MAX5083 [MAXIM]

1.5A, 40V, MAXPower Step-Down DC-DC Converters; 1.5A , 40V ,牛魔王降压型DC -DC转换器
MAX5083
型号: MAX5083
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

1.5A, 40V, MAXPower Step-Down DC-DC Converters
1.5A , 40V ,牛魔王降压型DC -DC转换器

转换器
文件: 总18页 (文件大小:404K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3657; Rev 0; 5/05  
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
General Description  
Features  
The MAX5082/MAX5083 are 250kHz PWM step-down  
DC-DC converters with an on-chip, 0.3high-side  
switch. The input voltage range is 4.5V to 40V for the  
MAX5082 and 7.5V to 40V for the MAX5083. The output  
is adjustable from 1.23V to 32V and can deliver up to  
1.5A of load current.  
4.5V to 40V (MAX5082) or 7.5V to 40V (MAX5083)  
Input Voltage Range  
1.5A Output Current  
V  
Range From 1.23V to 32V  
OUT  
Internal High-Side Switch  
Both devices utilize a voltage-mode control scheme for  
good noise immunity in the high-voltage switching envi-  
ronment and offer external compensation allowing for  
maximum flexibility with a wide selection of inductor val-  
ues and capacitor types. The switching frequency is  
internally fixed at 250kHz and can be synchronized to  
an external clock signal through the SYNC input. Light  
load efficiency is improved by automatically switching  
to a pulse-skip mode.  
Fixed 250kHz Internal Oscillator  
Automatic Switchover to Pulse-Skip Mode at  
Light Loads  
External Frequency Synchronization  
Thermal Shutdown and Short-Circuit Protection  
Operates Over the -40°C to +125°C Temperature  
All devices include programmable undervoltage lock-  
out and soft-start. Protection features include cycle-by-  
cycle current limit, hiccup-mode output short-circuit  
protection, and thermal shutdown. Both devices are  
available in a space-saving, high-power (2.7W), 16-pin  
TQFN package and are rated for operation over the  
-40°C to +125°C temperature range.  
Range  
Space-Saving (5mm x 5mm) High-Power 16-Pin  
TQFN Package  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
16 TQFN-EP*  
16 TQFN-EP*  
Applications  
MAX5082ATE  
MAX5083ATE  
FireWire® Power Supplies  
Distributed Power  
Automotive  
Industrial  
*EP = Exposed pad.  
Pin Configurations appear at end of data sheet.  
FireWire is a registered trademark of Apple Computer, Inc.  
Typical Operating Circuits  
V
IN  
C
D1  
F
4.5V TO 40V  
C
BST  
IN  
DVREG  
C-  
C+  
BST  
L1  
R1  
LX  
FB  
V
OUT  
C6  
REG  
C1  
R3  
R4  
C5  
D2  
MAX5082  
R6  
ON/OFF  
C8  
R5  
SYNC SGND PGND  
SS  
COMP  
R2  
C7  
C
C2  
SS  
PGND  
PGND  
Typical Operating Circuits continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
ABSOLUTE MAXIMUM RATINGS  
T = +125°C.........................................................................3A  
IN, ON/OFF to SGND..............................................-0.3V to +45V  
J
T = +150°C.........................................................................2A  
LX to SGND .................................................-0.3V to (V + 0.3V)  
BST to SGND................................................-0.3V to (V + 12V)  
IN  
BST to LX................................................................-0.3V to +12V  
PGND to SGND .....................................................-0.3V to +0.3V  
REG, DVREG, SYNC to SGND ...............................-0.3V to +12V  
J
IN  
Continuous Power Dissipation* (T = +70°C)  
A
16-Pin TQFN (derate 33.3mW/°C above +70°C) ...2666.7mW  
16-Pin TQFN (θ )........................................................30°C/W  
JA  
16-Pin TQFN (θ ).......................................................1.7°C/W  
JC  
Operating Temperature Range .........................-40oC to +125°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
FB, COMP, SS to SGND...........................-0.3V to (V  
+ 0.3V)  
REG  
C+ to PGND (MAX5082 only)................(V  
- 0.3V) to +12V  
DVREG  
C- to PGND (MAX5082 only)................-0.3V to (V  
+ 0.3V)  
DVREG  
Continuous current through internal power MOSFET (pins 11/12  
connected together and pins 13/14 connected together)  
*As per JEDEC 51 Standard.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = V  
= 12V, V  
= V  
, V  
= PGND = SGND, T = T = -40°C to +125°C, unless otherwise noted. Typical values  
IN  
ON/OFF  
REG  
DVREG SYNC A J  
are at T = + 25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
4.5  
7.5  
3.9  
6.8  
TYP  
MAX  
40  
UNITS  
MAX5082  
MAX5083  
Input Voltage Range  
V
V
IN  
40  
V
V
rising, MAX5082  
4.2  
7.3  
IN  
IN  
Undervoltage Lockout Threshold  
UVLO  
V
V
rising, MAX5083  
MAX5082  
MAX5083  
0.4  
0.7  
10.5  
9.5  
84  
Undervoltage Lockout Hysteresis UVLO  
Switching Supply Current (PWM  
HYST  
V
V
V
= 0V, MAX5082  
= 0V, MAX5083  
FB  
FB  
IN  
I
mA  
SW  
Operation)  
= 12V, V  
= 3.3V, I  
= 1.5A  
= 1.5A  
OUT  
OUT  
Efficiency  
%
V
= 4.5V, V  
= 3.3V, I  
OUT OUT  
IN  
88  
(MAX5082)  
MAX5082  
MAX5083  
1.4  
1.3  
2.5  
2.3  
300  
No-Load Supply Current  
(PFM Operation)  
mA  
µA  
Shutdown Current  
I
V
V
V
= 0V, V = 40V  
IN  
200  
SHDN  
ON/OFF  
ON/OFF  
ON/OFF  
ON/OFF CONTROL  
Input Voltage Threshold  
Input Voltage Hysteresis  
Input Bias Current  
V
rising  
1.20  
-250  
1.23  
0.12  
1.25  
V
V
ON/OFF  
= 0 to 40V  
+250  
nA  
ERROR AMPLIFIER/SOFT-START  
Soft-Start Current  
I
8
15  
24  
µA  
V
SS  
Reference Voltage (Soft-Start)  
FB Regulation Voltage  
FB Input Range  
V
V
1.215  
1.215  
0
1.228  
1.228  
1.240  
1.240  
1.5  
SS  
FB  
I
I
I
= -500µA to +500µA  
= -500µA to +500µA  
= -500µA to +500µA  
V
COMP  
COMP  
COMP  
V
FB Input Current  
-250  
0.25  
+250  
4.50  
nA  
V
COMP Voltage Range  
Open-Loop Gain  
80  
dB  
MHz  
mV  
Unity-Gain Bandwidth  
FB Offset Voltage  
1.8  
-5  
+5  
2
_______________________________________________________________________________________  
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
= 12V, V  
= V  
, V  
= PGND = SGND, T = T = -40°C to +125°C, unless otherwise noted. Typical values  
IN  
ON/OFF  
REG  
DVREG SYNC A J  
are at T = + 25°C.) (Note 1)  
A
PARAMETER  
OSCILLATOR  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
kHz  
%
Frequency  
f
V
V
V
V
= 0V  
225  
87  
250  
275  
SW  
SYNC  
SYNC  
SYNC  
SYNC  
= 0V, V = 4.5V, MAX5082  
IN  
Maximum Duty Cycle  
D
= 0V, V = 7.5V, MAX5083  
87  
MAX  
IN  
= 0V, V 40V  
87  
IN  
SYNC High-Level Voltage  
SYNC Low-Level Voltage  
SYNC Frequency Range  
PWM Modulator Gain  
Ramp Level Shift (Valley)  
POWER SWITCH  
2.2  
V
V
0.8  
f
150  
350  
kHz  
V/V  
V
SYNC  
f
= 150kHz to 350kHz  
10  
SYNC  
0.3  
Switch On-Resistance  
Switch Gate Charge  
V
V
V
V
- V = 6V  
0.3  
6
0.6  
BST  
BST  
LX  
- V = 6V  
nC  
µA  
µA  
LX  
Switch Leakage Current  
BST Leakage Current  
CHARGE PUMP  
= 40V, V = V = 0V  
BST  
10  
10  
IN  
LX  
= V = V = 40V  
BST  
LX  
IN  
C- Output Voltage Low  
MAX5082 only, sinking 10mA  
0.1  
0.1  
V
V
MAX5082 only, relative to DVREG,  
sourcing 10mA  
C- Output Voltage High  
DVREG to C+ On-Resistance  
MAX5082 only, sourcing 10mA  
Sinking 10mA  
10  
12  
LX to PGND On-Resistance  
CURRENT-LIMIT COMPARATOR  
Pulse-Skip Threshold  
I
100  
1.9  
200  
2.7  
300  
3.5  
mA  
A
PFM  
Cycle-by-Cycle Current Limit  
I
ILIM  
Number of Consecutive ILIM  
Events to Hiccup  
4
Clock  
periods  
Hiccup Timeout  
512  
INTERNAL VOLTAGE REGULATOR  
Output Voltage  
MAX5082  
MAX5083  
4.75  
7.6  
5
8
5.25  
8.4  
1
V
V
REG  
V
V
= 5.5V to 40V, MAX5082  
= 9.0V to 40V, MAX5083  
IN  
IN  
Line Regulation  
Load Regulation  
Dropout Voltage  
mV/V  
1
I
= 0 to 20mA  
0.25  
0.5  
0.5  
V
V
REG  
V
V
= 4.5V, I  
= 7.5V, I  
= 20mA, MAX5082  
= 20mA, MAX5083  
IN  
IN  
REG  
REG  
THERMAL SHUTDOWN  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
Temperature rising  
+160  
20  
°C  
°C  
Note 1: 100% production tested at T = +25°C and T = +125°C. Limits at -40°C are guaranteed by design.  
A
A
_______________________________________________________________________________________  
3
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
Typical Operating Characteristics  
(V = 12V, see Figure 5 (MAX5082) and Figure 6 (MAX5083), T = +25°C, unless otherwise noted.)  
IN  
A
UNDERVOLTAGE LOCKOUT HYSTERESIS  
vs. TEMPERATURE (MAX5082)  
UNDERVOLTAGE LOCKOUT HYSTERESIS  
vs. TEMPERATURE (MAX5083)  
ON/OFF THRESHOLD HYSTERESIS  
vs. TEMPERATURE  
1.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.20  
0.15  
0.10  
0.05  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40 -15  
10  
35  
60  
85 110 135  
-40 -15  
10  
35  
60  
85 110 135  
-40 -15  
10  
35  
60  
85 110 135  
TEMPERATURE (°C )  
TEMPERATURE (°C )  
TEMPERATURE (°C )  
SHUTDOWN SUPPLY CURRENT  
vs. INPUT VOLTAGE (MAX5083)  
NO-LOAD SUPPLY CURRENT  
vs. INPUT VOLTAGE (MAX5082)  
SHUTDOWN SUPPLY CURRENT  
vs. INPUT VOLTAGE (MAX5082)  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
250  
225  
200  
175  
150  
125  
100  
75  
T
= +135°C  
A
T
= +85°C  
A
T
= +135°C  
A
T
= +85°C  
A
T
= +135°C  
A
T
= +85°C  
A
T
= -40°C  
A
T
= +25°C  
A
T
= -40°C  
A
T
= +25°C  
A
T
= +25°C  
A
T
A
= -40°C  
50  
50  
V
= 0V  
V
= 0V  
ON/OFF  
5
25  
ON/OFF  
5
25  
0
0
0
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
0
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
MAXIMUM DUTY CYCLE  
vs. INPUT VOLTAGE (MAX5082)  
OPERATING FREQUENCY  
vs. TEMPERATURE  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
260  
258  
256  
254  
V
= 4.5V  
IN  
252  
250  
248  
246  
244  
242  
240  
V
= 40V  
IN  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
-40 -15  
10  
35  
60  
85 110 135  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
Typical Operating Characteristics (continued)  
(V = 12V, see Figure 5 (MAX5082) and Figure 6 (MAX5083), T = +25°C, unless otherwise noted.)  
IN  
A
MAXIMUM DUTY CYCLE  
vs. INPUT VOLTAGE (MAX5083)  
OUTPUT CURRENT LIMIT  
vs. INPUT VOLTAGE  
OPEN-LOOP GAIN/PHASE vs. FREQUENCY  
MAX5082 toc10  
100  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
MAX5082  
= +25°C  
T
= -40°C  
A
100  
80  
175  
150  
125  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
T
A
GAIN  
60  
T
= +135°C  
A
40  
20  
0
T
= +85°C  
A
100  
PHASE  
75  
50  
OUTPUT IS  
PULSED WITH 3% DUTY CYCLE  
-20  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
0
0.001 0.01 0.1  
1
10 100 1000 10,000  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
FREQUENCY (kHz)  
TURN-ON/OFF WAVEFORM  
TURN-ON/OFF WAVEFORM  
MAX5082/3 toc11b  
MAX5082/3 toc11a  
I
= 100mA  
I
= 1A  
LOAD  
LOAD  
V
ON/OFF  
2V/div  
V
ON/OFF  
2V/div  
V
V
OUT  
OUT  
2V/div  
2V/div  
2ms/div  
2ms/div  
OUTPUT VOLTAGE vs. TEMPERATURE  
EFFICIENCY vs. LOAD CURRENT  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
0
MAX5082  
V
= 4.5V,  
= 3.3V  
IN  
V
OUT  
I
= 0A  
LOAD  
V
V
= 7.5V,  
IN  
= 3.3V  
OUT  
V
V
= 12V,  
= 3.3V  
IN  
OUT  
I
= 1A  
LOAD  
V
V
= 24V,  
= 3.3V  
IN  
OUT  
V
V
= 40V,  
= 3.3V  
IN  
MAX5082  
OUT  
-40 -15  
10  
35  
60  
85 110 135  
0.001  
0.01  
0.1  
1
10  
TEMPERATURE (°C)  
LOAD CURRENT (A)  
_______________________________________________________________________________________  
5
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
Typical Operating Characteristics (continued)  
(V = 12V, see Figure 5 (MAX5082) and Figure 6 (MAX5083), T = +25°C, unless otherwise noted.)  
IN  
A
EFFICIENCY vs. LOAD CURRENT  
LOAD-TRANSIENT RESPONSE  
MAX5082/3 toc14  
100  
90  
80  
70  
60  
50  
40  
30  
20  
0
V
= 12V, I = 0.5A TO 1.5A  
OUT  
IN  
MAX5082  
V
OUT  
AC-COUPLED  
200m/V/div  
V
V
= 7.5V,  
IN  
= 5V  
OUT  
V
V
= 12V,  
= 5V  
IN  
OUT  
I
LOAD  
1A/div  
V
V
= 24V,  
= 5V  
IN  
OUT  
V
V
= 40V,  
OUT  
0
IN  
= 5V  
MAX5083  
0.001  
0.01  
0.1  
LOAD CURRENT (A)  
1
10  
200µs/div  
LX VOLTAGE AND INDUCTOR CURRENT  
MAX5082/3 toc15  
I
= 40mA  
LOAD  
V
LX  
5V/div  
INDUCTOR  
CURRENT  
200mA/div  
2µs/div  
LX VOLTAGE AND INDUCTOR CURRENT  
LX VOLTAGE AND INDUCTOR CURRENT  
MAX5082/3 toc17  
MAX5082/3 toc16  
V
V
LX  
LX  
5V/div  
5V/div  
INDUCTOR CURRENT  
500mA/div  
INDUCTOR CURRENT  
100mA/div  
0
0
I = 1A  
LOAD  
I
= 140mA  
LOAD  
2µs/div  
2µs/div  
6
_______________________________________________________________________________________  
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX5082 MAX5083  
1
1
COMP  
Error Amplifier Output. Connect COMP to the compensation feedback network.  
Feedback Regulation Point. Connect to the center tap of a resistive divider from converter  
output to SGND to set the output voltage. The FB voltage regulates to the voltage present at SS  
(1.23V).  
2
2
FB  
ON/OFF and External UVLO Control. The ON/OFF rising threshold is set to approximately 1.23V.  
Connect to the center tap of a resistive divider from IN to SGND to set the UVLO (rising)  
threshold. Pull ON/OFF to SGND to shut down the device. ON/OFF can be used for power-  
supply sequencing. Connect to IN for always-on operation.  
3
3
ON/OFF  
Soft-Start and Reference Output. Connect a capacitor from SS to SGND to set the soft-start  
time. See the Applications Information section to calculate the value of the SS capacitor.  
4
5
6
4
5
6
SS  
Oscillator Synchronization Input. SYNC can be driven by an external 150kHz to 350kHz clock to  
synchronize the MAX5082/MAX5083’s switching frequency. Connect SYNC to SGND when not  
used.  
SYNC  
DVREG  
Gate Drive Supply for High-Side MOSFET Driver. Connect externally to REG for MAX5082.  
Connect to REG and the anode of the boost diode for MAX5083.  
7
8
C+  
C-  
Charge-Pump Flying Capacitor Positive Connection  
Charge-Pump Flying Capacitor Negative Connection  
7, 8  
N.C.  
No Connection. Not internally connected. Can be left floating or connected to SGND.  
Power Ground Connection. Connect the input filter capacitor’s negative terminal, the anode of  
the freewheeling diode, and the output filter capacitor’s return to PGND. Connect externally to  
SGND at a single point near the input capacitor’s return terminal.  
9
9
PGND  
High-Side Gate Driver Supply. Connect BST to the cathode of the boost diode and to the  
positive terminal of the boost capacitor.  
10  
11, 12  
13, 14  
15  
10  
11, 12  
13, 14  
15  
BST  
LX  
Source Connection of Internal High-Side Switch. Connect the inductor and rectifier diode’s  
anode to LX.  
Supply Input Connection. Connect to an external voltage source from 4.5V to 40V (MAX5082) or  
a 7.5V to 40V (MAX5083).  
IN  
Internal Regulator Output. 5V output for the MAX5082 and 8V output for the MAX5083. Bypass  
to SGND with at least a 1µF ceramic capacitor.  
REG  
Signal Ground Connection. Solder the exposed pad to a large SGND plane. Connect SGND  
and PGND together at one point near the input bypass capacitor return terminal.  
16  
EP  
16  
EP  
SGND  
Exposed Pad. Connect exposed pad to SGND.  
of L and C filter components. Both devices offer an  
Detailed Description  
automatic switchover to pulse-skipping (PFM) mode,  
providing low quiescent current and high efficiency at  
light loads. Under no load, a PFM mode operation  
reduces the current consumption to only 1.4mA. In  
shutdown, the supply current falls to 200µA. Additional  
features include an externally programmable undervolt-  
age lockout through the ON/OFF pin, a programmable  
soft-start, cycle-by-cycle current limit, hiccup mode  
output short-circuit protection, and thermal shutdown.  
The MAX5082/MAX5083 are voltage-mode buck con-  
verters with internal 0.3power MOSFET switches. The  
MAX5082 has a wide input voltage range of 4.5V to  
40V. The MAX5083’s input voltage range is 7.5V to 40V.  
The internal low R  
switch allows for up to 1.5A of  
DS_ON  
output current. The 250kHz fixed switching frequency,  
external compensation, and voltage feed-forward sim-  
plify loop compensation design and allow for a variety  
_______________________________________________________________________________________  
7
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
C-  
C+  
DVREG  
ON/OFF  
IN  
DVREG  
>1.23V ON  
<1.11V OFF  
LDO  
EN  
LEVEL  
SHIFT  
REG  
PCLK  
SGND  
1.23V  
1.23V  
MAX5082  
ILIM  
CLK  
OVERL  
OVERLOAD  
MANAGEMENT  
THERMAL  
SHDN  
REF  
V
REF  
I
SS  
EN  
REGOK  
ILIM  
1.23V  
SS  
FB  
REF_ILIM  
REF_PFM  
SSA  
E/A  
IN  
V
REF  
HIGH-SIDE  
CURRENT  
SENSE  
PFM  
COMP  
BST  
LX  
LOGIC  
IN  
RAMP  
CPWM  
DVREG  
EN  
OSC  
SYNC  
PCLK  
SCLK  
0.3V  
CHARGE-PUMP  
MANAGEMENT  
CLK  
PGND  
Figure 1. MAX5082 Simplified Block Diagram  
Internal Linear Regulator (REG)  
REG is the output terminal of a 5V (MAX5082), or 8V  
(MAX5083) LDO which is powered from IN and pro-  
vides power to the IC. Connect REG externally to  
DVREG to provide power for the high-side MOSFET  
gate driver. Bypass REG to SGND with a ceramic  
capacitor of at least 1µF. Place the capacitor physically  
close to the MAX5082/MAX5083 to provide good  
bypassing. During normal operation, REG is intended  
for powering up only the internal circuitry and should  
not be used to supply power to external loads.  
grammed at the ON/OFF pin. The external UVLO over-  
rides the internal UVLO when the external UVLO is  
higher than the internal UVLO. During startup, before  
any operation begins, the input voltage and the voltage  
at ON/OFF must exceed their respective UVLOs. The  
external UVLO has a rising threshold of 1.23V with  
0.12V of hysteresis. Program the external UVLO by  
connecting a resistive divider from IN to ON/OFF to  
SGND. Connect ON/OFF to IN directly to disable the  
external UVLO.  
Driving ON/OFF to ground places the MAX5082/  
MAX5083 in shutdown. When in shutdown, the internal  
power MOSFET turns off, all internal circuitry shuts  
down and the quiescent supply current reduces to  
200µA. Connect an RC network from ON/OFF to SGND  
to set a turn-on delay that can be used to sequence the  
output voltages of multiple devices.  
Internal UVLO/External UVLO  
The MAX5082/MAX5083 provides two undervoltage  
lockouts (UVLOs). An internal UVLO looks at the input  
voltage (V ) and is fixed at 4.1V (MAX5082) or 7.1V  
IN  
(MAX5083). An external UVLO is sensed and pro-  
8
_______________________________________________________________________________________  
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
ON/OFF  
IN  
>1.23V ON  
<1.11V OFF  
SGND  
LDO  
EN  
REG  
MAX5083  
1.23V  
1.23V  
ILIM  
CLK  
OVERL  
OVERLOAD  
MANAGEMENT  
THERMAL  
SHDN  
REF  
V
REF  
I
SS  
EN  
REGOK  
ILIM  
PFM  
1.23V  
SS  
FB  
REF_ILIM  
SSA  
E/A  
IN  
V
REF  
HIGH-SIDE  
CURRENT  
SENSE  
REF_PFM  
COMP  
BST  
LOGIC  
IN  
RAMP  
CPWM  
LX  
EN  
OSC  
DVREG  
SYNC  
PCLK  
SCLK  
0.3V  
BOOTSTRAP  
CONTROL  
CLK  
ILIM  
PGND  
Figure 2. MAX5083 Simplified Block Diagram  
Soft-Start and Reference (SS)  
SS is the 1.23V reference bypass connection for the  
MAX5082/MAX5083 and also controls the soft-start  
Internal Charge Pump (MAX5082)  
The MAX5082 features an internal charge pump to  
enhance the turn-on of the internal MOSFET, allowing  
for operation with input voltages down to 4.5V. Connect  
period. At startup, after V is applied and the internal  
IN  
and external UVLO thresholds are reached, the device  
enters soft-start. During soft-start, 15µA is sourced into  
a flying capacitor (C ) between C+ and C-, a boost  
F
diode from C+ to BST, as well as a bootstrap capacitor  
the capacitor (C ) connected from SS to SGND caus-  
(C  
) between BST and LX to provide the gate-drive  
SS  
BST  
ing the reference voltage to ramp up slowly. When V  
voltage for the high-side n-channel DMOS switch.  
During the on-time, the flying capacitor is charged to  
SS  
reaches 1.23V the output becomes fully active. Set the  
soft-start time (t ) using the following equation:  
V
. During the off-time, the positive terminal of the  
SS  
DVREG  
flying capacitor (C+) is pumped to two times V  
DVREG  
to provide twice the  
and charge is dumped onto C  
BST  
1.23V × C  
15µA  
SS  
t
=
regulator voltage across the high-side DMOS driver.  
Use a ceramic capacitor of at least 0.1µF for C and  
SS  
BST  
C located as close to the device as possible.  
F
where t is in seconds and C is in Farads.  
SS  
SS  
For applications that do not require a 4.5V minimum  
input, use the MAX5083. In this device, the charge  
_______________________________________________________________________________________  
9
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
pump is omitted and the input voltage range is from  
7.5V to 40V. In this situation, the boost diode and the  
boost capacitor are still required (see the MAX5083  
Typical Operating Circuit).  
During normal operation, the current is monitored at the  
drain of the internal power MOSFET. When the current  
limit is exceeded, the internal power MOSFET turns off  
until the next on-cycle and a counter increments. If the  
counter counts four consecutive current-limit events,  
the device discharges the soft-start capacitor and  
shuts down for 512 clock periods before restarting with  
a soft-start sequence. Each time the power MOSFET  
turns on and the device does not exceed the current  
limit, the counter is reset.  
Gate Drive Supply (DVREG)  
DVREG is the supply input for the internal high-side  
MOSFET driver. The power for DVREG is derived from  
the output of the internal regulator (REG). Connect  
DVREG to REG externally. We recommend the use of  
an RC (1and 0.47µF) filter from REG to DVREG to fil-  
ter the noise generated by the switching of the charge  
pump. In the MAX5082, the high-side drive supply is  
generated using the internal charge pump along with  
the bootstrap diode and capacitor. In the MAX5083, the  
high-side MOSFET driver supply is generated using  
only the bootstrap diode and capacitor.  
Thermal-Overload Protection  
The MAX5082/MAX5083 feature an integrated thermal-  
overload protection. Thermal-overload protection limits  
the total power dissipation in the device and protects it  
in the event of an extended thermal fault condition.  
When the die temperature exceeds +160°C, an internal  
thermal sensor shuts down the part, turning off the  
power MOSFET and allowing the IC to cool. After the  
temperature falls by 20°C, the part will restart with a  
soft-start sequence.  
Error Amplifier  
The output of the internal error amplifier (COMP) is avail-  
able for frequency compensation (see the Compensation  
Design section). The inverting input is FB, the noninvert-  
ing input SS, and the output COMP. The error amplifier  
has an 80dB open-loop gain and a 1.8MHz GBW prod-  
uct. See the Typical Operating Character-istics for the  
Gain and Phase vs. Frequency graph.  
Applications Information  
Setting the Undervoltage Lockout  
When the voltage at ON/OFF rises above 1.23V, the  
MAX5082/MAX5083 turns on. Connect a resistive  
divider from IN to ON/OFF to SGND to set the UVLO  
threshold (see Figure 5). First select the ON/OFF to the  
SGND resistor (R2) then calculate the resistor from IN  
to ON/OFF (R1) using the following equation:  
Oscillator/Synchronization Input (SYNC)  
With SYNC tied to SGND, the MAX5082/MAX5083 use  
their internal oscillator and switch at a fixed frequency  
of 250kHz. For external synchronization, drive SYNC  
with an external clock from 150kHz to 350kHz. When  
driven with an external clock, the device synchronizes  
to the rising edge of SYNC.  
V
IN  
ON/OFF  
R1= R2 ×  
1  
V
PWM Comparator/Voltage Feed-Forward  
An internal 250kHz ramp generator is compared  
against the output of the error amplifier to generate the  
PWM signal. The maximum amplitude of the ramp  
where V is the input voltage at which the converter  
ON/OFF  
than 600k.  
If the external UVLO divider is not used, connect  
ON/OFF to IN directly. In this case, an internal under-  
voltage lockout feature monitors the supply voltage at  
IN and allows operation to start when IN rises above  
4.1V (MAX5082) and 7.1V (MAX5083).  
IN  
turns on, V  
= 1.23V and R2 is chosen to be less  
(V  
) automatically adjusts to compensate for input  
RAMP  
voltage and oscillator frequency changes. This causes  
the V /V to be a constant 10V/V across the input  
IN RAMP  
voltage range of 4.5V to 40V (MAX5082) or 7.5V to 40V  
(MAX5083) and the SYNC frequency range of 150kHz  
to 350kHz.  
Setting the Output Voltage  
Connect a resistive divider from OUT to FB to SGND to  
set the output voltage (see Figure 5). First calculate the  
resistor from OUT to FB using the guidelines in the  
Compensation Design section. Once R3 is known, cal-  
culate R4 using the following equation:  
Output Short-Circuit Protection  
(Hiccup Mode)  
The MAX5082/MAX5083 protects against an output short  
circuit by utilizing hiccup-mode protection. In hiccup  
mode, a series of sequential cycle-by-cycle current-limit  
events will cause the part to shut down and restart with  
a soft-start sequence. This allows the device to operate  
with a continuous output short circuit.  
10 ______________________________________________________________________________________  
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
the input capacitor). The total voltage ripple is the sum  
R3  
R4 =  
of V and V  
. Calculate the input capacitance and  
Q
ESR  
V
V
OUT  
ESR required for a specified ripple using the following  
equations:  
1  
FB  
where V = 1.23V.  
FB  
V  
ESR  
ESR =  
Inductor Selection  
I  
-
P P  
2
I
+
OUT_MAX  
Three key inductor parameters must be specified for  
operation with the MAX5082/MAX5083: inductance  
value (L), peak inductor current (I  
saturation current (I  
), and inductor  
PEAK  
× D(1 D)  
I
). The minimum required induc-  
SAT  
OUT_MAX  
C
=
=
IN  
tance is a function of operating frequency, input-to-out-  
put voltage differential, and the peak-to-peak inductor  
V × f  
Q
SW  
current (I ). Higher I  
allows for a lower inductor  
requires a higher inductor  
where  
P-P  
P-P  
P-P  
value while a lower I  
value. A lower inductor value minimizes size and cost  
and improves large-signal and transient response, but  
reduces efficiency due to higher peak currents and  
higher peak-to-peak output voltage ripple for the same  
output capacitor. On the other hand, higher inductance  
increases efficiency by reducing the ripple current.  
Resistive losses due to extra wire turns can exceed the  
benefit gained from lower ripple current levels especial-  
ly when the inductance is increased without also allow-  
ing for larger inductor dimensions. A good compromise  
(V V  
IN OUT  
) × V  
OUT  
I  
and  
-
P P  
V
× f  
× L  
IN  
SW  
V
OUT  
D =  
V
IN  
I
is the maximum output current, D is the duty  
OUT_MAX  
cycle, and f  
is the switching frequency.  
SW  
The MAX5082/MAX5083 includes internal and external  
UVLO hysteresis and soft-start to avoid possible unin-  
tentional chattering during turn-on. However, use a bulk  
capacitor if the input source impedance is high. Use  
enough input capacitance at lower input voltages to  
avoid possible undershoot below the undervoltage  
lockout threshold during transient loading.  
is to choose I  
equal to 40% of the full load current.  
P-P  
Calculate the inductor using the following equation:  
V
(V V )  
OUT IN OUT  
L =  
V
× f  
× ∆I  
-
SW P P  
IN  
V
and V  
are typical values so that efficiency is opti-  
IN  
OUT  
mum for typical conditions. The switching frequency  
Output Capacitor Selection  
The allowable output voltage ripple and the maximum  
deviation of the output voltage during load steps deter-  
mine the output capacitance and its ESR. The output  
(f ) is fixed at 250kHz or can vary between 150kHz and  
SW  
350kHz when synchronized to an external clock (see the  
Oscillator/Synchronization Input (SYNC) section). The  
peak-to-peak inductor current, which reflects the peak-to-  
peak output ripple, is worst at the maximum input voltage.  
See the Output Capacitor Selection section to verify that  
the worst-case output ripple is acceptable. The inductor  
ripple is mainly composed of V (caused by the  
Q
capacitor discharge) and V  
(caused by the volt-  
ESR  
age drop across the equivalent series resistance of the  
output capacitor). The equations for calculating the  
peak-to-peak output voltage ripple are:  
saturating current (I  
) is also important to avoid run-  
SAT  
away current during continuous output short circuit.  
Select an inductor with an I specification higher than  
SAT  
I  
P-P  
V  
=
the maximum peak current limit of 3.5A.  
Q
16 × C  
× f  
SW  
OUT  
Input Capacitor Selection  
The discontinuous input current of the buck converter  
causes large input ripple currents and therefore the  
input capacitor must be carefully chosen to keep the  
input voltage ripple within design requirements. The  
V  
= ESR × ∆I  
-
P P  
ESR  
Normally, a good approximation of the output voltage  
ripple is V  
≈ ∆V  
+ V . If using ceramic  
ESR Q  
RIPPLE  
input voltage ripple is comprised of V (caused by the  
Q
capacitors, assume the contribution to the output volt-  
age ripple from ESR and the capacitor discharge to be  
capacitor discharge) and V  
(caused by the ESR of  
ESR  
______________________________________________________________________________________ 11  
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
equal to 20% and 80%, respectively. I  
is the peak-to-  
(C  
) (C5 in the Typical Application Circuit) and its  
OUT  
P-P  
peak inductor current (see the Input Capacitors Selection  
section) and f is the converter’s switching frequency.  
equivalent series resistance (ESR). The power modula-  
tor incorporates a voltage feed-forward feature, which  
automatically adjusts for variations in the input voltage  
resulting in a DC gain of 10. The following equations  
define the power modulator:  
SW  
The allowable deviation of the output voltage during  
fast load transients also determines the output capaci-  
tance, its ESR, and its equivalent series inductance  
(ESL). The output capacitor supplies the load current  
during a load step until the controller responds with a  
V
IN  
G
=
= 10  
MOD(DC)  
greater duty cycle. The response time (t  
)
V
RESPONSE  
RAMP  
depends on the closed-loop bandwidth of the converter  
(see the Compensation Design section). The resistive  
drop across the output capacitor’s ESR, the drop  
1
f
=
LC  
across the capacitor’s ESL (V ), and the capacitor  
ESL  
2π L × C  
OUT  
discharge causes a voltage droop during the load-  
step. Use a combination of low-ESR tantalum/aluminum  
electrolyte and ceramic capacitors for better transient  
load and voltage ripple performance. Nonleaded  
capacitors and capacitors in parallel help reduce the  
ESL. Keep the maximum output voltage deviation  
below the tolerable limits of the electronics being pow-  
ered. Use the following equations to calculate the  
required ESR, ESL, and capacitance value during a  
load step:  
1
f
=
ZESR  
2π × C  
× ESR  
OUT  
The switching frequency is internally set at 250kHz or  
can vary from 150kHz to 350kHz when driven with an  
external SYNC signal. The crossover frequency (f ),  
C
which is the frequency when the closed-loop gain is  
equal to unity, should be set at 15kHz or below therefore:  
f
15kHz  
C
V  
ESR  
ESR =  
I
STEP  
The error amplifier must provide a gain and phase  
bump to compensate for the rapid gain and phase loss  
from the LC double pole. This is accomplished by utiliz-  
ing a type 3 compensator that introduces two zeroes  
and 3 poles into the control loop. The error amplifier  
I
t
STEP × RESPONSE  
C
=
OUT  
V  
Q
has a low-frequency pole (f ) near the origin.  
P1  
The two zeros are at:  
V  
t
ESL × STEP  
ESL =  
I
STEP  
1
1
f
=
and f  
=
Z1  
Z2  
where I  
is the load step, t  
is the rise time of the  
STEP  
STEP  
2π × R5 × C7  
2π × (R6 + R3) × C6  
load step, and t  
controller.  
is the response time of the  
RESPONSE  
and the higher frequency poles are at:  
Compensation Design  
1
1
f
=
and f  
=
P2  
P3  
The MAX5082/MAX5083 use a voltage-mode control  
scheme that regulates the output voltage by comparing  
the error amplifier output (COMP) with an internal ramp  
to produce the required duty cycle. The output lowpass  
LC filter creates a double pole at the resonant frequen-  
cy, which has a gain drop of -40dB/decade. The error  
amplifier must compensate for this gain drop and phase  
shift to achieve a stable closed-loop system.  
2π × R6 × C6  
C7 × C8  
C7 + C8  
2π × R5 ×  
Compensation When f < f  
C
ZESR  
Figure 3 shows the error amplifier feedback as well as  
its gain response for circuits that use low-ESR output  
capacitors (ceramic). In this case f  
occurs after f .  
C
ZESR  
f
is set to 0.8 x f  
and f is set to f to com-  
LC(MOD) Z2 LC  
The basic regulator loop consists of a power modulator,  
an output feedback divider, and a voltage-error amplifi-  
er. The power modulator has a DC gain set by  
Z1  
pensate for the gain and phase loss due to the double  
pole. Choose the inductor (L) and output capacitor  
(C  
) as described in the Inductor and Output  
V /V  
, with a double pole and a single zero set by  
OUT  
IN RAMP  
Capacitor Selection section.  
the output inductance (L), the output capacitance  
12 ______________________________________________________________________________________  
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
1
C8  
R6 =  
2π × C6 × 0.5 × f  
SW  
C7  
R5  
Since R3 >> R6, R3 + R6 can be approximated as R3.  
R3 is then calculated as:  
C6  
R6  
R3  
1
V
OUT  
R3 ≈  
2π × f × C6  
LC  
EA  
COMP  
R4  
REF  
f
P3  
is set at 5xf . Therefore, C8 is calculated as:  
C
C7  
C8 =  
GAIN  
(dB)  
(2π × C7 × R5 × f 1)  
P3  
CLOSED-LOOP  
GAIN  
EA  
GAIN  
Compensation When f > f  
C
ZESR  
For larger ESR capacitors such as tantalum and alu-  
minum electrolytic ones, f can occur before f . If  
ZESR  
C
f
f
< f , then f occurs between f and f . f and  
ZESR  
Z2  
equal to f  
C C P2 P3 Z1  
remain the same as before however, f is now set  
P2  
. The output capacitor’s ESR zero fre-  
f
f
f
f f  
P2 P3  
ZESR  
Z1 Z2  
C
FREQUENCY  
quency is higher than f  
but lower than the closed-  
LC  
loop crossover frequency. The equations that define  
the error amplifier’s poles and zeroes (f , f , f , f  
Figure 3. Error Amplifier Compensation Circuit (Closed-Loop  
and Error-Amplifier Gain Plot) for Ceramic Capacitors  
,
Z1 Z2 P1 P2  
and f ) are the same as before. However, f is now  
P3  
P2  
lower than the closed-loop crossover frequency. Figure  
4 shows the error amplifier feedback as well as its gain  
response for circuits that use higher-ESR output capac-  
itors (tantalum or aluminum electrolytic).  
Pick a value for the feedback resistor R5 in Figure 3  
(values between 1kand 10kare adequate).  
C7 is then calculated as:  
Pick a value for the feedback resistor R5 in Figure 4 (val-  
ues between 1kand 10kare adequate).  
C7 is then calculated as:  
1
C7 =  
2π × 0.8 × f × R5  
LC  
f
occurs between f and f . The error-amplifier gain  
Z2 P2  
C
1
C7 =  
(G ) at f is due primarily to C6 and R5. Therefore,  
EA  
C
2π × 0.8 × f × R5  
LC  
G
= 2π x f x C6 x R5 and the modulator gain at  
EA(fC)  
C
f is:  
C
The error amplifier gain between f and f is approxi-  
P2  
P3  
mately equal to R5/R6 (given that R6 << R3). R6 can  
then be calculated as:  
G
MOD(DC)  
G
=
MOD(fC)  
(2π)2 × L × C  
× f  
C
2
OUT  
2
R5 × 10 × f  
LC  
R6 ≈  
Since G  
x G  
= 1, C6 is calculated by:  
MOD(fC)  
2
EA(fC)  
f
C
f
× L × C  
×2π  
OUT  
C
C6 is then calculated as:  
C6 =  
R5 × G  
MOD(DC)  
C
× ESR  
R6  
OUT  
C6 =  
f
is set at one-half the switching frequency (f ). R6  
P2  
SW  
is then calculated by:  
______________________________________________________________________________________ 13  
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
The power dissipated in the device is the sum of the  
C8  
power dissipated from supply current (P ), transition  
Q
losses due to switching the internal power MOSFET  
C7  
R5  
(P ), and the power dissipated due to the RMS cur-  
SW  
C6  
rent through the internal power MOSFET (P  
).  
R6  
MOSFET  
The total power dissipated in the package must be lim-  
ited such that the junction temperature does not  
exceed its absolute maximum rating of +150°C at maxi-  
mum ambient temperature. Calculate the power lost in  
the MAX5082/MAX5083 using the following equations:  
R3  
V
OUT  
EA  
COMP  
R4  
REF  
The power loss through the switch:  
2
P
=I  
×R  
MOSFET RMS_MOSFET  
ON  
2
GAIN  
(dB)  
D
3
CLOSED-LOOP  
GAIN  
2
I
=
I
+(I × I ) +I  
×
PK  
DC  
RMS_MOSFET  
PK DC  
[
]
EA  
GAIN  
I  
PP  
I
= I  
+
PK  
OUT  
2
I  
PP  
I
= I  
OUT  
DC  
2
f
f
f
f
f
P3  
Z1 Z2  
P2  
C
FREQUENCY  
R
is the on-resistance of the internal power MOSFET  
ON  
(see the Electrical Characteristics).  
Figure 4. Error Amplifier Compensation Circuit (Closed-Loop  
and Error Amplifier Gain Plot) for Higher ESR Output Capacitors  
The power loss due to switching the internal MOSFET:  
V
× I  
× (t ×t ) × f  
IN  
OUT R F SW  
Since R3 >> R6, R3 + R6 can be approximated as R3.  
R3 is then calculated as:  
P
=
SW  
4
where t and t are the rise and fall times of the internal  
R
F
1
power MOSFET measured at LX.  
R3 ≈  
2π × f × C6  
LC  
The power loss due to the switching supply current  
(I ):  
SW  
f
P3  
is set at 5xf . Therefore, C8 is calculated as:  
C
P
Q
= V x I  
IN SW  
C7  
C8 =  
The total power dissipated in the device will be:  
= P + P + P  
(2π × C7 × R5 × f 1)  
P3  
P
TOTAL  
MOSFET  
SW  
Q
Power Dissipation  
The MAX5082/MAX5083 is available in a thermally  
enhanced package and can dissipate up to 2.7W at T =  
A
+70°C. When the die temperature reaches +160°C, the  
part shuts down and is allowed to cool. After the part  
cools by 20°C, the device restarts with a soft-start.  
Chip Information  
TRANSISTOR COUNT: 4300  
PROCESS: BiCMOS/DMOS  
14 ______________________________________________________________________________________  
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
Typical Application Circuits  
V
IN  
4.5V TO 40V  
C10  
0.1µF  
C3  
0.1µF  
D1  
C4  
0.1µF  
IN  
DVREG  
C-  
C+  
BST  
R1  
1.4MΩ  
LX  
FB  
V
OUT  
L1  
47µH  
C6  
6.8nF  
REG  
C1  
10µF  
R3  
C5  
47µF  
D2  
6.81kΩ  
R6  
187Ω  
MAX5082  
ON/OFF  
C8  
820pF  
R2  
549kΩ  
SYNC SGND PGND  
SS  
COMP  
R4  
4.02kΩ  
C9  
C2  
0.047µF  
0.1µF  
R5  
3.01kΩ  
C7  
22nF  
PGND  
PGND  
Figure 5. MAX5082 Typical Application Circuit  
V
IN  
7.5V TO 40V  
C10  
0.1µF  
D1  
C4  
0.1µF  
IN  
DVREG  
BST  
R1  
1.4MΩ  
LX  
FB  
V
OUT  
L1  
47µH  
C6  
6.8nF  
REG  
C1  
10µF  
R3  
C5  
47µF  
D2  
6.81kΩ  
R6  
187Ω  
MAX5083  
ON/OFF  
C8  
820pF  
R2  
301kΩ  
SYNC SGND PGND  
SS  
COMP  
R4  
4.02kΩ  
C9  
0.047µF  
C2  
0.1µF  
R5  
3.01kΩ  
C7  
22nF  
PGND  
PGND  
Figure 6. MAX5083 Typical Application Circuit  
______________________________________________________________________________________ 15  
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
Typical Operating Circuits (continued)  
V
IN  
7.5V TO 40V  
D1  
C
BST  
IN  
DVREG  
BST  
L1  
R1  
LX  
V
OUT  
C6  
REG  
C1  
R3  
R4  
C5  
D2  
MAX5083  
R6  
ON/OFF  
FB  
C8  
R5  
SYNC SGND PGND  
SS  
COMP  
R2  
C7  
C
C2  
SS  
PGND  
PGND  
Pin Configurations  
TOP VIEW  
12  
11  
10  
9
12  
11  
10  
9
IN  
IN  
C-  
C+  
IN  
N.C.  
13  
8
7
6
5
13  
14  
15  
16  
8
7
6
5
IN  
REG  
N.C.  
14  
15  
16  
MAX5082  
MAX5083  
REG  
DVREG  
SYNC  
DVREG  
SYNC  
SGND  
SGND  
1
2
3
4
1
2
3
4
TQFN  
TQFN  
16 ______________________________________________________________________________________  
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
XXXXX  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45°  
DETAIL A  
e/2  
PIN # 1  
I.D.  
e
(ND-1) X  
e
DETAIL B  
e
L
C
C
L
L1  
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
1
21-0140  
H
-DRAWING NOT TO SCALE-  
2
______________________________________________________________________________________ 17  
1.5A, 40V, MAXPower Step-Down  
DC-DC Converters  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
D2 E2  
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
16L 5x5  
32L 5x5  
40L 5x5  
DOWN  
BONDS  
ALLOWED  
L
PKG.  
CODES  
MIN. NOM. MAX. MIN. NOM. MAX. ±0.15  
A
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
T1655-1  
T1655-2  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
**  
**  
**  
**  
A1  
A3  
b
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
T2055-2  
T2055-3  
T2055-4  
T2055-5  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
D
E
**  
**  
e
0.80 BSC.  
0.25  
0.65 BSC.  
0.25  
0.50 BSC.  
0.25  
0.50 BSC.  
0.25  
0.40 BSC.  
YES  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
k
-
-
-
-
-
-
-
-
0.25 0.35 0.45  
T2855-1  
T2855-2  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
NO  
NO  
L
**  
**  
**  
**  
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
0.30 0.40 0.50  
40  
T2855-3  
T2855-4  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
YES  
YES  
NO  
N
ND  
NE  
16  
20  
28  
32  
4
4
5
5
7
7
8
8
10  
10  
T2855-5  
T2855-6  
T2855-7  
T2855-8  
**  
**  
**  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
-----  
JEDEC  
NO  
YES  
2.80  
3.35  
3.35  
3.20  
2.60 2.70  
3.15 3.25  
2.60 2.70 2.80  
3.15 3.25 3.35  
3.15 3.25 3.35  
3.00 3.10 3.20  
0.40  
YES  
NO  
NO  
NOTES:  
T2855N-1 3.15 3.25  
**  
**  
**  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
T3255-2  
T3255-3  
T3255-4  
3.00 3.10  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
YES  
NO  
**  
**  
**  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
NO  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
T4055-1 3.20 3.30 3.40 3.20 3.30 3.40  
YES  
**SEE COMMON DIMENSIONS TABLE  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN  
0.25 mm AND 0.30 mm FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1,  
T2855-3, AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", ±0.05.  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
H
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX5083ATE

1.5A, 40V, MAXPower Step-Down DC-DC Converters
MAXIM

MAX5083ATE+

Switching Regulator, Voltage-mode, 3A, 275kHz Switching Freq-Max, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220-WHHB, TQFN-16
MAXIM

MAX5083ATE-T

Switching Regulator, Voltage-mode, 3A, 275kHz Switching Freq-Max, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220-WHHB, TQFN-16
MAXIM

MAX5084

Ultra Low Dropout, 7.0A Adjustable Positive Linear Regulator Thru-Hole (MO-078AA
MAXIM

MAX5084ATT+T

Fixed/Adjustable Positive Standard Regulator, 5V, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, TDFN-6
MAXIM

MAX5086

MAX5086 Evaluation Kit
MAXIM

MAX5086AATE

45V, 250mA, Low-Quiescent-Current Linear Regulator with Adjustable Reset Delay
MAXIM

MAX5086AATE+

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHB, TQFN-16
MAXIM

MAX5086AATE+T

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHB, TQFN-16
MAXIM

MAX5086AATE/V+T

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHB, TQFN-16
MAXIM

MAX5086AATN

65V, 250mA, Low-Quiescent-Current Linear Regulator with Adjustable Reset Delay
MAXIM

MAX5086AATN+

65V, 250mA, Low-Quiescent-Current Linear Regulator with Adjustable Reset Delay
MAXIM