MAX5069AAUE-T [MAXIM]

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, MO-153-ABT, TSSOP-16;
MAX5069AAUE-T
型号: MAX5069AAUE-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, MO-153-ABT, TSSOP-16

信息通信管理 开关 光电二极管
文件: 总19页 (文件大小:232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3175; Rev 1; 7/04  
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
Current-Mode Control with 47µA (typ) Startup  
The MAX5069 is a hig h-fre q ue nc y, c urre nt-mod e ,  
pulse-width modulation (PWM) controller (with dual  
MOSFET drivers) that integrates all the building blocks  
necessary for implementing AC-DC or DC-DC fixed-fre-  
quency power supplies. Isolated or nonisolated push-  
p ull a nd ha lf/full-b rid g e p owe r s up p lie s a re e a s ily  
constructed using either primary- or secondary-side  
regulation. Current-mode control with leading-edge  
blanking simplifies control-loop design and a program-  
mable internal slope-compensation circuit stabilizes the  
current loop when operating at duty cycles above 50%.  
Current  
Oscillator Frequency Programmable to 2.5MHz  
Resistor-Programmable ±4.5% Accurate  
Switching Frequency  
Dual Gate-Drive Output for Half/Full-Bridge or  
Push-Pull Applications  
Rectified 85VAC to 265VAC, or 36VDC to 72VDC  
Input (MAX5069A/B)  
Input Directly Driven from 10.8V to 24V  
(MAX5069C/D)  
An input undervoltage lockout (UVLO) programs the  
input-supply startup voltage and ensures proper opera-  
tion during brownout conditions.  
Programmable Dead Time and Slope  
Compensation  
Programmable Startup Voltage (UVLO)  
A single external resistor programs the oscillator frequen-  
cy from 50kHz to 2.5MHz. The MAX5069A/D provide a  
SYNC input for synchronization to an external clock. The  
maximum FET-driver duty cycle for the MAX5069 is 50%.  
Programmable dead time allows additional flexibility in  
optimizing magnetic design and overcoming parasitic  
effects. Programmable hiccup current limit provides  
additional protection under severe faults.  
Programmable UVLO Hysteresis (MAX5069B/C)  
Frequency Synchronization Input (MAX5069A/D)  
-40°C to +125°C Automotive Temperature Range  
16-Pin Thermally Enhanced TSSOP-EP Package  
The MAX5069 is specified over the -40°C to +125°C auto-  
motive te mp e ra ture ra ng e a nd is a va ila b le in a  
16-pin thermally enhanced TSSOP-EP package. Refer to  
the MAX5068 data sheet for single FET-driver applications.  
Ord e rin g In fo rm a t io n  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
16 TSSOP-EP*  
16 TSSOP-EP*  
16 TSSOP-EP*  
16 TSSOP-EP*  
MAX5069AAUE  
MAX5069BAUE  
MAX5069CAUE  
MAX5069DAUE  
*EP = Exposed pad.  
Warning: The MAX5069 is designed to work with high  
voltages. Exercise caution.  
Ap p lic a t io n s  
Universal-Input AC Power Supplies  
Isolated Telecom Power Supplies  
Networking System Power Supplies  
Server Power Supplies  
P in Co n fig u ra t io n  
TOP VIEW  
RT  
1
2
3
4
5
6
7
8
16 REG5  
15 IN  
Industrial Power Conversion  
SYNC(HYST*)  
SCOMP  
DT  
14  
V
CC  
MAX5069  
13 NDRVA  
12 NDRVB  
11 PGND  
10 AGND  
UVLO/EN  
FB  
COMP  
FLTINT  
9 CS  
TSSOP-EP  
*MAX5069B/C.  
Selector Guide appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
ABSOLUTE MAXIMUM RATINGS  
IN to PGND ............................................................-0.3V to +30V  
IN to AGND.............................................................-0.3V to +30V  
AGND to PGND.....................................................-0.3V to +0.3V  
Continuous Power Dissipation (T = +70°C)  
A
V
to PGND..........................................................-0.3V to +13V  
to AGND..........................................................-0.3V to +13V  
16-Pin TSSOP-EP (derate 21.3mW/°C above +70°C)...1702mW  
Operating Temperature Range..........................-40°C to +125°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range .............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
V
CC  
FB, COMP, CS, HYST, SYNC, REG5 to AGND ........-0.3V to +6V  
UVLO/EN, RT, DT, SCOMP, FLTINT to AGND .........-0.3V to +6V  
NDRVA, NDRVB to PGND..........................-0.3V to (V + 0.3V)  
CC  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +12V for the MAX5069C/D, V = +23.6V for the MAX5069A/B at startup, then reduces to +12V, C = C  
= 0.1µF,  
IN  
IN  
IN  
REG5  
C
= 1µF, R = 100k, NDRV_ = floating, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
VCC  
RT  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
UNDERVOLTAGE LOCKOUT/STARTUP  
Bootstrap UVLO Wake-Up Level  
Bootstrap UVLO Shutdown Level  
UVLO/EN Wake-Up Threshold  
UVLO/EN Shutdown Threshold  
V
V
rising, MAX5069A/B  
falling, MAX5069A/B  
19.68  
9.05  
21.6  
9.74  
23.60  
10.43  
V
V
V
V
SUVR  
IN  
V
SUVF  
V
IN  
V
ULR2  
UVLO/EN rising  
UVLO/EN falling  
1.205 1.230 1.255  
1.18  
V
ULF2  
MAX5069B/C only, sinking 50mA,  
HYST FET On-Resistance  
HYST FET Leakage Current  
R
10  
3
nA  
µA  
V
DS(ON)_H  
V
= 0V  
UVLO/EN  
I
V
= 2V, V  
= 5V  
LEAK_H  
UVLO/EN  
HYST  
IN Supply Current In  
Undervoltage Lockout  
I
V
IN  
= +19V, V  
< V  
ULF2  
47  
90  
START  
UVLO/EN  
IN Range  
V
IN  
10.8  
24.0  
INTERNAL SUPPLIES (V  
and REG5)  
CC  
V
Regulator Set Point  
V
V
= +10.8V to +24V, V sourcing 1µA to 25mA  
7.0  
10.5  
5.15  
V
V
CC  
CCSP  
IN  
CC  
REG5 Output Voltage  
V
REG5  
I
= 0 to 1mA  
4.85  
5.00  
18  
7
REG5  
REG5 Short-Circuit Current Limit  
I
mA  
REG5_SC  
f
= 1.25MHz  
= 100kHz  
SW  
IN Supply Current After Startup  
I
IN  
V
IN  
= +24V  
mA  
µA  
f
3
SW  
Shutdown Supply Current  
I
90  
VIN_SD  
GATE DRIVER (NDRVA, NDRVB)  
Z
NDRVA/NDRVB sinking 100mA  
NDRVA/NDRVB sourcing 25mA  
Sinking  
2
3
4
6
OUT(LOW)  
Driver Output Impedance  
Driver Peak Output Current  
Z
OUT(HIGH)  
1000  
650  
I
mA  
NDRV  
Sourcing  
PWM COMPARATOR  
Comparator Offset Voltage  
Comparator Propagation Delay  
Minimum On-Time  
V
V
> V  
CS  
1.30  
298  
1.60  
40  
2.00  
330  
V
ns  
ns  
OS_PWM  
COMP  
t
V
CS  
= 0.1V  
PD_PWM  
t
Includes t  
110  
ON(MIN)  
CS_BLANK  
CURRENT-LIMIT COMPARATOR  
Current-Limit Trip Threshold  
V
CS  
314  
mV  
2
_______________________________________________________________________________________  
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +12V for the MAX5069C/D, V = +23.6V for the MAX5069A/B at startup, then reduces to +12V, C = C  
= 0.1µF,  
IN  
IN  
IN  
REG5  
C
= 1µF, R = 100k, NDRV_ = floating, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
VCC  
RT  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µA  
CS Input Bias Current  
CS Blanking Time  
I
V
= 0V  
0
+2  
B_CL  
CS_BLANK  
CS  
t
70  
40  
ns  
Propagation Delay from  
Comparator Input to NDRV_  
t
50mV overdrive  
ns  
V
PD_CL  
IN CLAMP VOLTAGE  
IN Clamp Voltage  
V
IN sinking 2mA (Note 2)  
24.0  
26.0  
29.0  
IN_CLAMP  
ERROR AMPLIFIER (FB, COMP)  
Voltage Gain  
A
V
R
= 100kto AGND  
80  
5
dB  
COMP  
R
C
= 100kto AGND,  
= 100pF to AGND  
COMP  
Unity-Gain Bandwidth  
BW  
PM  
MHz  
LOAD  
R
COMP  
C
= 100kto AGND,  
= 100pF to AGND  
Phase Margin  
65  
Degrees  
mV  
LOAD  
FB Input Offset Voltage  
COMP Clamp Voltage  
Error-Amplifier Output Current  
V
3
OS_FB  
High  
Low  
2.6  
0.4  
0.5  
3.8  
1.1  
V
V
COMP  
I
Sinking or sourcing  
+25°C T +125°C (Note 3)  
mA  
COMP  
1.215 1.230 1.245  
1.205 1.230 1.242  
A
Reference Voltage  
V
REF  
V
-40°C T +125°C (Note 3)  
A
Input Bias Current  
I
100  
12  
300  
nA  
B_EA  
COMP Short-Circuit Current  
THERMAL SHUTDOWN  
Thermal-Shutdown Temperature  
Thermal Hysteresis  
I
mA  
COMP_SC  
T
SD  
+170  
25  
°C  
°C  
T
HYST  
OSCILLATOR SYNC INPUT (MAX5069A/D only)  
SYNC High-Level Voltage  
SYNC Low-Level Voltage  
SYNC Input Bias Current  
Maximum SYNC Frequency  
SYNC High-Level Pulse Width  
SYNC Low-Level Pulse Width  
DIGITAL SOFT-START  
Soft-Start Duration  
V
2.4  
V
V
IH_SYNC  
V
0.4  
IL_SYNC  
I
10  
nA  
MHz  
ns  
B_SYNC  
f
f
= 2.5MHz (Note 4)  
3.125  
30  
SYNC  
OSC  
t
SYNC_HI  
t
30  
ns  
SYNC_LO  
t
(Note 5)  
2047  
9.7  
Cycles  
mV  
SS  
Reference-Voltage Step  
V
STEP  
Reference-Voltage Steps During  
Soft-Start  
127  
Steps  
OSCILLATOR  
Oscillator Frequency Range  
f
f
= (1011 / R  
)
RT  
50  
2500  
kHz  
OSC  
OSC  
_______________________________________________________________________________________  
3
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +12V for the MAX5069C/D, V = +23.6V for the MAX5069A/B at startup, then reduces to +12V, C = C  
= 0.1µF,  
IN  
IN  
IN  
REG5  
C
= 1µF, R = 100k, NDRV_ = floating, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
VCC  
RT  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 1011 / (2 x R  
MIN  
TYP  
MAX  
UNITS  
kHz  
V
NDRV_ Switching Frequency  
RT Voltage  
f
f
)
RT  
25  
1250  
SW  
SW  
V
RT  
40k< R < 500kΩ  
2.0  
RT  
f
500kHz  
> 500kHz  
500kHz  
> 500kHz  
-2.5  
-4  
+2.5  
+4  
OSC  
T
= +25°C  
A
f
OSC  
Oscillator Accuracy  
%
%
f
-4.5  
-6  
+4.5  
+6  
OSC  
T
A
= -40°C to +125°C  
f
OSC  
Maximum Duty Cycle  
DEAD-TIME CONTROL (DT)  
Dead Time  
D
DT connected to REG5  
100  
60  
MAX  
t
R
DT  
= 24.9kΩ  
ns  
V
DT  
V
DT_DISABLE  
V
REG5  
0.5V  
-
Dead-Time Disable Voltage  
Dead-Time Regulation Voltage  
V
DT  
1.23  
V
INTEGRATING FAULT PROTECTION (FLTINT)  
FLTINT Source Current  
FLTINT Shutdown Threshold  
FLTINT Restart Threshold  
SLOPE COMPENSATION  
Slope Compensation  
I
V
= 0V  
rising  
falling  
60  
2.8  
1.6  
µA  
V
FLTINT  
FLTINT  
V
V
FLTINT  
FLTINT_SD  
V
V
FLTINT  
V
FLTINT_RS  
V
C
= 100pf, RT = 110kΩ  
SLOPE  
15  
mV/µs  
mV/µs  
SLOPE  
Slope-Compensation Range  
V
0
0
90  
SLOPER  
Slope-Compensation Voltage  
Range  
V
2.7  
V
SCOMP  
Note 1: The MAX5069 is 100% tested at T = +25°C. All limits over temperature are guaranteed by design.  
A
Note 2: The MAX5069A/B are intended for use in universal-input power supplies. The internal clamp circuit is used to prevent the  
bootstrap capacitor (C1 in Figure 1) from charging to a voltage beyond the absolute maximum rating of the device when  
UVLO/EN is low. The maximum current to V (hence to clamp) when UVLO is low (device is in shutdown) must be external-  
IN  
ly limited to 2mA. Clamp currents higher than 2mA may result in clamp voltages higher than 30V, thus exceeding the  
absolute maximum rating for V . For the MAX5069C/D, do not exceed the 24V maximum operating voltage of the device.  
IN  
Note 3: Reference voltage (V ) is measured with FB connected to COMP (see the Functional Diagram).  
REF  
Note 4: The SYNC frequency must be at least 25% higher than the programmed oscillator frequency.  
Note 5: The internal oscillator clock cycle.  
4
_______________________________________________________________________________________  
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +23.6V for MAX5069A/B at startup, then reduces to +12V, V = +12V for the MAX5069C/D, C = C  
= 0.1µF, C  
= 1µF,  
VCC  
IN  
IN  
IN  
REG5  
R
RT  
= 100k, NDRV_ = floating, V = 0V, V  
= floating, V = 0V, T = +25°C, unless otherwise noted.)  
COMP CS A  
FB  
BOOTSTRAP UVLO WAKE-UP LEVEL  
vs. TEMPERATURE  
BOOTSTRAP UVLO SHUTDOWN LEVEL  
vs. TEMPERATURE  
UVLO/EN WAKE-UP THRESHOLD  
vs. TEMPERATURE  
21.6  
10.0  
9.9  
1.245  
1.240  
MAX5069A/B  
MAX5069A/B  
UVLO/EN RISING  
21.5  
21.4  
21.3  
21.2  
21.1  
21.0  
9.8  
9.7  
9.6  
9.5  
1.235  
1.230  
1.225  
1.220  
-40 -15  
10  
35  
60  
85  
110  
-40  
-15  
10  
35  
60  
85  
110  
-40  
-15  
10  
35  
60  
85  
110  
°
°
°
TEMPERATURE ( C)  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
UVLO/EN SHUTDOWN THRESHOLD  
vs. TEMPERATURE  
V
IN  
SUPPLY CURRENT IN UNDERVOLTAGE  
LOCKOUT vs. TEMPERATURE  
V
IN  
SUPPLY CURRENT AFTER STARTUP  
vs. TEMPERATURE  
1.20  
1.19  
1.18  
1.17  
8
60  
56  
UVLO/EN FALLING  
f
= 1.25MHz  
V
= 19V  
SW  
IN  
V = 24V  
IN  
WHEN IN BOOTSTRAP UVLO (MAX5069A/B)  
UVLO/EN (MAX5069C/D) IS LOW  
7
6
5
4
3
2
f
SW  
= 500kHz  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
1.10  
52  
48  
44  
40  
f
SW  
= 250kHz  
f
= 100kHz  
SW  
f
SW  
= 50kHz  
1
-40 -15  
10  
35  
60  
85  
110  
-40 -15  
10  
35  
60  
85  
110  
-40 -15  
10  
35  
60  
85  
110  
°
TEMPERATURE ( C)  
°
TEMPERATURE ( C)  
TEMPERATURE (°C)  
REG5 OUTPUT VOLTAGE  
vs. OUTPUT CURRENT  
REG5 vs. TEMPERATURE  
V
CC  
vs. TEMPERATURE  
10.0  
9.7  
9.4  
9.1  
8.8  
8.5  
8.2  
7.9  
7.6  
7.3  
7.0  
4.980  
4.975  
4.970  
4.965  
4.960  
4.955  
4.950  
5.00  
4.99  
4.98  
4.97  
V
IN  
= 10.8V  
R
RT  
= 100kΩ  
V
= 19V, I = 10mA  
IN  
IN  
100µA LOAD  
V
= 19V, I = 25mA  
IN  
IN  
4.96  
4.95  
4.94  
4.93  
4.92  
4.91  
4.90  
1mA LOAD  
V
IN  
= 10.8V, I = 10mA  
IN  
V
IN  
= 10.8V, I = 25mA  
IN  
-40 -15  
10  
35  
60  
85  
110  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
OUTPUT CURRENT (mA)  
-40  
-15  
10  
35  
60  
°
85  
110  
TEMPERATURE (°C)  
TEMPERATURE ( C)  
_______________________________________________________________________________________  
5
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +23.6V for MAX5069A/B at startup, then reduces to +12V, V = +12V for the MAX5069C/D, C = C  
= 0.1µF, C  
= 1µF,  
VCC  
IN  
IN  
IN  
REG5  
R
RT  
= 100k, NDRV_ = floating, V = 0V, V  
= floating, V = 0V, T = +25°C, unless otherwise noted.)  
COMP CS A  
FB  
CS TRIP THRESHOLD  
vs. TEMPERATURE  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
REG5 OUTPUT VOLTAGE vs. V  
IN  
330  
327  
324  
321  
318  
315  
312  
4.985  
530  
525  
520  
515  
510  
505  
500  
f
= 500kHz  
SW  
TOTAL NUMBER OF  
DEVICES = 200  
I
= 100µA  
REG5  
4.984  
4.983  
4.982  
4.981  
4.980  
4.979  
4.978  
4.977  
4.976  
4.975  
+3σ  
MEAN  
309  
306  
303  
-3σ  
495  
490  
485  
300  
-40  
480  
-40  
110  
-15  
10  
35  
60  
85  
10  
12  
14  
16  
18  
(V)  
20  
22  
24  
10  
TEMPERATURE (°C)  
35  
60  
85  
110  
-15  
TEMPERATURE (°C)  
V
IN  
PROPAGATION DELAY FROM CS COMPARATOR  
INPUT CLAMP VOLTAGE  
vs. TEMPERATURE  
INPUT CURRENT  
vs. INPUT CLAMP VOLTAGE  
INPUT TO NDRV vs. TEMPERATURE  
50  
27.0  
14  
12  
10  
8
I
= 2mA  
SINK  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
26.8  
26.6  
26.4  
26.2  
26.0  
25.8  
25.6  
25.4  
25.2  
25.0  
6
4
2
0
-40 -15  
10  
35  
60  
85  
110  
-40 -15  
10  
35  
60  
85  
110  
10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0  
INPUT CLAMP VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
NDRVA/NDRVB OUTPUT IMPEDANCE  
vs. TEMPERATURE  
ERROR AMPLIFIER OPEN-LOOP GAIN  
NDRVA/NDRVB OUTPUT IMPEDANCE  
vs. TEMPERATURE  
AND PHASE vs. FREQUENCY  
MAX5069 toc18  
120  
100  
80  
30  
4.0  
3.8  
3.6  
3.4  
3.0  
2.8  
2.6  
2.4  
V
= 24V  
IN  
V
= 24V  
IN  
SOURCING 25mA  
SINKING 100mA  
0
-30  
-60  
-90  
-120  
-150  
-180  
-210  
GAIN  
60  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
40  
PHASE  
20  
0
-20  
-40  
-40  
-15  
10  
35  
60  
85  
110  
0.1  
10  
1k  
100k  
10M  
-40 -15  
10  
35  
60  
85  
110  
°
°
TEMPERATURE ( C)  
FREQUENCY (Hz)  
TEMPERATURE ( C)  
6
_______________________________________________________________________________________  
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +23.6V for MAX5069A/B at startup, then reduces to +12V, V = +12V for the MAX5069C/D, C = C  
= 0.1µF, C  
= 1µF,  
VCC  
IN  
IN  
IN  
REG5  
R
RT  
= 100k, NDRV_ = floating, V = 0V, V  
= floating, V = 0V, T = +25°C, unless otherwise noted.)  
COMP CS A  
FB  
NDRVA SWITCHING FREQUENCY (f  
SW)  
FLTINT CURRENT vs. TEMPERATURE  
HYST R vs. TEMPERATURE  
ON  
vs. R  
RT  
63.0  
62.9  
62.8  
62.7  
13.0  
12.5  
12.0  
11.5  
2
1
V
= 24V  
IN  
SINKING 50mA  
62.6  
62.5  
62.4  
62.3  
62.2  
62.1  
62.0  
11.0  
10.5  
10.0  
9.5  
0.1  
9.0  
8.5  
8.0  
0.01  
-40 -15  
10  
35  
60  
85  
110  
-40  
-15  
10  
35  
60  
85  
110  
0.03  
0.1  
1
2
°
°
TEMPERATURE ( C)  
TEMPERATURE ( C)  
R
RT  
(M)  
NDRV SWITCHING FREQUENCY  
vs. TEMPERATURE  
NDRV SWITCHING FREQUENCY  
vs. TEMPERATURE  
NDRV SWITCHING FREQUENCY  
vs. TEMPERATURE  
505  
504  
52.0  
51.6  
51.2  
50.8  
50.4  
50.0  
49.6  
49.2  
48.8  
48.4  
48.0  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
f
SW  
= 500kHz  
f
SW  
= 1.25MHz  
f
SW  
= 50kHz  
503  
502  
501  
500  
499  
498  
497  
496  
495  
-25  
0
25  
100  
125  
-50  
50  
75  
-40 -15  
10  
35  
60  
85  
110  
-15  
10  
35  
110  
-40  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DEAD TIME vs. TEMPERATURE  
DEAD TIME vs. R  
DT  
70  
65  
60  
55  
50  
45  
40  
200  
V
= 24V  
= 24.9kΩ  
= 100kΩ  
IN  
180  
160  
140  
120  
100  
80  
R
R
DT  
RT  
60  
40  
20  
0
-40 -15  
10  
35  
60  
85  
110  
1
10  
(k)  
100  
TEMPERATURE (°C)  
R
DT  
_______________________________________________________________________________________  
7
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
MAX5069A MAX5069B  
MAX5069D MAX5069C  
Oscillator-Timing Resistor. Connect a resistor from RT to AGND to set the internal oscillator  
frequency.  
1
1
RT  
2
3
2
SYNC  
HYST  
External-Clock Sync Input. Connect SYNC to AGND when not using an external clock.  
Hysteresis Input  
3
SCOMP  
Slope-Compensation Capacitor Connection  
Dead-Time Resistor Connection. Connect a resistor from DT to AGND to program the  
output dead time. Connect to REG5 for NDRVA and NDRVB maximum 50% duty cycle.  
4
5
4
5
DT  
Externally Programmable Undervoltage Lockout. UVLO/EN programs the input start  
voltage. Connect UVLO/EN to AGND to disable the output.  
UVLO/EN  
6
7
6
7
FB  
Error-Amplifier Inverting Input  
Error-Amplifier Output  
COMP  
Fault-Integration Input. A capacitor connected to FLTINT charges with an internal 60µA  
current source during persistent current-limit faults. Switching terminates when V  
is  
FLTINT  
8
8
FLTINT  
2.8V. An external resistor connected in parallel discharges the capacitor. Switching  
resumes when V drops to 1.6V.  
FLTINT  
9
9
CS  
Current-Sense Resistor Connection  
10  
11  
12  
13  
10  
11  
12  
13  
AGND  
PGND  
NDRVB  
NDRVA  
Analog Ground. Connect to PGND.  
Power Ground. Connect to AGND through a ground plane.  
Gate-Driver Output B. Connect NDRVB to the gate of the external N-channel FET.  
Gate-Driver Output A. Connect NDRVA to the gate of the external N-channel FET.  
9V Linear-Regulator Output. Decouple V with a minimum 1µF ceramic capacitor to  
CC  
AGND; also internally connected to the FET drivers.  
14  
15  
14  
15  
V
CC  
Power-Supply Input. IN provides power for all internal circuitry except the gate driver.  
Decouple IN with 0.1µF to AGND (see the Typical Operating Circuit).  
IN  
16  
16  
REG5  
PAD  
5V Linear-Regulator Output. Decouple REG5 to AGND with 0.1µF ceramic capacitor.  
Exposed Paddle. Connect to GND.  
EP  
EP  
8
_______________________________________________________________________________________  
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
driver duty cycle for each driver is limited to 50%.  
De t a ile d De s c rip t io n  
Programmable dead time allows additional flexibility in  
The MAX5069 is a current-mode, dual MOSFET driver,  
optimizing magnetic design and overcoming parasitic  
PWM controller designed for isolated and nonisolated  
effects. Integrating fault protection ignores transient  
push-pull or half-/full-bridge power-supply applications.  
overcurrent conditions for a set length of time. The  
A bootstrap UVLO with a programmable hysteresis,  
length of time is programmed by an external capacitor.  
very low startup, and low operating current result in  
The inte rna l the rma l-s hutd own c irc uit p rote c ts the  
high-efficiency universal-input power supplies. In addi-  
d e vic e s hould the junc tion te mp e ra ture e xc e e d  
tion to the internal bootstrap UVLO, the device also  
+170°C.  
offers programmable input startup and turn-off volt-  
ages, programmed through the UVLO/EN pin.  
Power supplies designed with the MAX5069A/B use a  
high-value startup resistor, R1, which charges a reser-  
voir capacitor, C1 (Figure 1). During this initial period,  
while the voltage is less than the internal bootstrap  
UVLO threshold, the device typically consumes only  
47µA of quiescent current. This low startup current and  
the large bootstrap UVLO hysteresis help to minimize  
the power dissipation across R1 even at the high end of  
the universal AC input voltage (265VAC).  
The MAX5069 includes a cycle-by-cycle current limit  
that turns off the gate drive to the external MOSFET  
during an overcurrent condition. The MAX5069 integrat-  
ing fault protection reduces average power dissipation  
during persistent fault conditions (see the Integrating  
Fault Protection section).  
The MAX5069 features a very accurate, wide-range,  
programmable oscillator that simplifies and optimizes  
the design of the magnetics. The MAX5069A/B are well  
suited for universal-input (rectified 85VAC to 265VAC)  
or telecom (-36VDC to -72VDC) power supplies. The  
MAX5069C/D a re we ll s uite d for low-inp ut volta g e  
(10.8VDC to 24VDC) power supplies.  
The MAX5069 includes a cycle-by-cycle current limit  
that turns off the gates to both external MOSFETs dur-  
ing a n ove rc urre nt c ond ition. Whe n us ing the  
MAX5069A/B in the bootstrap mode (if the power-sup-  
p ly outp ut is s horte d ), the te rtia ry wind ing volta g e  
drops below the 9.74V threshold, causing the UVLO to  
turn off the gate to the external power MOSFETs. This  
reinitiates a startup sequence with soft-start.  
The MAX5069 hig h-fre q ue nc y, unive rs a l inp ut,  
offline/telecom, current-mode PWM controller integrates  
all the building blocks necessary for implementing AC-  
DC and DC-DC fixed-frequency power supplies. Push-  
pull and half-/full-bridge isolated or nonisolated power  
supplies are easily constructed using either primary- or  
secondary-side regulation. Current-mode control with  
leading-edge blanking simplifies control-loop design  
and the programmable slope compensation stabilizes  
the current loop when operating both FET drivers at a  
combined 100% duty cycle.  
Cu rre n t -Mo d e Co n t ro l  
The MAX5069 offers a current-mode control operation  
feature, such as leading-edge blanking with a dual  
internal path that only blanks the sensed current signal  
applied to the input of the PWM controller. The current-  
limit comparator monitors CS at all times and provides  
cycle-by-cycle current limit without being blanked. The  
leading-edge blanking of the CS signal prevents the  
PWM comparator from prematurely terminating the on  
cycle. The CS signal contains a leading-edge spike  
that results from the MOSFETs gate charge current,  
and the capacitive and diode reverse-recovery current  
of the power circuit. Since this leading-edge spike is  
normally lower than the current-limit comparator thresh-  
old, current limiting is provided under all conditions.  
An input UVLO programs the input-supply startup volt-  
age and ensures proper operation during brownout con-  
ditions. An external voltage-divider programs the supply  
startup voltage. The MAX5069B/C feature a programma-  
ble UVLO hysteresis. The MAX5069A/B feature an addi-  
tional internal bootstrap UVLO with large hysteresis that  
re q uire s a minimum s ta rtup volta g e of 23.6V. The  
MAX5069A/D start up from a minimum voltage of 10.8V.  
Internal digital soft-start reduces output-voltage over-  
shoot at startup.  
Use the MAX5069 in push-pull and half-/full-bridge appli-  
cations where a large duty cycle is desired. The large  
duty cycle results in much lower operating primary RMS  
currents through the MOSFET switches, and in most  
cases it results in a smaller inductor and output filter  
capacitor. The MAX5069 adjusted slope compensation  
allows for easy stabilization of the inner current loop.  
A single external resistor programs the switching fre-  
q ue nc y of e a c h MOSFET d rive r from 25kHz to  
1.25MHz. The MAX5069A/D provide a SYNC input for  
synchronization to an external clock. The maximum FET  
_______________________________________________________________________________________  
9
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
D3  
D1  
V
OUT  
C7  
V
IN  
R1  
C1  
R6  
R2  
C2  
IN  
D2  
UVLO/EN  
HYST  
FLTINT  
R
HYST  
C3  
C4  
V
CC  
R9  
R7  
MAX5069B  
REG5  
RT  
R3  
NDRVB  
Q2  
R10  
NDRVA  
Q1  
R4  
C5  
DT  
CS  
FB  
SCOMP  
R8  
AGND PGND COMP  
R5  
C6  
Figure 1. Nonisolated Power Supply with Programmable Input Supply Voltage  
Calculate R6 in Figure 2 by using the following formula:  
Un d e rvo lt a g e Lo c k o u t  
The MAX5069 features an input voltage UVLO/EN func-  
tion to enable the PWM controller before any operation  
can begin. The MAX5069A/D shut down if the voltage  
a t UVLO/EN fa lls b e low its 1.18V thre s hold . The  
MAX5069B/C also incorporate a UVLO hysteresis input  
to set the desired turn-off voltage.  
V
ON  
R6 =  
1 × R7  
V
ULR2  
where V  
is the UVLO/ENs 1.231V rising threshold  
ULR2  
and V  
is the desired startup voltage. Choose an R7  
ON  
value in the 20krange.  
MAX5069A/D UVLO Adjustment  
The MAX5069A/D have an input voltage UVLO/EN with  
a 1.231V threshold. Before any operation can com-  
mence, the UVLO/EN voltage must exceed the 1.231V  
threshold. The UVLO circuit keeps the PWM compara-  
tor, ILIM comparator, oscillator, and output drivers shut-  
d own to re d uc e c urre nt c ons ump tion (s e e the  
Functional Diagram).  
After a successful startup, the MAX5069A/D shut down  
if the voltage at UVLO/EN drops below its 1.18V fall-  
ing threshold.  
MAX5069B/C UVLO with  
Programmable Hysteresis  
In addition to programmable undervoltage lockout dur-  
ing startup, the MAX5069B/C incorporate a UVLO/EN  
10 ______________________________________________________________________________________  
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
V
IN  
MAX5069A/D  
R6  
R7  
UVLO/EN  
V
= V - V  
HYST ON OFF  
1.23V  
1.18V  
V
OFF  
V
ON  
Figure 3. MAX5069 Hysteresis  
Fig ure 2. Se tting the MAX5069A/D Und e rvolta g e Loc kout  
Threshold  
hysteresis that allows the user to set a voltage (V  
) to  
OFF  
disable the controller (see Figure 3).  
V
IN  
At the beginning of the startup sequence, UVLO/EN is  
below the 1.23V threshold, and Q1 turns on connecting  
MAX5069B/C  
R6  
R
to GND (Figure 4). Once the UVLO 1.23V thresh-  
HYST  
old is crossed, Q1 turns off, resulting in the series com-  
bination of R6, R , and R7, placing the MAX5069 in  
normal operating condition.  
UVLO/EN  
HYST  
HYST  
R
HYST  
Calculate the turn-on voltage (V ) by using the fol-  
ON  
lowing formula:  
1.23V  
1.18V  
Q1  
V
R7  
ON  
R6 =  
1 × R  
HYST  
V
ULR2  
where V  
is the UVLO/ENs 1.23V rising threshold.  
ULR2  
Choose an R  
value in the 20krange.  
HYST  
The MAX5069 turns off when the MAX5069 UVLO/EN  
falls below the 1.18V falling threshold. The turn-off volt-  
Figure 4. Setting the MAX5069B/C Turn-On/Turn-Off Voltages  
age (V ) is then defined as:  
OFF  
power-up. The MAX5069A/B start when V exceeds  
IN  
the bootstrap UVLO threshold of 23.6V.  
V
OFF  
R7 = R6 /  
1 R  
HYST  
V
ULF2  
During startup, the UVLO circuit keeps the PWM com-  
parator, ILIM comparator, oscillator, and output drivers  
where V  
is the 1.18V UVLO/EN falling threshold.  
ULF2  
shut down to reduce current consumption. Once V  
IN  
reaches 23.6V, the UVLO circuit turns on both the PWM  
and ILIM comparators, as well as the oscillator, and  
Bo o t s t ra p Un d e rvo lt a g e Lo c k o u t  
(MAX5 0 6 9 A/B)  
In addition to the externally programmable UVLO func-  
tion offered by the MAX5069, the MAX5069A/B feature  
an additional internal bootstrap UVLO for use in high-  
voltage power supplies (see the Functional Diagram).  
This allows the device to bootstrap itself during initial  
allows the output driver to switch. If V drops below  
IN  
9.7V, the UVLO circuit shuts down the PWM compara-  
tor, ILIM comparator, oscillator, and output drivers,  
returning the MAX5069A/B to the startup mode.  
______________________________________________________________________________________ 11  
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
MAX5 0 6 9 A/B S t a rt u p Op e ra t io n  
Normally, V is derived from the tertiary winding of the  
IN  
transformer. However, at startup there is no energy  
delivered through the transformer; hence, a special  
bootstrap sequence is required. Figure 5 shows the  
V
2V/div  
CC  
voltages on V and V  
during startup. Initially, both  
IN  
CC  
V
and V  
are 0V. After the input voltage is applied,  
IN  
CC  
MAX5069  
C1 charges through the startup resistor, R1, to an inter-  
mediate voltage (see Figure 1). At this point, the inter-  
nal regulator begins charging C3 (see Figure 5). Only  
47µA of the current supplied by R1 is used by the  
MAX5069A/B. The remaining input current charges C1  
V PIN  
IN  
5V/div  
0V  
and C3. The charging of C3 stops when the V  
volt-  
CC  
age reaches approximately 9.5V. The voltage across  
C1 continues rising until it reaches the wake-up level of  
100ms/div  
23.6V. Once V exceeds the bootstrap UVLO thresh-  
IN  
old, NDRVA/NDRVB begin switching the MOSFETs and  
energy is transferred to the secondary and tertiary out-  
puts. If the voltage on the tertiary output builds to high-  
er than 9.74V (the bootstrap UVLO lower threshold),  
startup ends and sustained operation commences.  
Fig ure 5. V a nd V  
During Sta rtup Whe n Us ing the  
MAX5069 in Bootstrapped Mode (See Figure 1)  
IN CC  
If V drops below 9.74V before startup is complete, the  
IN  
I
= Q  
x f  
gtot SW  
g
device goes back to low-current UVLO. If this occurs,  
increase the value of C1 to store enough energy to  
allow for the voltage at the tertiary winding to build up.  
(I + I ) x t  
SS  
IN  
g
C1 =  
V
HYST  
Startup Time Considerations for  
Power Supplies Using the MAX5069A/B  
The V bypass capacitor, C1, supplies current imme-  
diately after wakeup (see Figure 1). The size of C1 and  
the connection configuration of the tertiary winding  
determine the number of cycles available for startup.  
Large values of C1 increase the startup time and also  
supply extra gate charge for more cycles during initial  
where I is the MAX5069s internal supply current after  
IN  
startup (3.3mA, typ), Q  
is the total gate charge for  
gtot  
IN  
Q1 and Q2, f  
is the MAX5069s programmed output  
SW  
switching frequency, V  
is the bootstrap UVLO hys-  
HYST  
teresis (12V), and t is the internal soft-start time (2047  
ss  
clock cycles x 1 / f  
).  
OSC  
Example:  
I = (16nC) (250kHz) 4mA  
g
startup. If the value of C1 is too small, V drops below  
IN  
f
= 500kHz  
OSC  
9.74V because NDRVA/NDRVB do not have enough  
time to switch and build up sufficient voltage across the  
tertiary output that powers the device. The device goes  
back into UVLO and does not start. Use low-leakage  
capacitors for C1 and C3.  
t
= 2047 x (1 / f  
) = 4.1ms  
SS  
OSC  
(3.3mA + 4mA) (4.1ms)  
C1 =  
= 2.5µF  
12V  
Use a 4.7µF ceramic capacitor for C1.  
Assuming C1 > C3, calculate the value of R1 as follows:  
Generally, offline power supplies keep typical startup  
times to less than 500ms, even in low-line conditions  
(85VAC inp ut for unive rs a l offline a p p lic a tions or  
36VDC for telecom applications). Size the startup resis-  
tor, R1, to supply both the maximum startup bias of the  
device (90µA) and the charging current for C1 and C3.  
The bypass capacitor, C3, must charge to 9.5V, and  
C1 must charge to 24V, within the desired time period  
of 500ms. Because of the internal soft-start time of the  
MAX5069, C1 must store enough charge to deliver cur-  
rent to the device for at least 2047 oscillator clock  
cycles. To calculate the approximate amount of capaci-  
tance required, use the following formula:  
V
× C1  
500ms  
0.5 x V  
SUVR  
I
C1  
V
IN(MIN)  
I
SUVR  
R1 ≅  
+ I  
C1  
START  
whe re V  
is the b oots tra p UVLO wa ke up le ve l  
SUVR  
(23.6V max), V  
is the minimum input supply volt-  
IN(MIN)  
age for the application (36V for telecom), and I  
is  
START  
the V supply current at startup (90µA, max).  
IN  
12 ______________________________________________________________________________________  
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
V
OUT  
C7  
V
IN  
R1  
C1  
R6  
R2  
C2  
IN  
UVLO/EN  
HYST  
FLTINT  
R
HYST  
C3  
C4  
MAX5069B  
V
CC  
R7  
REG5  
RT  
NDRVB  
NDRVA  
Q2  
R3  
Q1  
R4  
C5  
DT  
CS  
FB  
R12  
C8  
R8  
V
CC  
SCOMP  
AGND PGND COMP  
R5  
C6  
C10  
R13  
R14  
PS2913  
R10  
MAX8515  
R9  
R11  
Figure 6. Secondary-Side, Regulated, Isolated Power Supply  
For example:  
To minimize power loss on this resistor, choose a high-  
er value for R1 than the one calculated above (if a  
longer startup time can be tolerated).  
24V x 4.7µF  
500ms  
36V 12V  
I
=
= 225µA  
= 76kΩ  
C1  
The above startup method applies to a circuit similar to  
the one shown in Figure 1. In this circuit, the tertiary  
winding has the same phase as the secondary wind-  
ings. Thus, the voltage on the tertiary winding at any  
given time is proportional to the output voltage. The  
minimum discharge time of C1 from 22V to 10V must  
R1 ≅  
225µA + 90µA  
be greater than the soft-start time (t ).  
SS  
______________________________________________________________________________________ 13  
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
shorting out the transformers primary. The MAX5069  
a llows the d e a d -time d e la y re q uire d to turn on the  
NDRVB FET after the NDRVA FET turns off. The dead  
time can be programmed to a minimum of 30ns to 1 / (0.5  
Os c illa t o r/S w it c h in g Fre q u e n c y  
Use an external resistor at RT to program the MAX5069  
internal oscillator frequency from 50kHz to 2.5MHz. The  
MAX5069 NDRVA/NDRVB switching frequency is one  
half of the programmed oscillator frequency with a  
maximum 50% duty cycle.  
x f ). Connect a resistor between DT and AGND to set  
SW  
the desired dead time. Calculate the dead time using the  
following formula:  
Use the following formula to calculate the internal oscil-  
lator frequency:  
60  
Dead time =  
× R (ns)  
DT  
11  
29.4  
10  
f
=
osc  
R
RT  
where R is in kand the dead time is in ns.  
DT  
where f  
is the oscillator frequency and R  
is a  
RT  
OSC  
Ex t e rn a l S yn c h ro n iza t io n (MAX5 0 6 9 A/D)  
The MAX5069A/D can be synchronized using an exter-  
nal clock at the SYNC input. For proper frequency syn-  
chronization, the SYNCs input frequency must be at  
least 25% higher than the MAX5069A/D programmed  
internal oscillator frequency. Connect SYNC to AGND  
when not using an external clock.  
resistor connected from RT to AGND.  
Choose the appropriate resistor at RT to calculate the  
desired switching frequency (f ):  
SW  
11  
10  
=
R
RT  
2f  
SW  
In t e g ra t in g Fa u lt P ro t e c t io n  
The integrating fault-protection feature allows transient  
overcurrent conditions to be ignored for a programma-  
ble amount of time, giving the power supply time to  
behave like a current source to the load. For example,  
this can occur under load-current transients when the  
control loop requests maximum current to keep the out-  
put voltage from going out of regulation. Program the  
fault-integration time by connecting an external suitably  
sized capacitor to the FLTINT. Under sustained over-  
current faults, the voltage across this capacitor ramps  
up towards the FLTINT shutdown threshold (typically  
2.8V). Once the threshold is reached, the power supply  
shuts down. A high-value bleed resistor connected in  
parallel with the FLTINT capacitor allows it to discharge  
towards the restart threshold (typically 1.6V). Once this  
threshold is reached, the supply restarts with a new  
soft-start cycle.  
For the maximum 50% duty cycle at NDRVA/NDRVB,  
connect DT to REG5.  
Du a l N-Ch a n n e l MOS FET S w it c h Drive r  
The MAX5069 drives two external N-channel MOSFETs  
in push-pull isolated power supplies. Each MOSFET  
driver operates with a maximum 50% duty cycle. The  
NDRV_ outputs are supplied by the internal regulator  
(V ), which is internally set to approximately 9.5V. For  
CC  
the universal input voltage range, the MOSFETs used  
must be able to withstand at least twice the DC level of  
the high-line input voltage. Both NDRVA and NDRVB  
can source and sink in excess of 650mA and 1000mA  
peak current, respectively.  
Dead-Time Control  
In typical push-pull designs, it is desirable to add some  
extra delay between the turning off of one MOSFET and  
the turning on of the next MOSFET (Figure 7). The extra  
time ensures that the first MOSFET is fully off when the  
other MOSFET starts to turn on. This prevents both  
MOSFETs from being on simultaneously, thus avoiding  
SYNC  
MAX5069A/D  
RT  
t
DT  
DEAD TIME  
NDRVA  
NDRVB  
<50%  
PWM  
<50%  
PWM  
AGND  
Figure 7. MAX5069 Dead-Time Timing Diagram  
Figure 8. External Synchronization of the MAX5069A/D  
14 ______________________________________________________________________________________  
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
Note that cycle-by-cycle current limiting is provided at  
all times by CS with a threshold of 314mV (typ). The  
fa ult-inte g ra tion c irc uit forc e s a 60µA c urre nt onto  
FLTINT each time that the current-limit comparator is  
tripped (see the Functional Diagram). Use the following  
formula to calculate the value of the capacitor neces-  
sary for the desired shutdown time of the circuit:  
Erro r Am p lifie r  
The MAX5069 includes an internal error amplifier that  
can regulate the output voltage in the case of a noniso-  
lated power supply (Figure 1). Calculate the output volt-  
age using the following equation:  
R9  
V
=
1 +  
x V  
REF  
OUT  
R10  
I
x t  
SH  
FLTINT  
C
FLTINT  
2.8V  
where V  
= 1.23V. The amplifiers noninverting input  
REF  
internally connects to a digital soft-start reference voltage.  
This forces the output voltage to come up in an orderly  
and well-defined manner under all load conditions.  
where I  
= 60µA, t  
SH  
is the desired fault-integra-  
FLTINT  
tion time during which current-limit events from the cur-  
rent-limit comparator are ignored. For example, a 0.1µF  
capacitor gives a fault-integration time of 4.7ms.  
S lo p e Co m p e n s a t io n  
The MAX5069 us e s a n inte rna l-ra mp g e ne ra tor for  
slope compensation. The internal-ramp signal resets at  
the beginning of each cycle and slews at the rate pro-  
g ra mme d b y the e xte rna l c a p a c itor c onne c te d a t  
SCOMP and the resistor at RT. Adjust the MAX5069  
slew rate up to 90mV/µs using the following equation:  
This is an approximate formula. Some testing may be  
required to fine-tune the actual value of the capacitor. To  
calculate the recovery time, use the following formula:  
t
RT  
R
FLTINT  
0.595 × C  
FLTINT  
6  
165 × 10  
SR =  
(mV/ µs)  
where t is the desired recovery time.  
RT  
R
× C  
RT  
SCOMP  
Choose t = 10 x t . Typical values for t range from  
RT  
SH  
SH  
a few hundred microseconds to a few milliseconds.  
where R is the external resistor at RT that sets the oscil-  
RT  
lator frequency and C  
is the capacitor at SCOMP.  
SCOMP  
S o ft -S t a rt  
The MAX5069 soft-start feature allows the load voltage  
to ramp up in a controlled manner, eliminating output-  
volta g e ove rs hoot. Soft-s ta rt b e g ins a fte r UVLO is  
deasserted. The voltage applied to the noninverting  
node of the amplifier ramps from 0 to 1.23V in 2047  
oscillator clock cycles (soft-start timeout period). Unlike  
other devices, the MAX5069 reference voltage to the  
internal amplifier is soft-started. This method results in  
superior control of the output voltage under heavy- and  
light-load conditions.  
P WM Co m p a ra t o r  
The PWM comparator uses the instantaneous current,  
the e rror a mp lifie r, a nd the s lop e c omp e ns a tion to  
determine when to switch NDRVA and NDRVB off. In  
normal operation, the N-channel MOSFETs turns off  
when:  
I
x R > V – V  
- V  
PRIMARY  
CS  
EA  
OFFSET SCOMP  
where I  
MOSFETs, V  
amplifier, V  
is the current through the N-channel  
is the output voltage of the internal  
PRIMARY  
EA  
OFFSET  
is the 1.6V internal DC offset, and  
In t e rn a l Re g u la t o rs  
Two internal linear regulators power the MAX5069 inter-  
V
is the ramp function starting at zero and slew-  
SCOMP  
ing at the programmed slew rate (SR). When using the  
MAX5069 in a forward-converter configuration, the fol-  
lowing conditions must be met to avoid current-loop  
subharmonic oscillations:  
nal and external control circuits. V powers the exter-  
CC  
na l N-c ha nne l MOSFETs a nd is inte rna lly s e t to  
approximately 9.5V. The REG5 5V regulator has a 1mA  
sourcing capability and may be used to provide power  
to external circuitry. Bypass V  
and REG5 with 1µF  
CC  
K ×  
×
V
CS  
L
N
R
S
OUT  
×
= SR  
and 0.1µF high quality capacitors, respectively. Use  
lowe r va lue c e ra mic s in p a ra lle l to b yp a s s othe r  
unwa nte d nois e s ig na ls . Boots tra p p e d op e ra tion  
requires startup through a bleed resistor. Do not exces-  
sively load the regulators while the MAX5069 is in the  
power-up mode. Overloading the outputs may cause  
the MAX5069 to fail upon startup.  
N
P
where K = 0.75 and N and N are the number of turns  
S
P
on the secondary and primary side of the transformer,  
respectively. L is the secondary filter inductor. When  
optimally compensated, the current loop responds to  
input-voltage transients within one cycle.  
______________________________________________________________________________________ 15  
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
Cu rre n t Lim it  
The current-sense resistor (R ), connected between  
Ap p lic a t io n s In fo rm a t io n  
CS  
La yo u t Re c o m m e n d a t io n s  
Keep all PC board traces carrying switching currents  
as short as possible, and minimize current loops.  
the source of the MOSFET and ground, sets the current  
limit. The CS input has a voltage trip level (V ) of  
CS  
314mV. Use the following equation to calculate the  
value of R  
:
CS  
For universal AC input design, follow all applicable safe-  
ty regulations. Offline power supplies may require UL,  
VDE, and other similar agency approvals. Contact these  
agencies for the latest layout and component rules.  
V
CS  
R
=
CS  
I
PRI  
Typically, there are two sources of noise emission in a  
switching power supply: high di/dt loops and high dV/dt  
surfaces. For example, traces that carry the drain cur-  
rent often form high di/dt loops. Similarly, the heatsink of  
the MOSFET presents a dV/dt source, thus minimize the  
surface area of the heatsink as much as possible.  
where I  
is the peak current in the primary that flows  
PRI  
through the MOSFET at full load.  
When the voltage produced by this current (through the  
current-sense resistor) exceeds the current-limit com-  
p a ra tor thre s hold , the MOSFET d rive rs (NDRVA/  
NDRVB) quickly terminate the current on-cycle. In most  
cases, a small RC filter is required to filter out the lead-  
ing-edge spike on the sense waveform. Set the corner  
frequency to a few MHz above the switching frequency.  
To a c hie ve be st pe rforma nc e a nd to a void ground  
loops, use a solid ground-plane connection.  
S e le c t o r Gu id e  
PROGRAMMABLE  
BOOTSTRAP  
UVLO  
STARTUP  
VOLTAGE (V)  
UVLO  
HYSTERESIS  
PART  
OSCILLATOR SYNC  
MAX5069A  
MAX5069B  
MAX5069C  
MAX5069D  
Yes  
Yes  
No  
23.6  
23.6  
10.8  
10.8  
No  
Yes  
Yes  
No  
Yes  
No  
No  
No  
Yes  
16 ______________________________________________________________________________________  
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
Typ ic a l Op e ra t in g Circ u it  
______________________________________________________________________________________ 17  
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
Fu n c t io n a l Dia g ra m  
HYST**  
BOOTSTRAP  
UVLO  
21.6V/  
9.74V  
MAX5069  
UVLO/EN  
UVLO  
1.23V  
REFERENCE  
1.23V/  
1.18V  
IN  
V
IN  
CLAMP  
26V  
IN  
2.8V/  
1.6V  
60µA  
5V  
OUT  
REGULATOR  
REG5  
REG_OK  
V
CC  
R
S
Q
FLTINT  
V
CC  
CURRENT-LIMIT  
COMPARATOR  
S
Q
NDRVA  
314mV  
1.6V  
5kΩ  
R
Σ*  
+
CS  
+
70ns  
BLANKING  
AGND  
NDRVB  
PGND  
PWM  
COMPARATOR  
OSC  
OUT  
THERMAL  
SHUTDOWN  
DEAD  
TIME  
SLOPE  
COMPENSATION  
SCOMP  
OUT  
DIGITAL  
SOFT-START  
1.23V  
ERROR  
AMP  
FB  
*MAX5069A/D  
**MAX5069B/C  
COMP  
SYNC*  
RT  
DT  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 4266  
PROCESS: BiCMOS  
18 ______________________________________________________________________________________  
Hig h -Fre q u e n c y, Cu rre n t -Mo d e P WM Co n t ro lle r  
w it h Ac c u ra t e Os c illa t o r a n d Du a l FET Drive rs  
P a c k a g e In fo rm a t io n  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, TSSOP, 4.40 MM BODY  
EXPOSED PAD  
1
21-0108  
D
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0 ____________________ 19  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5069AEVKIT

MAX5069A Evaluation Kit
MAXIM

MAX5069B

High-Frequency, Current-Mode PWM Controller with Accurate Oscillator and Dual FET Drivers
MAXIM

MAX5069BAUE

High-Frequency, Current-Mode PWM Controller with Accurate Oscillator and Dual FET Drivers
MAXIM

MAX5069BAUE+

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, ROHS COMPLIANT, MO-153-ABT, TSSOP-16
MAXIM

MAX5069BAUE-T

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, MO-153-ABT, TSSOP-16
MAXIM

MAX5069C

High-Frequency, Current-Mode PWM Controller with Accurate Oscillator and Dual FET Drivers
MAXIM

MAX5069CAUE

High-Frequency, Current-Mode PWM Controller with Accurate Oscillator and Dual FET Drivers
MAXIM

MAX5069CAUE+

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, ROHS COMPLIANT, MO-153-ABT, TSSOP-16
MAXIM

MAX5069CAUE+T

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, ROHS COMPLIANT, MO-153-ABT, TSSOP-16
MAXIM

MAX5069CAUE-T

Switching Controller, Current-mode, 1A, 2500kHz Switching Freq-Max, BICMOS, PDSO16, 4.40 MM, MO-153-ABT, TSSOP-16
MAXIM

MAX5069D

High-Frequency, Current-Mode PWM Controller with Accurate Oscillator and Dual FET Drivers
MAXIM

MAX5069DAUE

High-Frequency, Current-Mode PWM Controller with Accurate Oscillator and Dual FET Drivers
MAXIM