-ABT, TSSOP-16;
MAX5068AAUE+
型号: MAX5068AAUE+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, ROHS COMPLIANT, MO-153-ABT, TSSOP-16

振荡器 控制器
文件: 总20页 (文件大小:313K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3176; Rev 1; 7/04  
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
General Description  
Features  
Current-Mode Control with 47µA (typ) Startup  
The MAX5068 is a high-frequency, current-mode,  
pulse-width modulation (PWM) controller that integrates  
all the building blocks necessary for implementing AC-  
DC or DC-DC fixed-frequency power supplies. Isolated  
or nonisolated power supplies are easily constructed  
using either primary- or secondary-side regulation.  
Current-mode control with leading-edge blanking sim-  
plifies control-loop design, and a programmable inter-  
nal slope-compensation circuit stabilizes the current  
loop when operating at duty cycles above 50%. The  
MAX5068A/B limit the maximum duty cycle to 50% for  
use in single-ended forward converters. The  
MAX5068C/D/E/F allow duty cycles up to 75%. The  
MAX5068 features an accurate externally programma-  
ble oscillator that simplifies system design.  
Current  
Resistor-Programmable 4ꢀ.5 Aꢁꢁurate  
Switꢁhing Frequenꢁy:  
2.kHz to 1ꢀ2.MHz (MAX.068A/B)  
12ꢀ.kHz to 62.kHz (MAX.068C/D/E/F)  
Reꢁtified 8.V  
to 26.V  
or 36V  
to 72V  
DC DC  
AC  
AC  
Input (MAX.068A/C/D)  
Input Direꢁtly Driven from 10ꢀ8V to 24V  
(MAX.068B/E/F)  
Frequenꢁy Synꢁhronization Input  
(MAX.068A/B/C/E)  
Programmable Dead Time and Slope  
Compensation  
Programmable Startup Voltage (UVLO)  
An input undervoltage lockout (UVLO) programs the  
input-supply startup voltage and ensures proper opera-  
tion during brownout conditions.  
Programmable UVLO Hysteresis  
(MAX.068A/B/D/F)  
Integrating Fault Proteꢁtion (Hiꢁꢁup)  
A single external resistor programs the output switching  
frequency from 12.5kHz to 1.25MHz. The MAX5068A/  
B/C/E provide a SYNC input for synchronization to an  
external clock. The maximum FET-driver duty cycle is  
50% for the MAX5068A/B and 75% for the MAX5068C/  
D/E/F. Programmable hiccup current limit provides  
additional protection under severe faults.  
-40°C to +12.°C Automotive Temperature Range  
16-Pin Thermally Enhanꢁed TSSOP-EP Paꢁkage  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
16 TSSOP-EP*  
16 TSSOP-EP*  
16 TSSOP-EP*  
16 TSSOP-EP*  
16 TSSOP-EP*  
16 TSSOP-EP*  
MAX5068AAUE  
MAX5068BAUE  
MAX5068CAUE  
MAX5068DAUE  
MAX5068EAUE  
MAX5068FAUE  
*EP = Exposed pad.  
The MAX5068 is specified over the -40°C to +125°C  
automotive temperature range and is available in a  
16-pin thermally enhanced TSSOP-EP package. Refer to  
the MAX5069 data sheet for dual FET-driver applications.  
Warning: The MAX5068 is designed to work with high  
voltages. Exercise caution.  
Pin Configurations  
Applications  
Universal-Input AC Power Supplies  
Isolated Telecom Power Supplies  
Networking System Power Supplies  
Server Power Supplies  
TOP VIEW  
RT  
1
2
3
4
5
6
7
8
16 REG5  
15 IN  
SYNC  
HYST  
14  
V
CC  
MAX5068A/B  
Industrial Power Conversion  
DT  
13 NDRV  
12 AGND  
11 PGND  
10 AGND  
UVLO/EN  
FB  
COMP  
FLTINT  
9
CS  
TSSOP-EP  
Pin Configurations continued at end of data sheet.  
Selector Guide appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
ABSOLUTE MAXIMUM RATINGS  
IN to PGND ............................................................-0.3V to +30V  
IN to AGND.............................................................-0.3V to +30V  
AGND to PGND.....................................................-0.3V to +0.3V  
Continuous Power Dissipation  
V
V
to PGND..........................................................-0.3V to +13V  
to AGND..........................................................-0.3V to +13V  
16-Pin TSSOP-EP (derate 21.3mW/°C above +70°C)...1702mW  
Operating Temperature Range..........................-40°C to +125°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range .............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
CC  
FB, COMP, CS, HYST, SYNC, REG5 to AGND ........-0.3V to +6V  
UVLO/EN, RT, DT, SCOMP, FLTINT to AGND .........-0.3V to +6V  
NDRV to PGND...........................................-0.3V to (V  
+ 0.3V)  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +12V for the MAX5068B/E/F; V = +23.6V for the MAX5068A/C/D at startup, then reduces to +12V; C = C  
= 0.1µF;  
IN  
IN  
IN  
REG5  
C
VCC  
= 1µF; R = 100k; NDRV = floating; T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
RT  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
UNDERVOLTAGE LOCKOUT/STARTUP  
Bootstrap UVLO Wake-Up Level  
Bootstrap UVLO Shutdown Level  
UVLO/EN Wake-Up Threshold  
UVLO/EN Shutdown Threshold  
V
V
V
V
V
V
V
rising, MAX5068A/C/D only  
falling, MAX5068A/C/D only  
19.68  
9.05  
21.6 23.60  
9.74 10.43  
V
V
V
V
SUVR  
SUVF  
ULR2  
IN  
IN  
rising  
falling  
1.205 1.230 1.255  
1.18  
UVLO/EN  
UVLO/EN  
V
ULF2  
MAX5068A/B/D/F only, sinking 50mA,  
HYST FET On-Resistance  
HYST FET Leakage Current  
R
10  
3
nA  
µA  
V
DS(ON)_H  
V
= 0V  
UVLO/EN  
I
V
= 2V, V  
= 5V  
HYST  
LEAK_H  
UVLO/EN  
IN Supply Current In  
Undervoltage Lockout  
I
V
= +19V, V  
< V  
ULF2  
47  
90  
START  
IN  
UVLO/EN  
IN Range  
V
10.8  
24.0  
IN  
INTERNAL SUPPLIES (V  
and REG.)  
CC  
V
Regulator Set Point  
V
V
V
= +10.8V to +24V, V sourcing 1µA to 25mA  
7.0  
10.5  
5.15  
V
V
CC  
CCSP  
REG5  
IN  
CC  
REG5 Output Voltage  
I
= 0 to 1mA  
4.85  
5.00  
18  
REG5  
REG5 Short-Circuit Current Limit  
I
mA  
REG5_SC  
f
f
= 1.25MHz  
= 100kHz  
5
SW  
IN Supply Current After Startup  
I
V
= +24V  
IN  
mA  
µA  
IN  
2.5  
SW  
Shutdown Supply Current  
I
90  
IN_SD  
GATE DRIVER (NDRV)  
Z
NDRV sinking 100mA  
NDRV sourcing 25mA  
Sinking  
2
3
4
6
OUT(LOW)  
Driver Output Impedance  
Driver Peak Output Current  
Z
OUT(HIGH)  
1000  
650  
I
mA  
NDRV  
Sourcing  
PWM COMPARATOR  
Comparator Offset Voltage  
Comparator Propagation Delay  
Minimum On-Time  
V
V
V
- V  
CS  
1.30  
298  
1.60  
40  
2.00  
330  
V
OS_PWM  
COMP  
t
= 0.1V  
ns  
ns  
PD_PWM  
CS  
t
Includes t  
110  
ON(MIN)  
CS_BLANK  
CURRENT-LIMIT COMPARATOR  
Current-Limit Trip Threshold  
V
314  
mV  
CS  
2
_______________________________________________________________________________________  
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
ELECTRICAL CHARACTERISTICS (ꢁontinued)  
(V = +12V for the MAX5068B/E/F; V = +23.6V for the MAX5068A/C/D at startup, then reduces to +12V; C = C  
= 0.1µF;  
IN  
IN  
IN  
REG5  
C
VCC  
= 1µF; R = 100k; NDRV = floating; T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
RT  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µA  
CS Input Bias Current  
CS Blanking Time  
I
V
= 0V  
CS  
0
+2  
B_CS  
CS_BLANK  
t
70  
40  
ns  
Propagation Delay from  
Comparator Input to NDRV  
50mV overdrive  
ns  
V
IN CLAMP VOLTAGE  
IN Clamp Voltage  
V
V
sinking 2mA (Note 2)  
IN  
24.0  
26.0  
29.0  
IN_CLAMP  
ERROR AMPLIFIER (FB, COMP)  
Voltage Gain  
A
R
R
C
= 100kto AGND  
80  
5
dB  
V
COMP  
= 100kto AGND,  
= 100pF to AGND  
COMP  
Unity-Gain Bandwidth  
BW  
MHz  
LOAD  
R
C
= 100kto AGND,  
= 100pF to AGND  
COMP  
Phase Margin  
PM  
65  
degrees  
mV  
LOAD  
FB Input Offset Voltage  
COMP Clamp Voltage  
Error-Amplifier Output Current  
V
3
OS_FB  
High  
Low  
2.6  
0.4  
0.5  
3.8  
1.1  
V
V
COMP  
COMP  
I
Sinking or sourcing  
+25°C T +125°C (Note 3)  
mA  
1.215 1.230 1.245  
1.205 1.230 1.242  
A
Reference Voltage  
V
V
REF  
-40°C T +125°C  
A
Input Bias Current  
I
100  
12  
300  
nA  
B_EA  
COMP Short-Circuit Current  
THERMAL SHUTDOWN  
Thermal-Shutdown Temperature  
Thermal Hysteresis  
I
mA  
COMP_SC  
T
SD  
+170  
+25  
°C  
°C  
T
HYST  
OSCILLATOR SYNC INPUT (MAX.068A/B/C/E Only)  
SYNC High-Level Voltage  
SYNC Low-Level Voltage  
SYNC Input Bias Current  
Maximum SYNC Frequency  
SYNC High-Level Pulse Width  
SYNC Low-Level Pulse Width  
DIGITAL SOFT-START  
Soft-Start Duration  
V
2.4  
V
V
IH_SYNC  
V
0.4  
IL_SYNC  
B_SYNC  
I
10  
nA  
MHz  
ns  
f
f
= 2.5MHz (Note 4)  
3.125  
30  
SYNC  
OSC  
t
SYNC_HI  
t
30  
ns  
SYNC_LO  
t
(Note 5)  
2047  
9.7  
cycles  
mV  
SS  
Reference-Voltage Step  
V
STEP  
Reference-Voltage Steps During  
Soft-Start  
127  
steps  
OSCILLATOR  
Internal Oscillator Frequency  
Range  
f
f
= (1011 / R  
)
RT  
50  
2500  
kHz  
OSC  
OSC  
_______________________________________________________________________________________  
3
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
ELECTRICAL CHARACTERISTICS (ꢁontinued)  
(V = +12V for the MAX5068B/E/F; V = +23.6V for the MAX5068A/C/D at startup, then reduces to +12V; C = C  
= 0.1µF;  
IN  
IN  
IN  
REG5  
C
VCC  
= 1µF; R = 100k; NDRV = floating; T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
RT  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
= 1011/(2 x R ),  
MIN  
TYP  
MAX  
UNITS  
f
SW  
RT  
25  
1250  
kHz  
MAX5068A/B  
NDRV Switching Frequency  
RT Voltage  
f
(Note 6)  
SW  
f
= 1011/(4 x R ),  
SW  
RT  
12.5  
625  
kHz  
V
MAX5068C/D/E/F  
V
40k< R < 500kΩ  
2.0  
RT  
RT  
f
f
f
f
500kHz  
> 500kHz  
500kHz  
> 500kHz  
-2.5  
-4  
+2.5  
+4  
OSC  
OSC  
OSC  
OSC  
T
= +25°C  
A
A
Oscillator Accuracy  
%
%
-4.5  
-6  
+4.5  
+6  
T
= -40°C to +125°C  
MAX5068A/B  
50  
75  
DT connected to  
REG5  
Maximum Duty Cycle  
D
MAX  
MAX5068C/D/E/F  
DEAD-TIME CONTROL (DT)  
Dead Time  
t
R
DT  
= 24.9kΩ  
60  
ns  
V
DT  
V
DT_DISABLE  
V
REG5  
Dead-Time Disable Voltage  
- 0.5V  
Dead-Time Regulation Voltage  
V
1.23  
V
DT  
INTEGRATING FAULT PROTECTION (FLTINT)  
FLTINT Source Current  
I
V
V
V
= 0  
60  
2.8  
1.6  
µA  
V
FLTINT  
FLTINT  
FLTINT  
FLTINT  
FLTINT Shutdown Threshold  
FLTINT Restart Threshold  
V
V
rising  
falling  
FLTINT_SD  
FLTINT_RS  
V
SLOPE COMPENSATION (SCOMP) MAX.068C/D/E/F Only  
Slope Compensation  
V
C
= 100pF, R = 110kΩ  
15  
mV/µs  
mV/µs  
SLOPE  
SLOPE  
RT  
Slope-Compensation Range  
V
0
0
90  
SLOPER  
Slope-Compensation Voltage  
Range  
V
2.7  
V
SCOMP  
Note 1: The MAX5068 is 100% tested at T = +25°C. All limits over temperature are guaranteed by design.  
A
Note 2: The MAX5068A/B are intended for use in universal-input power supplies. The internal clamp circuit is used to prevent the  
bootstrap capacitor (C1 in Figure 1) from charging to a voltage beyond the absolute maximum rating of the device when  
UVLO/EN is low. The maximum current to V (hence to clamp) when UVLO is low (device is in shutdown) must be external-  
IN  
ly limited to 2mA. Clamp currents higher than 2mA may result in clamp voltages higher than 30V, thus exceeding the  
absolute maximum rating for V . For the MAX5068C/D, do not exceed the 24V maximum operating voltage of the device.  
IN  
Note 3: Reference voltage (V ) is measured with FB connected to COMP (see the Functional Diagram).  
REF  
Note 4: The SYNC frequency must be at least 25% higher than the programmed oscillator frequency.  
Note .: The internal oscillator clock cycle.  
Note 6: The MAX5068A/B driver switching frequency is one-half of the oscillator frequency. The MAX5068C/D/E/F driver switching  
frequency is one-quarter of the oscillator frequency.  
4
_______________________________________________________________________________________  
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
Typical Operating Characteristics  
(V = +12V for the MAX5068B/E/F; V = +23.6V for MAX5068A/C/D at startup, then reduces to +12V; C = C  
= 0.1µF;  
IN  
IN  
IN  
REG5  
C
VCC  
= 1µF; R = 100k; NDRV = floating; V = 0; V  
= floating; V = 0; T = +25°C, unless otherwise noted.)  
COMP CS A  
RT  
FB  
BOOTSTRAP UVLO SHUTDOWN LEVEL  
vs. TEMPERATURE  
UVLO/EN WAKE-UP THRESHOLD  
vs. TEMPERATURE  
BOOTSTRAP UVLO WAKE-UP LEVEL  
vs. TEMPERATURE  
10.0  
9.9  
9.8  
9.7  
9.6  
9.5  
1.245  
1.240  
1.235  
1.230  
1.225  
1.220  
21.6  
UVLO/EN RISING  
V
FALLING  
IN  
MAX5068A/C/D  
MAX5068A/C/D  
21.5  
21.4  
21.3  
21.2  
21.1  
21.0  
-40  
-15  
10  
35  
60  
85  
110  
-40  
-15  
10  
35  
60  
85  
110  
-40  
-15  
10  
35  
60  
85  
110  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
UVLO/EN SHUTDOWN THRESHOLD  
vs. TEMPERATURE  
V SUPPLY CURRENT IN  
IN  
UNDERVOLTAGE LOCKOUT vs. TEMPERATURE  
V
SUPPLY CURRENT AFTER STARTUP  
vs. TEMPERATURE  
IN  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
1.10  
60  
56  
52  
48  
44  
40  
6
V
= 19V  
UVLO/EN FALLING  
IN  
V
= 24V  
IN  
WHEN IN BOOTSTRAP UVLO (MAX5068A/C/D)  
UVLO/EN (MAX5068B/E/F) IS LOW  
f
= 1.25MHz  
SW  
5
4
3
2
1
f
= 500kHz  
SW  
f
= 250kHz  
SW  
f
= 100kHz  
10  
SW  
f
= 50kHz  
SW  
-40  
-15  
10  
35  
60  
85  
110  
-40  
-15  
10  
35  
60  
85  
110  
-40  
-15  
35  
60  
85  
110  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
REG5 OUTPUT VOLTAGE  
vs. OUTPUT CURRENT  
V
vs. TEMPERATURE  
CC  
REG5 vs. TEMPERATURE  
10.0  
9.7  
9.4  
9.1  
8.8  
8.5  
8.2  
7.9  
7.6  
7.3  
7.0  
4.980  
4.975  
4.970  
4.965  
4.960  
4.955  
4.950  
5.00  
V = 10.8V  
IN  
R
= 100kΩ  
RT  
V
= 19V, I = 10mA  
IN  
4.99  
4.98  
4.97  
4.96  
4.95  
4.94  
4.93  
4.92  
4.91  
4.90  
IN  
V
= 19V, I = 25mA  
IN  
100µA LOAD  
IN  
1mA LOAD  
V
= 10.8V, I = 10mA  
IN  
IN  
V
= 10.8V, I = 25mA  
IN  
IN  
-40  
-15  
10  
35  
60  
85  
110  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
OUTPUT CURRENT (mA)  
-40  
-15  
10  
35  
60  
85  
110  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
.
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
Typical Operating Characteristics (continued)  
(V = +12V for the MAX5068B/E/F; V = +23.6V for MAX5068A/C/D at startup, then reduces to +12V; C = C  
= 0.1µF;  
IN  
IN  
IN  
REG5  
C
VCC  
= 1µF; R = 100k; NDRV = floating; V = 0; V  
= floating; V = 0; T = +25°C, unless otherwise noted.)  
COMP CS A  
RT  
FB  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
CS TRIP THRESHOLD  
vs. TEMPERATURE  
REG5 OUTPUT VOLTAGE vs. V  
IN  
4.985  
520  
515  
510  
505  
500  
495  
490  
330  
327  
324  
321  
318  
315  
312  
f
= 500kHz  
SW  
TOTAL NUMBER OF  
DEVICES = 200  
I
= 100µA  
REG5  
4.984  
4.983  
4.982  
4.981  
4.980  
4.979  
4.978  
4.977  
4.976  
4.975  
+3σ  
MEAN  
-3σ  
485  
480  
475  
309  
306  
303  
470  
-40  
300  
-40  
10  
12  
14  
16  
V
18  
(V)  
20  
22  
24  
10  
TEMPERATURE (°C)  
35  
60  
85  
110  
-15  
110  
-15  
10  
35  
60  
85  
IN  
TEMPERATURE (°C)  
PROPAGATION DELAY FROM CS COMPARATOR  
INPUT CURRENT  
vs. INPUT CLAMP VOLTAGE  
INPUT CLAMP VOLTAGE  
vs. TEMPERATURE  
INPUT TO NDRV vs. TEMPERATURE  
50  
14  
12  
10  
8
27.0  
I
= 2mA  
SINK  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
26.8  
26.6  
26.4  
26.2  
26.0  
25.8  
25.6  
25.4  
25.2  
25.0  
6
4
2
0
-40 -15  
10  
35  
60  
85  
110  
10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0  
INPUT CLAMP VOLTAGE (V)  
-40 -15  
10  
35  
60  
85  
110  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
NDRV OUTPUT IMPEDANCE  
vs. TEMPERATURE  
NDRV OUTPUT IMPEDANCE  
vs. TEMPERATURE  
ERROR AMPLIFIER OPEN-LOOP GAIN  
AND PHASE vs. FREQUENCY  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
120  
100  
80  
30  
V
= 24V  
SINKING 100mA  
V = 24V  
IN  
SOURCING 25mA  
IN  
0
-30  
-60  
-90  
-120  
-150  
-180  
-210  
GAIN  
60  
40  
PHASE  
20  
0
-20  
-40  
-40  
-15  
10  
35  
60  
85  
110  
-40  
-15  
10  
35  
60  
85  
110  
0.1  
10  
1k  
100k  
10M  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
6
_______________________________________________________________________________________  
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
Typical Operating Characteristics (continued)  
(V = +12V for the MAX5068B/E/F; V = +23.6V for MAX5068A/C/D at startup, then reduces to +12V; C = C  
= 0.1µF;  
IN  
IN  
IN  
REG5  
C
VCC  
= 1µF; R = 100k; NDRV = floating; V = 0; V  
= floating; V = 0; T = +25°C, unless otherwise noted.)  
COMP CS A  
RT  
FB  
NDRV SWITCHING FREQUENCY (f  
)
SW  
vs. R  
FLTINT CURRENT vs. TEMPERATURE  
HYST R vs. TEMPERATURE  
ON  
RT  
63.0  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
2
1
V
= 24V  
IN  
62.9  
62.8  
62.7  
62.6  
62.5  
62.4  
62.3  
62.2  
62.1  
62.0  
SINKING 50mA  
MAX5068A/B  
0.1  
MAX5068C/D/E/F  
9.0  
8.5  
8.0  
0.01  
-40  
-15  
10  
35  
60  
85  
110  
-40  
-15  
10  
35  
60  
85  
110  
0.03  
0.1  
1
2
TEMPERATURE (°C)  
TEMPERATURE (°C)  
R
(M)  
RT  
NDRV SWITCHING FREQUENCY  
vs. TEMPERATURE  
NDRV SWITCHING FREQUENCY  
vs. TEMPERATURE  
NDRV SWITCHING FREQUENCY  
vs. TEMPERATURE  
505  
504  
52.0  
51.6  
51.2  
50.8  
50.4  
50.0  
49.6  
49.2  
48.8  
48.4  
48.0  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
f
= 500kHz  
f
= 50kHz  
SW  
MAX5068A/B  
SW  
f
= 1.25MHz  
SW  
503  
502  
501  
500  
499  
498  
497  
496  
495  
-25  
0
25  
100  
125  
-50  
50  
75  
-40 -15  
10  
35  
60  
85  
110  
-15  
10  
35  
110  
-40  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DEAD TIME vs. TEMPERATURE  
DEAD TIME vs. R  
DT  
70  
65  
60  
55  
50  
45  
40  
200  
V
R
R
= 24V  
= 24.9kΩ  
= 100kΩ  
IN  
DT  
RT  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
-40 -15  
10  
35  
60  
85  
110  
1
10  
100  
TEMPERATURE (°C)  
R
(k)  
DT  
_______________________________________________________________________________________  
7
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX.068A MAX.068C MAX.068D  
MAX.068B MAX.068E MAX.068F  
Oscillator-Timing Resistor Connection. Connect a resistor from RT to AGND  
to set the internal oscillator frequency.  
1
1
1
RT  
External-Clock Sync Input. Connect SYNC to AGND when not using an  
external clock.  
2
3
2
3
2
SYNC  
HYST  
Programmable Hysteresis Input  
Slope-Compensation Capacitor Input. Connect a capacitor to AGND to set  
the slope compensation.  
3
SCOMP  
Dead-Time Adjustment. Connect a resistor from DT to AGND to adjust NDRV  
dead time. Connect to REG5 for maximum duty cycle.  
4
5
4
5
4
5
DT  
Externally Programmable Undervoltage Lockout. UVLO/EN programs the  
input start voltage. Drive UVLO/EN to AGND to disable the output.  
UVLO/EN  
6
7
6
7
6
7
FB  
Error-Amplifier Inverting Input  
COMP  
Error-Amplifier Compensation Output  
Fault-Integration Input. A capacitor connected to FLTINT charges with an  
internal 60µA current source during repeated current-limit events. Switching  
8
8
8
FLTINT  
terminates when V  
reaches 2.9V. An external resistor connected in  
FLTINT  
parallel discharges the capacitor. Switching resumes when V  
1.6V.  
drops to  
FLTINT  
9
10, 12  
11  
9
10, 12  
11  
9
10, 12  
11  
CS  
Current-Sense Resistor Connection  
AGND  
PGND  
Analog Ground. Connect to PGND through a ground plane.  
Power Ground. Connect to AGND through a ground plane.  
Gate-Driver Output. Connect the NDRV output to the gate of the external  
N-channel FET.  
13  
14  
13  
14  
13  
14  
NDRV  
9V Linear-Regulator Output. Decouple V with a minimum 1µF ceramic  
CC  
capacitor to the AGND plane; also internally connected to the FET driver.  
V
CC  
Power-Supply Input. IN provides power for all internal circuitry. Decouple IN  
with a minimum 0.1µF ceramic capacitor to AGND (see the Typical  
Operating Circuit).  
15  
15  
15  
IN  
5V Linear-Regulator Output. Decouple to AGND with a 0.1µF ceramic  
capacitor.  
16  
EP  
16  
EP  
16  
EP  
REG5  
PAD  
Exposed Pad. Connect to GND.  
8
_______________________________________________________________________________________  
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
up from a minimum voltage of 10.8V. Internal digital soft-  
start reduces output-voltage overshoot at startup.  
Detailed Description  
The MAX5068 is a current-mode PWM controller for use  
A single external resistor programs the switching fre-  
quency from 12.5kHz to 1.25MHz. The MAX5068A/B/C/E  
provide a SYNC input for synchronization to an external  
clock. The maximum FET driver duty cycle is 50% for the  
MAX5068A/B, and 75% for the MAX5068C/D/E/F.  
Integrating fault protection ignores transient overcurrent  
conditions for a set length of time. The length of time is  
programmed by an external capacitor. The internal ther-  
mal-shutdown circuit protects the device if the junction  
temperature should exceed +170°C.  
in isolated and nonisolated power-supply applications.  
A bootstrap UVLO with a programmable hysteresis,  
very low startup, and low operating current result in  
high-efficiency universal-input power supplies. In addi-  
tion to the internal bootstrap UVLO, the device also  
offers programmable input startup and turn-off volt-  
ages, programmed through the UVLO/EN input. When  
using the MAX5068 in the bootstrapped mode, if the  
power-supply output is shorted, the tertiary winding  
voltage drops below the 10V threshold, causing the  
bootstrap UVLO to turn off the gate drive to the external  
power MOSFET, reinitiating a startup sequence with  
soft-start.  
Power supplies designed with the MAX5068 use a  
high-value startup resistor, R1, which charges a reser-  
voir capacitor, C1 (Figure 1). During this initial period,  
while the voltage is less than the internal bootstrap  
UVLO threshold, the device typically consumes only  
47µA of quiescent current. This low startup current and  
the large bootstrap UVLO hysteresis help to minimize  
the power dissipation across R1, even at the high end  
The MAX5068 includes a cycle-by-cycle current limit  
that turns off the gate drive to the external MOSFET  
during an overcurrent condition. The MAX5068 integrat-  
ing fault protection reduces average power dissipation  
during persistent fault conditions (see the Integrating  
Fault Protection section).  
of the universal AC input voltage (265V ).  
AC  
The MAX5068 includes a cycle-by-cycle current limit  
that turns off the gate to the external MOSFET during an  
overcurrent condition. When using the MAX5068A/C/D  
in the bootstrap mode (if the power-supply output is  
shorted), the tertiary winding voltage drops below the  
9.74V bootstrap UVLO to turn off the gate to the exter-  
nal power MOSFET. This reinitiates a startup sequence  
with soft-start.  
The MAX5068 features a very accurate, wide-range,  
programmable oscillator that simplifies and optimizes  
the design of the magnetics. The MAX5068A/C/D are  
well suited for universal-input (rectified 85V  
to  
AC  
265V ) or telecom (-36V  
to -72V ) power sup-  
AC  
DC  
DC  
plies. The MAX5068B/E/F are well suited for low-input  
voltage (10.8V to 24V ) power supplies.  
DC  
DC  
The MAX5068 high-frequency, universal input, offline/  
telecom, current-mode PWM controller integrates all the  
building blocks necessary for implementing AC-DC and  
DC-DC fixed-frequency power supplies. Isolated or non-  
isolated power supplies are easily constructed using  
either primary- or secondary-side regulation. Current-  
mode control with leading-edge blanking simplifies con-  
trol-loop design, and an external slope-compensation  
control stabilizes the current loop when operating at  
duty cycles above 50% (MAX5068C/D/E/F). The  
MAX5068A/B limit the maximum duty cycle to 50% for  
use in single-ended forward converters. The  
MAX5068C/D/E/F allow duty cycles up to 75% for use in  
flyback converters.  
Current-Mode Control  
The MAX5068 offers a current-mode control operation  
feature, such as leading-edge blanking with a dual  
internal path that only blanks the sensed current signal  
applied to the input of the PWM controller. The current-  
limit comparator monitors CS at all times and provides  
cycle-by-cycle current limit without being blanked. The  
leading-edge blanking of the CS signal prevents the  
PWM comparator from prematurely terminating the on  
cycle. The CS signal contains a leading-edge spike  
that results from the MOSFET gate charge current, and  
the capacitive and diode reverse-recovery current of  
the power circuit. Since this leading-edge spike is nor-  
mally lower than the current-limit comparator threshold,  
current limiting is provided under all conditions.  
An input undervoltage lockout (UVLO) programs the  
input-supply startup voltage and ensures proper opera-  
tion during brownout conditions. An external voltage-  
divider programs the supply startup voltage. The  
MAX5068A/B/D/F feature a programmable UVLO hys-  
teresis. The MAX5068A/C/D feature an additional internal  
bootstrap UVLO with large hysteresis that requires a min-  
imum startup voltage of 23.6V. The MAX5068B/E/F start  
Use the MAX5068C/D/E/F in flyback applications where  
wide line voltage and load-current variations are  
expected. Use the MAX5068A/B for forward/flyback  
converters where the maximum duty must be limited to  
less than 50%.  
_______________________________________________________________________________________  
9
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
D1  
VOUT  
D2  
C6  
V
IN  
R1  
C1  
R8  
R9  
R2  
C2  
IN  
NDRV  
CS  
Q1  
R
FLTINT  
C3  
C4  
CS  
V
CC  
FB  
R5  
C5  
MAX5068A  
REG5  
RT  
COMP  
R6  
R3  
UVLO/EN  
R4  
R
HYST  
DT  
HYST  
PGND  
SYNC  
R7  
AGND  
Figure 1. Nonisolated Power Supply with Programmable Input Supply Voltage  
Use the MAX5068C/D/E/F in forward converter applica-  
MAX5068C/E UVLO Adjustment  
tions with greater than 50% duty cycle. The large duty  
cycle results in much lower operating primary RMS cur-  
rent through the MOSFET switch and, in most cases,  
requires a smaller output filter capacitor. The major dis-  
advantage to this is that the MOSFET voltage rating  
must be higher. The MAX5068C/D/E/F capacitor  
adjustable-slope-compensation feature allows for easy  
stabilization of the inner current loop.  
The MAX5068C/E have an input voltage UVLO/EN with  
a 1.231V threshold. Before any operation can com-  
mence, the UVLO/EN voltage must exceed the 1.231V  
threshold. The UVLO circuit keeps the PWM compara-  
tor, ILIM comparator, oscillator, and output driver shut  
down to reduce current consumption (see the  
Functional Diagram).  
Calculate R6 in Figure 2 by using the following formula:  
Undervoltage Lockout  
The MAX5068 features an input voltage UVLO/EN func-  
tion to enable the PWM controller before any operation  
can begin. The MAX5068C/E shut down if the voltage  
at UVLO/EN falls below its 1.18V threshold. The  
MAX5068A/B/D/F also incorporate an UVLO hysteresis  
input to set the desired turn-off voltage.  
V
ON  
R6 =  
1 × R7  
V
ULR2  
where V  
is the UVLO/EN’s 1.231V rising threshold  
is the desired startup voltage. Choose an R7  
value in the 20krange.  
ULR2  
and V  
ON  
After a successful startup, the MAX5068C/E shut down if  
the voltage at UVLO/EN drops below its 1.18V threshold.  
10 ______________________________________________________________________________________  
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
V
IN  
MAX5068C/E  
R6  
R7  
UVLO/EN  
V
HYST  
= V - V  
ON OFF  
1.23V  
1.18V  
V
OFF  
V
ON  
Figure 2. Setting the MAX5068C/E Undervoltage Lockout  
Threshold  
Figure 3. MAX5068 Hysteresis  
MAX5068A/B/D/F UVLO with  
Programmable Hysteresis  
V
IN  
In addition to programmable undervoltage lockout dur-  
ing startup, the MAX5068A/B/D/F incorporate a  
UVLO/EN hysteresis that allows the user to set a volt-  
MAX5068A/B/D/F  
R6  
age (V  
) to disable the controller (see Figure 3).  
OFF  
UVLO/EN  
HYST  
At the beginning of the startup sequence, UVLO/EN is  
below the 1.23V threshold, Q1 turns on connecting  
R
HYST  
R
to GND (Figure 4). Once the UVLO 1.23V thresh-  
HYST  
1.23V  
1.18V  
old is crossed, Q1 turns off, resulting in the series com-  
bination of R6, R , and R7, placing the MAX5068 in  
HYST  
normal operating condition.  
Q1  
R7  
Calculate the turn-on voltage (V ) by using the fol-  
ON  
lowing formula:  
V
ON  
R6 =  
1 × R  
HYST  
V
ULR2  
Figure 4. Setting the MAX5068A/B/D/F Turn-On/Turn-Off Voltages  
where V  
is the UVLO/EN’s 1.23V rising threshold.  
ULR2  
Choose an R  
value in the 20krange.  
HYST  
Bootstrap Undervoltage Lockout  
(MAX5068A/C/D Only)  
In addition to the externally programmable UVLO func-  
tion offered by the MAX5068, the MAX5068A/C/D fea-  
ture an additional internal bootstrap UVLO for use in  
high-voltage power supplies (see the Functional  
Diagram). This allows the device to bootstrap itself dur-  
The MAX5068 turns off when the MAX5068 UVLO/EN  
falls below the 1.18V falling threshold. The turn-off volt-  
age (V  
) is then defined as:  
OFF  
V
OFF  
R7 = R6/  
1 R  
HYST  
V
ULF2  
ing initial power-up. The MAX5068A/C/D start when V  
exceeds the bootstrap UVLO threshold of 23.6V.  
IN  
where V  
is the 1.18V UVLO/EN falling threshold.  
ULF2  
______________________________________________________________________________________ 11  
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
During startup, the UVLO circuit keeps the PWM com-  
parator, ILIM comparator, oscillator, and output driver  
shut down to reduce current consumption. Once V  
IN  
reaches 23.6V, the UVLO circuit turns on both the PWM  
and ILIM comparators, as well as the oscillator, and  
allows the output driver to switch. When V drops  
IN  
V
CC  
2V/div  
below 9.7V, the UVLO circuit shuts down the PWM  
comparator, ILIM comparator, oscillator, and output dri-  
ver returning the MAX5068A/C/D to the startup mode.  
MAX5068  
V
PIN  
IN  
5V/div  
MAX5068A/C/D Startup Operation  
Normally, V is derived from the tertiary winding of the  
IN  
transformer. However, at startup there is no energy  
delivered through the transformer, hence, a special  
bootstrap sequence is required. Figure 5 shows the  
0V  
voltages on V and V  
during startup. Initially, both  
CC  
IN  
100ms/div  
V
and V  
are zero. After the input voltage is applied,  
IN  
CC  
C1 charges through the startup resistor, R1, to an inter-  
mediate voltage (see Figure 1). At this point, the inter-  
nal regulator begins charging C3 (see Figure 5). Only  
47µA of the current supplied by R1 is used by the  
MAX5068A/C/D. The remaining input current charges  
Figure 5. V  
and V  
During Startup When Using the  
CC  
IN  
MAX5068 in Bootstrapped Mode (Also see Figure 1)  
C1 and C3. The charging of C3 stops when the V  
CC  
for telecom applications). Size the startup resistor, R1,  
to supply both the maximum startup bias of the device  
(90µA) and the charging current for C1 and C3. The  
bypass capacitor, C3, must charge to 9.5V, and C1  
must charge to 24V, within the desired time period of  
500ms. Because of the internal soft-start time of the  
MAX5068, C1 must store enough charge to deliver cur-  
rent to the device for at least 2047 oscillator clock  
cycles. To calculate the approximate amount of capaci-  
tance required, use the following formula:  
voltage reaches approximately 9.5V. The voltage  
across C1 continues rising until it reaches the wake-up  
level of 23.6V. Once V exceeds the bootstrap UVLO  
IN  
threshold, NDRV begins switching the MOSFET and  
energy is transferred to the secondary and tertiary out-  
puts. If the voltage on the tertiary output builds to high-  
er than 9.74V (the bootstrap UVLO lower threshold),  
startup ends and sustained operation commences.  
If V drops below 9.74V before startup is complete, the  
IN  
device goes back to low-current UVLO. If this occurs,  
increase the value of C1 to store enough energy to  
allow for the voltage at the tertiary winding to build up.  
I
= Q  
x f  
gtot SW  
g
(I + I ) x t  
IN  
g
SS  
C1 =  
Startup Time Considerations for  
Power Supplies Using the MAX5068A/C/D  
The V bypass capacitor, C1, supplies current imme-  
IN  
V
HYST  
where I is the MAX5068’s internal supply current after  
IN  
diately after wakeup (see Figure 1). The size of C1 and  
the connection configuration of the tertiary winding  
determine the number of cycles available for startup.  
Large values of C1 increase the startup time and also  
supply extra gate charge for more cycles during initial  
startup (2.5mA typ), Q  
is the total gate charge for  
gtot  
Q1, f  
is the MAX5068’s programmed switching fre-  
SW  
quency, V  
is the bootstrap UVLO hysteresis (12V),  
HYST  
and t is the internal soft-start time (2047 x 1 / f  
).  
OSC  
ss  
Example: I = (8nC) (250kHz) 2.0mA  
g
startup. If the value of C1 is too small, V drops below  
IN  
f
= 2 x 250kHz  
9.74V because NDRV does not have enough time to  
switch and build up sufficient voltage across the tertiary  
output that powers the device. The device goes back  
into UVLO and does not start. Use low-leakage capaci-  
tors for C1 and C3.  
OSC  
Soft-start duration = 2047 x (1 / f  
) = 4.1ms  
OSC  
(2.5mA + 2mA) (4.1ms)  
C1 =  
= 1.54µF  
12V  
Generally, offline power supplies keep typical startup  
times to less than 500ms, even in low-line conditions  
Use a 2.2µF ceramic capacitor for C1.  
(85V  
input for universal offline applications or 36V  
DC  
AC  
12 ______________________________________________________________________________________  
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
D1  
VOUT  
D2  
C7  
V
IN  
R1  
C1  
R2  
C2  
C3  
C4  
IN  
NDRV  
CS  
Q1  
R11  
C6  
FLTINT  
R
MAX5068A  
CS  
V
CC  
FB  
V
CC  
C5  
R5  
REG5  
RT  
R3  
R4  
COMP  
R6  
C10  
R12  
R13  
UVLO/EN  
PS2913  
DT  
R
HYST  
R9  
SYNC  
AGND  
MAX8515  
HYST  
PGND  
R8  
R10  
R7  
Figure 6. Secondary-Side, Regulated, Isolated Power Supply  
Assuming C1 > C3, calculate the value of R1 as follows:  
To minimize power loss on this resistor, choose a high-  
er value for R1 than the one calculated above (if a  
longer startup time can be tolerated).  
V
× C1  
500ms  
0.5 x V  
SUVR  
I
=
C1  
The above startup method is applicable to a circuit sim-  
ilar to the one shown in Figure 1. In this circuit, the ter-  
tiary winding has the same phase as the output  
windings. Thus, the voltage on the tertiary winding at  
any given time is proportional to the output voltage and  
goes through the same soft-start period as the output  
voltage. The minimum discharge time of C1 from 22V to  
V
IN(MIN)  
SUVR  
R1 ≅  
I
+ I  
START  
C1  
where V  
is the bootstrap UVLO wakeup level  
SUVR  
(23.6V max), V  
is the minimum input supply volt-  
IN(MIN)  
age for the application (36V for telecom), and I  
the V supply current at startup (90µA, max).  
IN  
is  
START  
10V must be greater than the soft-start time (t ).  
SS  
Oscillator/Switching Frequency  
Use an external resistor at RT to program the MAX5068  
internal oscillator frequency from 50kHz to 2.5MHz. The  
MAX5068A/B output switching frequency is one-half of  
the programmed oscillator frequency with a 50% duty  
cycle. The MAX5068C/D/E/F output switching frequen-  
cy is one-quarter of the programmed oscillator frequen-  
cy with a 75% duty cycle.  
For example:  
24V x 2.2µF  
500ms  
36V 12V  
I
=
= 106µA  
C1  
R1 ≅  
= 122.4kΩ  
106µA + 90µA  
______________________________________________________________________________________ 13  
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
Use the following formula to calculate the internal oscil-  
lator frequency:  
External Synchronization  
(MAX5068A/B/C/E)  
The MAX5068A/B/C/E can be synchronized using an  
external clock at the SYNC input. For proper frequency  
synchronization, the SYNC’s input frequency must be at  
least 25% higher than the MAX5068A/B/C/E pro-  
grammed internal oscillator frequency. Connect SYNC  
to AGND when not using an external clock.  
11  
10  
R
f
=
osc  
RT  
where f  
is the oscillator frequency and R  
resistor connected from RT to AGND.  
is a  
RT  
OSC  
Choose the appropriate resistor at RT to calculate the  
Integrating Fault Protection  
The integrating fault-protection feature allows transient  
overcurrent conditions to be ignored for a programma-  
ble amount of time, giving the power supply time to  
behave like a current source to the load. For example,  
this can occur under load current transients when the  
control loop requests maximum current to keep the out-  
put voltage from going out of regulation. Program the  
fault-integration time by connecting an external suitably  
sized capacitor to the FLTINT. Under sustained over-  
current faults, the voltage across this capacitor ramps  
up towards the FLTINT shutdown threshold (typically  
2.8V). Once the threshold is reached, the power supply  
shuts down. A high-value bleed resistor connected in  
parallel with the FLTINT capacitor allows it to discharge  
towards the restart threshold (typically 1.6V). Once this  
threshold is reached, the supply restarts with a new  
soft-start cycle.  
desired output switching frequency (f ):  
SW  
11  
10  
=
=
for the MAX5068A/B and  
for the MAX5068C/D/E/F  
R
R
RT  
RT  
2f  
SW  
11  
10  
4f  
SW  
The MAX5068A/B and the MAX5068C/D/E/F have pro-  
grammable output switching frequencies from 25kHz to  
1.25MHz and 12.5kHz to 625kHz, respectively.  
Dead-Time Adjustment  
The MAX5068 programmable dead-time function  
(Figure 7) allows additional flexibility in optimizing mag-  
netics design and overcoming parasitic effects. The  
MAX5068A/B and the MAX5068C/D/E/F have a maxi-  
mum 50% and 75% duty cycle, respectively. In many  
applications, the duty cycle of the external MOSFET  
may need to be slightly decreased to prevent satura-  
tion in the transformer’s primary. The dead time can be  
Note that cycle-by-cycle current limiting is provided at  
all times by CS with a threshold of 314mV (typ). The  
fault-integration circuit forces a 60µA current onto  
FLTINT each time that the current-limit comparator is  
tripped (see the Functional Diagram). Use the following  
formula to calculate the value of the capacitor neces-  
sary for the desired shutdown time of the circuit:  
configured from 30ns to 1 / (0.5 x f ) when program-  
SW  
ming the MAX5068. Connect a resistor between DT and  
AGND to set the desired dead time using the following  
formula:  
I
x t  
SH  
2.8V  
60  
29.4  
FLTINT  
C
Dead time =  
× R (ns)  
DT  
FLTINT  
where R is in kand the dead time is in ns.  
DT  
Connect DT to REG5 to remove the delay and achieve  
the MAX5068 maximum duty cycles.  
SYNC  
MAX5068A/B/C/E  
RT  
DEAD TIME  
NDRV  
t
DT  
< 50%  
< 50%  
AGND  
Figure 7. MAX5068 NDRV Dead-Time Timing Diagram  
Figure 8. External Synchronization of the MAX5068A/B/C/E  
14 ______________________________________________________________________________________  
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
where I  
= 60µA, t  
is the desired fault-integra-  
rent. Therefore, select a MOSFET that yields acceptable  
conduction and switching losses.  
FLTINT  
SH  
tion time during which current-limit events from the cur-  
rent-limit comparator are ignored. For example, a 0.1µF  
capacitor gives a fault-integration time of 4.7ms.  
Error Amplifier  
The MAX5068 includes an internal error amplifier that  
can regulate the output voltage in the case of a noniso-  
lated power supply (Figure 1). Calculate the output volt-  
age using the following equation:  
This is an approximate formula. Some testing may be  
required to fine-tune the actual value of the capacitor. To  
calculate the recovery time, use the following formula:  
t
RT  
R
FLTINT  
R8  
R9  
0.595 × C  
V
=
1 +  
x V  
REF  
FLTINT  
OUT  
where t is the desired recovery time.  
RT  
where V  
= 1.23V. The amplifier’s noninverting input  
REF  
Choose t = 10 x t . Typical values for t range from  
internally connects to a digital soft-start reference voltage.  
This forces the output voltage to come up in an orderly  
and well-defined manner under all load conditions.  
RT  
SH  
SH  
a few hundred microseconds to a few milliseconds.  
Soft-Start  
The MAX5068 soft-start feature allows the load voltage  
to ramp up in a controlled manner, eliminating output-  
voltage overshoot. Soft-start begins after UVLO is  
deasserted. The voltage applied to the noninverting  
node of the amplifier ramps from 0 to 1.23V in 2047  
oscillator clock cycles (soft-start timeout period). Unlike  
other devices, the MAX5068 reference voltage to the  
internal amplifier is soft-started. This method results in  
superior control of the output voltage under heavy- and  
light-load conditions.  
Slope Compensation (MAX5068C/D/E/F)  
The MAX5068C/D/E/F use an internal-ramp generator  
for slope compensation. The internal-ramp signal resets  
at the beginning of each cycle and slews at the rate  
programmed by the external capacitor connected at  
SCOMP and the resistor at RT. Adjust the MAX5068  
slew rate up to 90mV/µs using the following equation:  
6  
165 × 10  
SR =  
(mV/ µs)  
R
× C  
RT  
SCOMP  
Internal Regulators  
where R is the external resistor at RT that sets the oscil-  
RT  
Two internal linear regulators power the MAX5068 inter-  
lator frequency and C  
is the capacitor at SCOMP.  
SCOMP  
nal and external control circuits. V  
powers the exter-  
CC  
nal N-channel MOSFET and is internally set to  
approximately 9.5V. The REG5 5V regulator has a 1mA  
sourcing capability and may be used to provide power  
PWM Comparator  
The PWM comparator uses the instantaneous current,  
the error amplifier, and the slope compensation to  
determine when to switch NDRV off. In normal opera-  
tion, the N-channel MOSFET turns off when:  
to external circuitry. Bypass V  
and REG5 with 1µF  
CC  
and 0.1µF high quality capacitors, respectively. Use  
lower value ceramics in parallel to bypass other  
unwanted noise signals. Bootstrapped operation  
requires startup through a bleed resistor. Do not exces-  
sively load the regulators while the MAX5068 is in the  
power-up mode. Overloading the outputs can cause  
the MAX5068 to fail upon startup.  
I
x R > V – V  
- V  
OFFSET SCOMP  
PRIMARY  
CS  
EA  
where I  
is the current through the N-channel  
is the output voltage of the internal  
is the 1.6V internal DC offset and  
is the ramp function starting at zero and slew-  
PRIMARY  
MOSFET, V  
EA  
amplifier, V  
OFFSET  
V
SCOMP  
ing at the programmed slew rate (SR). When using the  
MAX5068 in a forward-converter configuration, the fol-  
lowing conditions must be met to avoid current-loop  
subharmonic oscillations:  
N-Channel MOSFET Switch Driver  
NDRV drives an external N-channel MOSFET. The NDRV  
output is supplied by the internal regulator (V ), which  
CC  
is internally set to approximately 9.5V. For the universal  
input-voltage range, the MOSFET used must be able to  
withstand the DC level of the high-line input voltage plus  
the reflected voltage at the primary of the transformer.  
For most applications that use the discontinuous flyback  
topology, a MOSFET rated at 600V is required. NDRV  
can source/sink in excess of 650mA/1000mA peak cur-  
K ×  
×
V
N
R
S
CS  
L
OUT  
×
= SR  
N
P
where K = 0.75 and N and N are the number of turns  
S
P
on the secondary and primary side of the transformer,  
respectively. L is the secondary filter inductor. When  
______________________________________________________________________________________ 1.  
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
optimally compensated, the current loop responds to  
Applications Information  
Layout Recommendations  
Keep all PC board traces carrying switching currents  
as short as possible, and minimize current loops.  
input-voltage transients within one cycle.  
Current Limit  
The current-sense resistor (R ), connected between  
CS  
the source of the MOSFET and ground, sets the current  
For universal AC input design, follow all applicable safe-  
ty regulations. Offline power supplies may require UL,  
VDE, and other similar agency approvals. Contact these  
agencies for the latest layout and component rules.  
limit. The CS input has a voltage trip level (V ) of  
CS  
314mV. Use the following equation to calculate the  
value of R  
:
CS  
Typically, there are two sources of noise emission in a  
switching power supply: high di/dt loops and high dv/dt  
surfaces. For example, traces that carry the drain cur-  
rent often form high di/dt loops. Similarly, the heatsink of  
the MOSFET presents a dv/dt source, thus minimize the  
surface area of the heatsink as much as possible.  
V
CS  
R
=
CS  
I
PRI  
where I  
is the peak current in the primary that flows  
through the MOSFET at full load.  
PRI  
When the voltage produced by this current (through the  
current-sense resistor) exceeds the current-limit com-  
parator threshold, the MOSFET driver (NDRV) quickly  
terminates the current on-cycle. In most cases, a small  
RC filter is required to filter out the leading-edge spike  
on the sense waveform. Set the corner frequency to a  
few MHz above the switching frequency.  
To achieve best performance and to avoid ground  
loops, use a solid ground-plane connection.  
16 ______________________________________________________________________________________  
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
Typical Operating Circuit  
D1  
VOUT  
D2  
C7  
V
IN  
R1  
C1  
IN  
R2  
C2  
NDRV  
CS  
Q1  
R
R11  
C6  
FLTINT  
C3  
C4  
CS  
MAX5068C  
V
CC  
FB  
V
CC  
C5  
R5  
REG5  
COMP  
R6  
R7  
R3  
C10  
R12  
R13  
RT  
DT  
UVLO/EN  
PS2913  
R4  
R9  
MAX8515  
SCOMP  
PGND  
SYNC  
AGND  
R8  
R10  
Selector Guide  
PROGRAMMABLE  
UVLO  
PART  
NUMBER  
MAX DUTY  
CYCLE  
BOOTSTRAP  
UVLO  
STARTUP  
VOLTAGE (V)  
OSCILLATOR  
SYNC  
SLOPE  
COMPENSATION  
HYSTERESIS  
MAX5068A  
MAX5068B  
MAX5068C  
MAX5068D  
MAX5068E  
MAX5068F  
50%  
50%  
75%  
75%  
75%  
75%  
Yes  
No  
23.6  
10.8  
23.6  
23.6  
10.8  
10.8  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
No  
Yes  
______________________________________________________________________________________ 17  
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
Functional Diagram  
HYST*  
BOOTSTRAP  
UVLO  
21.6V/  
9.74V  
MAX5068  
UVLO/EN  
UVLO  
1.23V  
REFERENCE  
1.23V/  
1.18V  
IN  
V
IN  
CLAMP  
26V  
IN  
2.8V/  
1.6V  
60µA  
5V  
OUT  
REGULATOR  
REG5  
REG_OK  
V
CC  
R
S
Q
FLTINT  
V
CC  
CURENT-LIMIT  
COMPARATOR  
S
R
Q
NDRV  
PGND  
314mV  
1.6V  
5kΩ  
Σ*  
+
CS  
+
70ns  
BLANKING  
AGND  
PWM  
OSC  
COMPARATOR  
THERMAL  
SHUTDOWN  
DEAD  
TIME  
SLOPE  
COMPENSATION  
***SCOMP  
DIGITAL  
SOFT-START  
1.23V  
ERROR  
AMP  
FB  
COMP  
SYNC**  
RT  
DT  
*MAX5068A/B/D AND MAX5068F ONLY.  
**MAX5068A/B/C AND MAX5068E ONLY.  
***MAX5068C/D/E/F ONLY.  
18 ______________________________________________________________________________________  
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
Pin Configurations (continued)  
TOP VIEW  
RT  
RT  
1
2
3
4
5
6
7
8
16 REG5  
15 IN  
1
2
3
4
5
6
7
8
16 REG5  
15 IN  
SYNC  
SCOMP  
DT  
HYST  
SCOMP  
DT  
14  
V
CC  
14 V  
CC  
MAX5068C/E  
13 NDRV  
12 AGND  
11 PGND  
10 AGND  
MAX5068D/F  
13 NDRV  
12 AGND  
11 PGND  
10 AGND  
UVLO/EN  
FB  
UVLO/EN  
FB  
COMP  
FLTINT  
COMP  
FLTINT  
9
CS  
9
CS  
TSSOP-EP  
TSSOP-EP  
Chip Information  
TRANSISTOR COUNT: 4,266  
PROCESS: BiCMOS  
______________________________________________________________________________________ 19  
High-Frequency, Current-Mode PWM Controller  
with Accurate Programmable Oscillator  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to wwwꢀmaxim-iꢁꢀꢁom/paꢁkages.)  
PACKAGE OUTLINE, TSSOP, 4.40 MM BODY  
EXPOSED PAD  
1
21-0108  
D
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5068AAUE+T

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, ROHS COMPLIANT, MO-153-ABT, TSSOP-16
MAXIM

MAX5068AAUE-T

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, MO-153-ABT, TSSOP-16
MAXIM

MAX5068BAUE

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator
MAXIM

MAX5068BAUE+

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, ROHS COMPLIANT, MO-153-ABT, TSSOP-16
MAXIM

MAX5068BAUE+T

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, ROHS COMPLIANT, MO-153-ABT, TSSOP-16
MAXIM

MAX5068BAUE-T

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, MO-153-ABT, TSSOP-16
MAXIM

MAX5068CAUE

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator
MAXIM

MAX5068CAUE+

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, ROHS COMPLIANT, MO-153-ABT, TSSOP-16
MAXIM

MAX5068CAUE+T

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, ROHS COMPLIANT, MO-153-ABT, TSSOP-16
MAXIM

MAX5068DAUE

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator
MAXIM

MAX5068DAUE+

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, ROHS COMPLIANT, MO-153-ABT, TSSOP-16
MAXIM

MAX5068DAUE+T

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, ROHS COMPLIANT, MO-153-ABT, TSSOP-16
MAXIM