MAX5096_07 [MAXIM]

40V, 600mA Buck Converters with Low-Quiescent-Current Linear Regulator Mode; 40V , 600mA buck转换器具有低静态电流线性稳压模式
MAX5096_07
型号: MAX5096_07
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

40V, 600mA Buck Converters with Low-Quiescent-Current Linear Regulator Mode
40V , 600mA buck转换器具有低静态电流线性稳压模式

转换器
文件: 总20页 (文件大小:494K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0603; Rev 1; 6/07  
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
General Description  
Features  
High-Efficiency Switcher Mode (Buck Mode) or  
The MAX5096/MAX5097 easy-to-use, Dual Mode™,  
DC-DC converters operate as LDO (low dropout) or  
switch-mode buck converters. At a high output load,  
the converters operate as high-efficiency pulse-width-  
modulated (PWM) switch-mode converters and reduce  
the power dissipation. The devices switch to a low-qui-  
Low-Quiescent-Current Linear Regulator  
(LDO Mode) Operation  
Wide Operating Input Voltage Range  
+5V to +40V Buck Mode  
+4V to +40V LDO Mode  
Fixed 3.3V or 5V and Adjustable (1.24V to 11V)  
escent-current (I ) LDO mode of operation at light load.  
Q
Output Voltage Versions  
During the key-off condition, the system’s microcon-  
troller drives the LDO/BUCK input on the fly and forces  
the MAX5096/MAX5097 into LDO Mode, thereby reduc-  
ing the quiescent current significantly.  
6µA (typ) Shutdown Current  
Fixed 135kHz or 330kHz Switching Frequency  
External Frequency Synchronization  
Programmable Soft-Start  
In Buck Mode, the MAX5096/MAX5097 operate from a 5V  
to 40V input voltage range and deliver up to 600mA of  
load current with excellent load and line regulation. The  
fixed-switching frequency versions of 135kHz and  
330kHz are available. The MAX5096/MAX5097 DC-DC  
internal oscillator can be synchronized to an external  
clock. External compensation and a current-mode control  
scheme make it easy to design with.  
Integrated Microprocessor Reset (RESET) Circuit  
with Programmable Timeout Period  
Thermal and Short-Circuit Protection  
-40°C to +125°C Automotive Temperature Range  
Thermally-Enhanced Package Dissipates  
2.6W at T = +70°C (16-Pin TQFN)  
A
1.7W at T = +70°C (20-Pin TSSOP)  
A
Ordering Information  
In LDO Mode, the MAX5096/MAX5097 operate from a  
4V to 40V input voltage. The LDO Mode operation is  
intended for a lower output load current of up to  
100mA. The quiescent current at 100µA load in LDO  
Mode is only 41µA (typ).  
PKG  
CODE  
PART  
TEMP RANGE PIN-PACKAGE  
MAX5096AATE+* -40°C to +125°C 16 TQFN-EP** T1655-2  
MAX5096BATE+ -40°C to +125°C 16 TQFN-EP** T1655-2  
MAX5096AAUP+* -40°C to +125°C 20 TSSOP-EP** U20E-4  
MAX5096BAUP+* -40°C to +125°C 20 TSSOP-EP** U20E-4  
MAX5097AATE+ -40°C to +125°C 16 TQFN-EP** T1655-2  
MAX5097BATE+* -40°C to +125°C 16 TQFN-EP** T1655-2  
MAX5097AAUP+* -40°C to +125°C 20 TSSOP-EP** U20E-4  
MAX5097BAUP+* -40°C to +125°C 20 TSSOP-EP** U20E-4  
The MAX5096/MAX5097 feature an enable input that  
shuts down the device, reducing the current consump-  
tion to 6µA (typ). Additional features include a power-on  
reset output with a capacitor-adjustable timeout period,  
programmable soft-start, output tracking, output over-  
load, short-circuit and thermal shutdown protections.  
The MAX5096/MAX5097 operate over the -40°C to  
+125°C automotive temperature range and are avail-  
able in thermally enhanced 20-pin TSSOP or 16-pin  
TQFN packages.  
*Future product—contact factory for availability.  
+Denotes lead-free package.  
**EP = Exposed pad.  
Applications  
Pin Configurations  
TOP VIEW  
TOP VIEW  
Automotive  
Industrial  
+
16  
15  
14  
13  
+
IN  
IN  
1
2
3
4
5
6
7
8
9
20 LX  
19 LX  
PGND  
SGND  
RESET  
BP  
EN  
1
2
3
4
12  
11  
10  
9
IN  
18 N.C.  
17 EN  
OUT  
PGND  
SGND  
RESET  
BP  
MAX5096  
MAX5097  
MAX5096  
MAX5097  
16 OUT  
15 ADJ  
14 N.C.  
ADJ  
LDO/BUCK  
LDO/BUCK  
N.C.  
SYNC  
13  
5
6
7
8
12 COMP  
11 CT  
SS 10  
Dual Mode is a trademark of Maxim Integrated Products, Inc.  
TQFN  
TSSOP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to PGND, unless otherwise noted.)  
IN (transient, 1ms)..................................................-0.3V to +45V  
SGND ....................................................................-0.3V to +0.3V  
Thermal Resistance:  
(θ , 16-Pin TQFN)* ...................................................30.0°C/W  
JA  
(θ , 16-Pin TQFN).......................................................1.7°C/W  
JC  
LX....................................................................-1V to (V + 0.3V)  
(θ , 20-Pin TSSOP)* .................................................46.0°C/W  
JA  
IN  
LX Current................................................................................2A  
(θ , 20-Pin TSSOP)........................................................2°C/W  
JC  
EN................................................................-0.3V to (V + 0.3V)  
Operating Temperature Range .........................-40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
IN  
BP, SYNC, LDO/BUCK, RESET to SGND...............-0.3V to +12V  
BP, RESET Output Current..................................................25mA  
CT, SS, ADJ, COMP to SGND ....................-0.3V to (V + 0.3V)  
BP  
OUT ........................................................................-0.3V to +11V  
OUT Short-Circuit Duration ........................................Continuous  
Continuous Power Dissipation (T = +70°C)*  
A
16-Pin TQFN (derate 33.3mW/°C above +70°C) ........2666mW  
20-Pin TSSOP (derate 21.7mW/°C above +70°C) ......1739mW  
*As per JEDEC 51 Standard—Multilayer Board.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +14V, I  
= 1mA, C = 100µF, C  
= 22µF, L = 22µH, C = 1µF, V = +2.4V (Figure 2), SGND = PGND = 0V, T = T =  
OUT BP EN A J  
IN  
OUT  
IN  
-40°C to +125°C, unless otherwise noted. Typical values are at T = T = +25°C.) (Note 1)  
A
J
PARAMETER  
SYSTEM INPUT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage Range (LDO Mode)  
V
LDO/BUCK = high  
LDO/BUCK = low  
4
5
40  
40  
V
V
IN_LDO  
Input Voltage Range (Buck  
Mode)  
V
IN_BUCK  
Internal Input Undervoltage  
Lockout  
V
V
V
rising  
falling  
3.5  
3.65  
0.2  
3.9  
V
V
UVLO  
BP  
BP  
Internal Input Undervoltage  
Lockout Hysteresis  
V
UVLO_HYS  
BP (Internal Regulator) Output  
Voltage  
V
V
= +4.5V, I = 100µA  
3.75  
4
4.20  
70  
V
BP  
IN  
BP  
LDO/BUCK = high,  
measured at input supply  
return, V  
T
= -40°C to  
A
I
38  
Q
= 5V,  
+125°C  
OUT  
I
= 100µA  
OUT  
Quiescent Supply Current  
(LDO Mode)  
µA  
LDO/BUCK = high,  
measured at input supply  
T
= -40°C to  
A
I
44  
100  
Q
return, V  
= 5V,  
+125°C  
OUT  
I
= 100mA  
OUT  
Buck Converter No-Load Supply  
Current  
I
V
= 14V, V  
= 5V, I  
OUT  
= 0  
680  
6
µA  
µA  
Q_BUCK  
IN  
OUT  
T
= -40°C to  
A
19  
12  
+125°C  
V
= 0V, measured  
EN  
Shutdown Supply Current  
I
SHDN  
from V  
T
= -40°C to  
IN  
A
6
+85°C  
2
_______________________________________________________________________________________  
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +14V, I  
= 1mA, C = 100µF, C  
= 22µF, L = 22µH, C = 1µF, V = +2.4V (Figure 2), SGND = PGND = 0V, T = T =  
OUT BP EN A J  
IN  
OUT  
IN  
-40°C to +125°C, unless otherwise noted. Typical values are at T = T = +25°C.) (Note 1)  
A
J
PARAMETER  
BUCK MODE  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LDO/BUCK = low,  
= 1.4V, MAX5096,  
no switching  
Supply Current  
(Buck Converter On)  
135kHz  
version  
V
I
693  
720  
980  
µA  
ADJ  
S
LDO/BUCK = low,  
Supply Current  
(Buck Converter On)  
330kHz  
Version  
I
S
V
= 1.4V, MAX5097,  
ADJ  
1000  
µA  
V
no switching  
5V version, 5.5V V 40V, no load  
4.85  
3.196  
1.21  
5
3.3  
1.235  
5
5.12  
3.391  
1.27  
100  
IN  
Fixed Output Voltage  
V
OUT  
3.3V version, 5.5V V 40V, no load  
IN  
ADJ Set Point  
V
50% duty cycle, no load  
V
FB  
ADJ Input Bias Current  
I
V
= 1.5V  
nA  
FB  
ADJ  
V
V
ADJ rising  
ADJ falling  
125  
62  
ADJTH_R  
ADJTH_F  
Dual Mode ADJ Threshold  
mV  
Maximum Duty Cycle  
D
V
V
= 0.5V  
100  
136  
%
µS  
V
MAX  
ADJ  
Error Amplifier Transconductance  
Adjustable Output Voltage Range  
Minimum Output Current  
Switch Current Limit  
Gm  
= V , I =  
ADJ COMP  
10µA  
55  
210  
EA  
ADJ  
COMP  
V
1.235  
11.000  
I
V
V
V
V
V
V
= 6.5V to 40V  
= 6V to 40V  
600  
1.5  
0.9  
0.05  
85  
mA  
A
OUT  
IN  
IN  
IN  
EN  
IN  
IN  
I
1.15  
1.90  
2.1  
3
SW_LIM  
Internal Switch On-Resistance  
Switch Leakage Current  
R
= 14V, I = 100mA  
DRAIN  
DS(ON)  
I
= 0V  
µA  
SW_L  
= 14V, V  
= 14V, V  
= 5V, I  
= 400mA  
OUT  
OUT  
OUT  
Efficiency  
η
%
= 3.3V, I  
= 400mA  
81  
OUT  
MAX5096  
MAX5097  
MAX5096  
MAX5097  
120  
300  
120  
300  
2.0  
135  
330  
148  
350  
500  
500  
kHz  
kHz  
kHz  
kHz  
V
Switching Frequency  
Synchronization SYNC Input  
f
SW  
f
SYNC  
SYNC Input High Threshold  
SYNC Input Low Threshold  
V
V
V
= 4V  
= 4V  
SYNCH  
BP  
BP  
V
0.8  
1
V
SYNCL  
SYNC Input Minimum High Pulse  
Width  
250  
ns  
SYNC Input Leakage  
LDO MODE  
V
=11V  
µA  
SYNC  
Guaranteed Output Current  
I
(Note 2)  
100  
mA  
OUT  
_______________________________________________________________________________________  
3
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +14V, I  
= 1mA, C = 100µF, C  
= 22µF, L = 22µH, C = 1µF, V = +2.4V (Figure 2), SGND = PGND = 0V, T = T =  
OUT BP EN A J  
IN  
OUT  
IN  
-40°C to +125°C, unless otherwise noted. Typical values are at T = T = +25°C.) (Note 1)  
A
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
5V version, MAX5096B/MAX5097B,  
4.89  
5
5.09  
V
5.5V V 40V, I  
= 10mA  
IN  
OUT  
Output Voltage  
V
OUT  
3.3V version, MAX5096A/MAX5097A,  
4V V 40V, I = 10mA  
89  
3.3  
3.378  
V
IN  
OUT  
ADJ Set Point  
V
V
I
= 10mA  
= 4V  
1.21  
1.2375  
0.5  
1.26  
100  
V
nA  
V
ADJ  
OUT  
ADJ Input Bias Current  
Adjustable Output Voltage Range  
I
V
FB  
ADJ  
OUT  
I
= 10mA  
1.237  
11.000  
ADJ  
I
V
= 100mA,  
= 0.98 x V (5V version  
OUT(NOMINAL)  
OUT  
Dropout Voltage  
V  
0.37  
V
DO  
OUT  
only), MAX5096B/MAX5097B  
Rising edge of EN to  
V
= 10% V  
,
OUT  
OUT(NOMINAL)  
Startup Response Time  
300  
µs  
R = 500, V  
= SGND,  
ADJ  
L
LDO/BUCK = 4V, C = 2nF  
SS  
5V version,  
0.125  
0.093  
+5.5V V +40V, I  
= 100mA  
IN  
OUT  
V  
V  
/
/
OUT  
Line Regulation  
Load Regulation  
mV/V  
V  
IN  
3.3V version,  
+4V V +40V, I  
= 100mA  
IN  
OUT  
5V version,  
T = +25°C  
0.242  
0.242  
0.164  
0.164  
0.374  
1
J
I
= 100µA to  
OUT  
T = -40°C to +125°C  
J
100mA, V = +14V  
IN  
OUT  
mV/mA  
I  
OUT  
3.3V version,  
T = +25°C  
J
0.237  
1
I
= 100µA to  
OUT  
T = -40°C to +125°C  
J
100mA, V = +14V  
IN  
I
V
= 10mA, f = 100Hz, 500mV  
,
OUT  
P-P  
Power-Supply Rejection Ratio  
Short-Circuit Current  
PSRR  
60  
dB  
= +5V, V = +14V  
IN  
OUT  
I
V
= 6V  
IN  
150  
330  
500  
mA  
SC  
BUCK MODE (LDO MODE TRANSITION)  
LDO/BUCK High Threshold  
2.0  
V
V
LDO/BUCK Low Threshold  
0.8  
1
LDO/BUCK Input Leakage  
LDO/BUCK = 11V  
µA  
Transition Timing from LDO Mode  
to Buck Mode  
Falling edge of LDO/BUCK to buck  
converter on  
Clock  
Periods  
32  
Transition Timing from Buck  
Mode to LDO Mode  
Rising edge of LDO/BUCK to LDO  
operation  
100  
µs  
SOFT-START, ENABLE (EN) AND RESET  
Soft-Start Charge Current  
Soft-Start Reference Voltage  
EN High-Voltage Threshold  
I
V
V
= 0.1V  
3
5
7
µA  
V
SS  
SS  
V
= V - 20%  
OUT(NOMINAL)  
0.9  
1.4  
0.99  
1.1  
SS-REF  
OUT  
V
EN = high, regulator on  
V
ENH  
4
_______________________________________________________________________________________  
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +14V, I  
= 1mA, C = 100µF, C  
= 22µF, L = 22µH, C = 1µF, V = +2.4V (Figure 2), SGND = PGND = 0V, T = T =  
OUT BP EN A J  
IN  
OUT  
IN  
-40°C to +125°C, unless otherwise noted. Typical values are at T = T = +25°C.) (Note 1)  
A
J
PARAMETER  
EN Low-Voltage Threshold  
EN Input Pulldown  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Regulator off  
0.4  
ENL  
V
V
V
= 2V, LDO/BUCK = 4V  
0.5  
92  
90  
µA  
EN  
RESET Voltage Threshold High  
RESET Voltage Threshold Low  
RESET Output-Low Voltage  
V
rising  
falling  
= 1mA  
89  
87  
94  
92  
% V  
% V  
RESET_H  
OUT  
OUT  
SINK  
OUT  
OUT  
V
RESET_L  
V
I
0.2  
V
RL  
RESET Output-High Leakage  
Current  
I
V
= 5V, V = 1.5V  
ADJ  
1
µA  
µs  
RH  
RESET  
RESET Output Minimum Timeout  
Period  
C
= 0  
25  
CT  
V
to RESET Delay  
V
V
falling 10mV/µs, C = 0  
6
µs  
V
OUT  
OUT  
CT  
Delay Comparator Threshold  
V
rising  
1.18  
0.74  
1.2374  
1.29  
1.20  
CT_TH  
CT  
Delay Comparator Threshold  
Hysteresis  
100  
mV  
CT Charge Current  
I
1
µA  
CH  
CT Discharge Current  
I
V
= 1V  
13.8  
mA  
DISCH  
CT  
THERMAL SHUTDOWN  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
T
Temperature rising  
+165  
20  
°C  
°C  
J(SHDN)  
T  
J(SHDN)  
Note 1: Limits to -40°C are guaranteed by design.  
Note 2: The continuous maximum output current from LDO is limited by package power dissipation.  
_______________________________________________________________________________________  
5
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
Typical Operating Characteristics  
(V = +14V, V = +2.4V, MAX5097AATE+, Figures 2 and 4, T = +25°C, unless otherwise specified.)  
IN  
EN  
A
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
(LDO MODE)  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
(BUCK MODE)  
QUIESCENT SUPPLY CURRENT  
vs. TEMPERATURE (LDO MODE)  
4.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 14V  
IN  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
= 3.3V  
OUT  
I
= 100mA  
OUT  
I
= 0  
OUT  
I
= 100µA  
OUT  
I
= 600mA  
I
= 50mA  
OUT  
OUT  
1
10  
100  
1
10  
100  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
NO-LOAD SUPPLY CURRENT  
vs. TEMPERATURE (BUCK MODE)  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
OUTPUT VOLTAGE vs. TEMPERATURE  
(LDO MODE)  
710  
700  
690  
680  
670  
660  
650  
640  
14  
12  
10  
8
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
V
V
= 14V  
V
V
= 0V  
= 14V  
V
= 3.3V  
IN  
EN  
IN  
OUT  
= 3.3V  
OUT  
I
= 100µA  
OUT  
I
= 10mA  
OUT  
6
I
= 10mA  
OUT  
4
2
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DROPOUT VOLTAGE  
vs. OUTPUT CURRENT (LDO MODE)  
OUTPUT VOLTAGE  
vs. TEMPERATURE (BUCK MODE)  
EFFICIENCY vs. LOAD CURRENT  
(V = 3.3V)  
OUT  
100  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
= 3.3V  
OUT  
f
= 330kHz  
V
= 5V  
SW  
OUT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 100µA  
OUT  
V
= 24V  
IN  
V
= 5V  
IN  
V
= 40V  
I
= 600mA  
IN  
OUT  
I
= 100mA  
OUT  
V
= 14V  
IN  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
20  
40  
60  
80  
100  
0.01  
0.1  
LOAD CURRENT (A)  
1
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
6
_______________________________________________________________________________________  
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
Typical Operating Characteristics (continued)  
(V = +14V, V = +2.4V, MAX5097AATE+, Figures 2 and 4, T = +25°C, unless otherwise specified.)  
IN  
EN  
A
LOAD-TRANSIENT RESPONSE  
(BUCK MODE)  
EFFICIENCY vs. LOAD CURRENT  
LOAD-TRANSIENT RESPONSE  
(LDO MODE)  
(V  
OUT  
= 5V)  
MAX5096 toc12  
MAX5096 toc11  
100  
V
= 14V  
= 100µA to 50mA  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
OUT  
I
I
OUT  
OUT  
200mA/div  
50mA/div  
V
= 14V  
IN  
V
= 24V  
IN  
V
= 5.5V  
IN  
V
V
V
= 40V  
OUT  
OUT  
IN  
AC-COUPLED  
100mV/div  
50mV/div  
V
= 14V  
IN  
I
= 300mA to 600mA  
STEP  
1ms/div  
0.01  
0.1  
LOAD CURRENT (A)  
1
2ms/div  
V
IN  
STARTUP RESPONSE  
(LDO MODE)  
ENABLE STARTUP RESPONSE  
(LDO MODE)  
V
IN  
STARTUP RESPONSE  
(BUCK MODE)  
MAX5096 toc15  
MAX5096 toc13  
MAX5096 toc14  
V
I
C
= 14V  
= 0A  
IN  
OUT  
V
V
V
IN  
IN  
IN  
V
I
C
= 14V  
= 0A  
V
I
C
= 14V  
IN  
OUT  
IN  
10V/div  
10V/div  
10V/div  
= 0.047µF  
CT  
= 100mA  
OUT  
= 0.047µF  
= 0.047µF  
CT  
CT  
V
EN  
V
V
EN  
5V/div  
EN  
10V/div  
5V/div  
V
V
V
OUT  
OUT  
OUT  
2V/div  
2V/div  
2V/div  
RESET  
5V/div  
RESET  
5V/div  
RESET  
5V/div  
10ms/div  
10ms/div  
10ms/div  
ENABLE STARTUP RESPONSE  
(BUCK MODE)  
SHUTDOWN RESPONSE THROUGH  
SHUTDOWN RESPONSE THROUGH  
V
IN  
(LDO MODE)  
V (BUCK MODE)  
IN  
MAX5096 toc16  
MAX5096 toc17  
MAX5096 toc18  
I
= 50mA  
I
= 50mA  
OUT  
OUT  
V
V
V
IN  
IN  
IN  
V
= 14V  
= 600mA  
IN  
10V/div  
10V/div  
10V/div  
I
OUT  
C
= 0.047µF  
CT  
V
V
V
EN  
EN  
EN  
5V/div  
10V/div  
10V/div  
V
V
V
OUT  
OUT  
OUT  
2V/div  
2V/div  
2V/div  
RESET  
5V/div  
RESET  
5V/div  
RESET  
5V/div  
10ms/div  
100ms/div  
100ms/div  
_______________________________________________________________________________________  
7
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
Typical Operating Characteristics (continued)  
(V = +14V, V = +2.4V, MAX5097AATE+, Figures 2 and 4, T = +25°C, unless otherwise specified.)  
IN  
EN  
A
LX VOLTAGE, SYNC INPUT,  
AND INDUCTOR CURRENT  
LX VOLTAGE AND INDUCTOR CURRENT  
LX VOLTAGE AND INDUCTOR CURRENT  
MAX5096 toc20  
MAX5096 toc19  
MAX5096 toc21  
I
= 600mA  
I
= 0A  
OUT  
OUT  
V
LX  
10V/div  
V
LX  
10V/div  
V
LX  
5V/div  
SYNC INPUT  
5V/div  
INDUCTOR  
CURRENT  
500mA/div  
INDUCTOR  
CURRENT  
200mA/div  
INDUCTOR  
CURRENT  
500mA/div  
1µs/div  
2µs/div  
1µs/div  
TRANSITION FROM BUCK  
MODE TO LDO MODE  
TRANSITION FROM LDO MODE  
TO BUCK MODE  
MAX5096 toc22  
MAX5096 toc23  
LDO/BUCK  
5V/div  
LDO/BUCK  
3V/div  
V
OUT  
V
AC-COUPLED  
200mV/div  
OUT  
AC-COUPLED  
200mV/div  
I
I
OUT  
OUT  
100mA/div  
100mA/div  
V
= 14V  
V
= 14V  
IN  
IN  
I
= 100mA  
I
= 100mA  
OUT  
OUT  
400µs/div  
100µs/div  
8
_______________________________________________________________________________________  
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
Pin Description  
PIN  
NAME  
FUNCTION  
TQFN  
TSSOP  
Power Ground. Return path for p-channel power MOSFET driver. Connect the input  
capacitor return, freewheeling diode anode, and output capacitor return terminals to  
PGND.  
1
2
4
5
PGND  
SGND  
Signal Ground. Connect SGND to PGND near the input bypass capacitor return terminal.  
Open-Drain, Active-Low Reset Output. RESET asserts low when OUT drops below the  
reset threshold. When output rises above 92% of the programmed level, RESET  
becomes high impedance after the reset timeout period. Connect a pullup resistor from  
RESET to the converter output to create a logic output.  
3
6
RESET  
4V Internal Regulator Output. Bypass BP to SGND with a 1µF or greater ceramic  
capacitor.  
4
5
6
7
7
9
BP  
SYNC  
SS  
Synchronization Input. Connect SYNC to an external clock for synchronization. Connect  
SYNC to SGND when not used.  
Soft-Start Timer Input. Connect an external capacitor from SS to SGND to adjust the soft-  
start timeout period (see the Soft-Start (SS) section).  
10  
11  
Reset Timeout Period. Connect a capacitor from CT to SGND to set the reset timeout  
period (see the Power-On Reset Output RESET section).  
CT  
Buck Converter (Buck Mode) Control Loop Compensation. See the Compensation  
Network section for compensation network design. LDO mode does not need external  
compensation.  
8
9
12  
13  
COMP  
LDO Mode/Buck Mode Select. Drive LDO/BUCK low to select the Buck Mode. The Buck  
Mode activates after 32 internal/external clock cycles. Force the LDO/BUCK high (> 2V),  
to select LDO Mode. The Buck Mode stops and LDO Mode is activated with a 100µs  
delay.  
LDO/BUCK  
Regulator Output Feedback Point. Connect ADJ to SGND for a fixed 3.3V  
10  
11  
15  
16  
ADJ  
OUT  
(MAX5096A/MAX5097A) or 5V (MAX5096B/MAX5097B). For adjustable output voltage,  
use an external resistive divider to set V . V  
OUT ADJ  
regulating set point is 1.237V.  
Converter Output. OUT must always be connected to the regulator output. Connect at  
least a 22µF low-ESR (equivalent series resistance) capacitor from OUT to PGND for  
stable operation.  
Enable Input. EN is internally pulled to ground. Drive EN high to turn on the regulator.  
Force EN low or leave unconnected to place the device in shutdown mode.  
12  
13, 14  
15, 16  
17  
19, 20  
1, 2, 3  
8, 14, 18  
EP  
EN  
LX  
Drain Connection of Internal p-Channel High-Side Switch  
Regulator Input. Bypass IN to PGND with a parallel combination of low-ESR ceramic and  
aluminum capacitor to handle the input ripple current.  
IN  
N. C.  
EP  
No Connection. Not internally connected.  
Exposed Pad. Connect externally to a large ground plane (SGND) for improved heat  
dissipation. Do not use EP as an electrical ground connection.  
EP  
_______________________________________________________________________________________  
9
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
IN  
C
IN  
BP  
INTERNAL  
4V LDO  
V
OUT  
CURRENT  
SENSE  
C
BP  
OSCILLATOR  
AND RAMP  
GENERATOR  
- +  
DC  
CURRENT  
LIMITER  
V
IN  
DC-DC ENABLE  
PWM  
0.9  
GATE  
DRIVER  
MUX  
L
V
LX  
OUT  
PWM  
COMPARATOR  
+
FB  
+
-
-
C
OUT  
gm  
SS  
V
R
1
REF  
BUCK MODE GM  
AMPLIFIER  
COMP  
SYNC  
ADJ  
OUT  
-
FB  
+
-
-
R
C
+
SS  
V
SYNCRO  
R
2
0.12V  
REF  
FEEDBACK  
SELECTOR  
LDO MODE  
AMPLIFIER  
C
C
C
P
LDO/BUCK  
SELECTOR  
LDO/BUCK  
MODE  
SELECTOR  
R
PU  
EN  
SS  
RESET  
BIAS SOFT-  
START  
INTERNAL  
BANDGAP  
UVLO  
RESET  
THERMAL  
PROTECTION  
C
SS  
MAX5096  
MAX5097  
SGND  
PGND  
CT  
C
CT  
Figure 1. Simplified Diagram  
10 ______________________________________________________________________________________  
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
turned on and off while in both Buck and LDO Modes.  
Detailed Description  
The MAX5096/MAX5097 are easy-to-use, high-efficien-  
Each time the EN is toggled, the output rises with a pro-  
grammed soft-start period.  
cy, PWM current-mode, step-down switching convert-  
ers in normal operation. The MAX5096/MAX5097 have  
an internal high-side p-channel 0.9switch and use a  
low forward-drop freewheeling diode for rectification. In  
Buck Mode, the p-channel switches at the 135kHz or  
330kHz frequency. Buck Mode uses a current-mode  
control architecture that offers excellent line-transient  
response, easier frequency compensation, and cycle-  
by-cycle current limiting. The buck converter is com-  
pensated externally for a selected value/type of output  
inductor and capacitor.  
Internal Regulator (BP)/  
Undervoltage Lockout  
The MAX5096/MAX5097 include an internal 4V auxiliary  
regulator to power internal circuitry. Bypass the auxil-  
iary regulator output (BP) to SGND with a 1µF ceramic  
capacitor physically located close to the device. The  
regulator is not intended to supply the external circuit  
other than pulling up the LDO/BUCK input or RESET.  
Do not load BP externally by more than 2mA. The regu-  
lator output is regulated to 4V with 7% accuracy during  
steady state. During turn-on, the BP voltage stabilizes  
after 250µs with a 1µF capacitor at BP. Drive EN high to  
turn on the internal regulator. The internal UVLO with  
hysteresis ensures stable operation, resulting in the  
monotonic rise of the output voltage. The UVLO circuit  
monitors the output of the regulator. The rising UVLO  
threshold is internally set to 3.65V (BP rising) with a  
185mV hysteresis (BP falling). The 3.65V UVLO at the  
The internal p-channel switch acts as a pass element  
when operating in the low-quiescent-current LDO  
Mode.  
The LDO Mode can be selected on the fly through the  
LDO/BUCK input. During the key-off condition, the sys-  
tem’s microcontroller drives the LDO/BUCK input high  
and forces the MAX5096/MAX5097 into LDO Mode,  
reducing the quiescent current to 1µA (typ). When in  
LDO Mode, the device is capable of delivering up to  
100mA, which may be limited by the device power dis-  
sipation. The LDO and switcher share the same pass  
element and the reference; however, the error ampli-  
fiers are different with their own compensation  
schemes.  
no-load BP output guarantees operation at V lower  
IN  
than 4V.  
Soft-Start (SS)  
Soft-start provides for the monotonic, glitch-free turn-on  
of the converter. Soft-start limits the input inrush current  
which may cause a glitch, especially if the source  
impedance is high. The soft-start period required also  
depends on the output capacitance and the closed-  
loop bandwidth of converter. The soft-start period for  
the MAX5096/MAX5097 is externally programmable  
The MAX5096/MAX5097 include an integrated micro-  
processor reset circuit with an adjustable reset timeout  
period. The internal reset circuit monitors the regulator  
output voltage and asserts RESET low when the regula-  
tor output falls below the reset threshold voltage. Other  
features include an enable input, externally program-  
mable soft-start, optimized current-limit protection in  
both LDO and Buck Modes, and thermal shutdown.  
using a single capacitor (C ). The soft-start is  
SS  
achieved by the controlled ramping up of the error  
amplifier reference input. At startup, after V is applied  
IN  
and the UVLO threshold is reached, the device enters  
soft-start. During soft-start, 5µA is sourced into the  
Enable Input (EN)  
EN is a logic-level enable input that turns the device on  
or off. The logic-high and logic-low voltages for the EN  
input are 1.4V and 0.4V, respectively. Drive EN high to  
turn on the device, and drive it low to place the device  
in shutdown. Leaving EN unconnected disables the  
device since the EN is internally pulled low with a 0.5µA  
current, however, a forced pulldown of EN improves the  
noise immunity. The MAX5096/MAX5097 draw 6µA  
(typ) of supply current when in shutdown. EN with-  
stands up to +40V, allowing EN to be connected direct-  
ly to IN for always-on operation. The converter may be  
capacitor (C ) connected from SS to SGND (Figure 2)  
SS  
causing the reference voltage to ramp up slowly. When  
V
reaches 1.237V, the output becomes fully active.  
SS  
Set the soft-start time (t ) using following equation:  
SS  
V
SS  
t
=
×C  
SS  
SS  
I
SS  
where V is 1.237V, I is 5µA, t is in seconds, and  
SS  
SS  
SS  
C
is in Farads.  
SS  
Pulling EN low quickly discharges the C  
capacitor,  
SS  
making it ready for the next soft-start period.  
______________________________________________________________________________________ 11  
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
V
IN  
V
IN  
BP  
1.0µF  
C
IN  
EN  
100µF  
22µH  
LDO/BUCK  
SYNC  
V
OUT  
LX  
+
D1*  
B260/  
MURS105  
C
OUT  
22µF  
(CER.)  
MAX5096  
MAX5097  
COMP  
R
C
ADJ  
OUT  
100k  
C
P
C
C
1.2nF  
22pF  
100kΩ  
SS  
CT  
RESET  
RESET  
C
SS  
GND  
PGND  
0.047µF  
*USE MURS105 IN APPLICATIONS  
WHERE LDO MODE QUIESCENT  
CURRENT IS CRITICAL.  
C
CT  
0.01µF  
Figure 2. Fixed Output Voltage Configuration  
a high-impedance state after the active timeout period  
Output Voltage Tracking/Sequencing  
The output voltages of multiple MAX5096/MAX5097  
converters can be made to track by using the SS pin  
during turn-on and turn-off (see Figure 3). SS is pulled  
up using a 5µA current source and connecting SS of  
multiple MAX5096/MAX5097s, raising the references  
with the same slope. Tracking the converters reduces  
the differential voltages between the core and I/O volt-  
ages during turn-on, turn-off, and brownout. If any one  
converter output drops due to shutdown or an overload  
fault situation, the SS drops, pulling down all the con-  
verters simultaneously. The rate of fall of output volt-  
ages, however, depends on the output capacitance  
and load of the individual converter.  
(t ). The active timeout period is externally program-  
RP  
mable using a single capacitor from CT to ground. Use  
the following equation to calculate the required timeout  
period for the power-on reset:  
V
CTTH  
t
=
×C  
CT  
RP  
I
CH  
where V  
is 1.237V, I  
is 1µA, t is in seconds,  
RP  
CT-TH  
and C is in Farads.  
CH  
CT  
To obtain a logic-voltage output, connect a pullup  
resistor from RESET to a logic-supply voltage. The  
internal open-drain MOSFET can sink 1mA while provid-  
ing a TTL logic-low signal. If unused, ground RESET or  
leave it unconnected.  
Multiple voltage sequencing can be done by daisy-  
chaining several MAX5096/MAX5097s. The RESET of  
the first converter can be connected to EN of the sec-  
ond converter. This allows the first converter to come  
up first every time the system is powered up.  
The power-on reset behavior is the same in both the  
LDO and Buck Modes of operation.  
Oscillator/Synchronization Input (SYNC)  
The MAX5096/MAX5097 internal oscillator generates a  
factory-preset frequency of either 135kHz (MAX5096)  
or 330kHz (MAX5097). The 135kHz version keeps the  
maximum fundamental frequency below 150kHz, which  
keeps the third harmonic below 450kHz and under the  
Power-On Reset Output (RESET)  
A supervisor circuit is integrated in the MAX5096/  
MAX5097. RESET is an open-drain output. RESET pulls  
low as soon as V  
drops below 90% of its nominal  
OUT  
regulation voltage. Once the output voltage rises above  
92% of the set output voltage, the RESET output enters  
12 ______________________________________________________________________________________  
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
Applications Information  
V
OUT3  
Output Voltage Selection  
The MAX5096/MAX5097 can be configured as either a  
preset fixed output voltage or an adjustable output volt-  
age device. Connect ADJ to ground to select the facto-  
ry-preset output voltage option (Figure 2). The  
MAX5096A/MAX5097A and MAX5096B/MAX5097B  
provide a fixed output voltage equal to 3.3V and 5V,  
respectively (see the Selector Guide). The MAX5096/  
MAX5097 become an adjustable version as soon as the  
devices detect about 125mV at the ADJ pin. The resis-  
tor-divider at ADJ increases the ADJ voltage above  
125mV and also adjusts the output voltage depending  
upon the resistor values. In adjustable mode, select an  
output between +1.273V and +11V using two external  
resistors connected as a voltage-divider to ADJ (Figure  
4). Set the output voltage using the following equation:  
V
OUT2  
OUT1  
V
SOFT-START  
STOP  
RATIOMETRIC TRACKING OUTPUTS  
V
OUT1  
V
OUT2  
V
OUT3  
STOP  
R1  
R2  
V
= V  
× 1 +  
ADJ  
OUT  
SOFT-START  
SEQUENCED OUTPUTS  
where V  
= 1.273V and R2 is chosen to be approxi-  
ADJ  
mately 100k.  
Figure 3. Output Voltage Tracking/Sequencing  
Connect ADJ to GND if adjustable mode is not used.  
lower end of the AM band. The MAX5096 is suitable for  
noise-sensitive applications like AM radio power sup-  
ply. For an application where size is more important,  
use the MAX5097, which runs at 330kHz frequency.  
The high-frequency operation reduces the size and  
cost of the external inductor and capacitor. The  
MAX5096/MAX5097 can be synchronized using an  
external signal. The MAX5096 can be synchronized  
from 120kHz to 500kHz, while the MAX5097 is capable  
of synchronizing from 300kHz to 500kHz. The external  
synchronization feature makes frequency hopping pos-  
sible depending on the selected AM channel. Connect  
SYNC to ground, if not used.  
Inductor Selection  
Three key inductor parameters must be specified for  
proper operation with the MAX5096/MAX5097: induc-  
tance value (L), peak inductor current (I  
), and  
PEAK  
). The minimum  
inductor saturation current (I  
SAT  
required inductance is a function of operating frequen-  
cy, input-to-output voltage differential, and the peak-to-  
peak inductor current (I ). Higher I  
allows for a  
requires a  
P-P  
P-P  
P-P  
lower inductor value, while a lower I  
higher inductor value. A lower inductor value minimizes  
size and cost and improves large-signal and transient  
response, but reduces efficiency due to higher peak  
currents and higher peak-to-peak output voltage ripple  
for the same output capacitor. On the other hand, high-  
er inductance increases efficiency by reducing the rip-  
ple current. Resistive losses due to extra wire turns can  
exceed the benefit gained from lower ripple current lev-  
els, especially when the inductance is increased while  
keeping the dimension of the inductor constant. A good  
Thermal Protection  
When the junction temperature exceeds T = +165°C,  
J
an internal thermal sensor signals the shutdown logic,  
which turns off the regulator (both in Buck Mode and  
LDO Mode), and discharges the soft-start capacitor  
allowing the IC to cool. The thermal sensor turns the  
regulator on again after the IC’s junction temperature  
cools by 20°C, resulting in a cycled output during con-  
tinuous thermal-overload conditions. The thermal hys-  
teresis and a soft-start period limit the average power  
dissipation into the device during continuous fault con-  
dition. During operation, do not exceed the absolute  
compromise is to choose I  
equal to 40% of the full  
P-P  
load current. Calculate the inductor value using the fol-  
lowing equation:  
V
V
(V V  
)
OUT IN  
OUT  
L =  
× f × I  
PP  
IN SW  
maximum junction temperature rating of T = +150°C.  
J
______________________________________________________________________________________ 13  
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
5V TO 40V  
V
IN  
V
IN  
BP  
1.0µF  
C
IN  
EN  
100µF  
22µH  
LDO/BUCK  
SYNC  
V
OUT  
LX  
D1*  
+
C
22µF  
OUT  
B260/  
MURS105  
MAX5096  
MAX5097  
COMP  
R1  
R
C
ADJ  
OUT  
R2  
C
C
C
P
R
PU  
SS  
CT  
RESET  
RESET  
*USE MURS105 IN APPLICATIONS  
WHERE LDO MODE QUIESCENT  
CURRENT IS CRITICAL.  
GND  
PGND  
C
SS  
C
CT  
Figure 4. Adjustable Output Voltage Configuration  
use typical values of V and f  
so that efficiency is opti-  
IN  
SW  
Table 1. Inductor/Output Capacitor  
Selection  
mum for typical conditions. The switching frequency (f  
)
SW  
is fixed at 135kHz (MAX5096) and 330kHz (MAX5097).  
can also be varied from 120kHz to 500kHz  
f
SW  
INDUCTOR  
OUTPUT CAPACITOR (C  
)
OUT  
(MAX5096) and from 300kHz to 500kHz (MAX5097) when  
synchronized to an external clock (see the Oscillator/  
Synchronization Input (SYNC) section). The peak-to-peak  
inductor current, which reflects the peak-to-peak output  
ripple, is worst at the maximum input voltage. See the  
Output Capacitor Selection section to verify that the  
worst-case output ripple is acceptable. The inductor satu-  
22µF, ESR = 5mto 20m(ceramic)  
47µF, ESR = 40mto 150mΩ  
100µF, ESR = 30mto 100mΩ  
470µF / ESR = 60to 400mΩ  
22µF, ESR = 5mto 20m(ceramic)  
47µF / ESR = 40mto 150mΩ  
100µF / ESR = 30mto 100mΩ  
470µF / ESR = 60mto 400mΩ  
22µF, ESR = 5mto 20m(ceramic)  
47µF / ESR = 40mto 150mΩ  
100µF / ESR = 30mto 100mΩ  
470µF / ESR = 60mto 400mΩ  
22µH  
rating current (I  
) is also important to avoid runaway  
SAT  
47µH  
current during continuous output short circuit. Select an  
inductor with an I  
specification higher than the maxi-  
SAT  
mum peak current limit of 1.9A.  
The Buck Mode operation determines the inductor and  
output capacitor values. However, the values of the  
inductor, its DCR, and the output capacitance/ESR  
affect the closed-loop transfer function both in Buck  
and LDO Modes. The internal compensation of the  
MAX5096/MAX5097 in LDO Mode limits the values of  
these external components. Make sure that the combi-  
nation of output inductor, capacitor, and ESR falls with-  
in the range specified in following Table 1.  
100µH  
Output Capacitor Selection  
The allowable output voltage ripple and the maximum  
deviation of the output voltage during load steps deter-  
mine the output capacitance and its ESR. The output  
14 ______________________________________________________________________________________  
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
ripple is mainly composed of V (caused by the  
where I  
is the load step, t  
is the rise time of the  
STEP  
Q
STEP  
load step, and t  
capacitor discharge) and V  
(caused by the volt-  
is the response time of the  
RESPONSE  
ESR  
age drop across the ESR of the output capacitor).  
Normally, a good approximation of the output voltage  
controller. The response time of the converter is  
approximately one third of the inverse of its closed-loop  
bandwidth and also depends on the phase margin.  
ripple is V  
≈ ∆V  
+ V . If using ceramic  
ESR Q  
RIPPLE  
capacitors, assume the contribution to the output volt-  
age ripple from the ESR and the capacitor discharge to  
be equal to 20% and 80%, respectively. If using alu-  
minum electrolyte capacitors, assume the contribution  
to the output voltage ripple from the ESR and the  
capacitor discharge to be equal to 90% and 10%,  
respectively.  
Rectifier Selection  
The MAX5096/MAX5097 require an external Schottky/  
fast-recovery diode rectifier as a freewheeling diode.  
Connect this rectifier close to the device using short  
leads and short PC board traces. Choose a rectifier  
with a continuous current rating greater than the high-  
est output current-limit threshold (1.9A) and with a volt-  
age rating greater than the maximum expected input  
Use the following equations for calculating the output  
capacitance and its ESR for required peak-to-peak out-  
put voltage ripple.  
voltage, V . Use a low forward-voltage-drop Schottky  
IN  
rectifier to limit the negative voltage at LX. Avoid higher  
than necessary reverse-voltage Schottky rectifiers that  
have higher forward-voltage drops. Use a 60V (max)  
Schottky rectifier with a 2A current rating. The Schottky  
rectifier leakage current at high temperature significant-  
ly increases the quiescent current in LDO Mode. In  
applications where LDO Mode quiescent current is  
important, use an ultra-fast switching diode to limit the  
leakage current. In this type of application, use  
MURS105, MURS120 for their fast-switching and low-  
leakage features.  
I  
PP  
C
=
OUT  
16× V × f  
Q
SW  
V  
ESR  
ESR=  
I  
PP  
I  
is the peak-to-peak inductor current and f  
is  
SW  
P-P  
the converter’s switching frequency.  
The allowable deviation of the output voltage during  
fast load transients also determines the output capaci-  
tance, its ESR, and its equivalent series inductance  
(ESL). The output capacitor supplies the load current  
during a load step until the controller responds with a  
Input Capacitor Selection  
The discontinuous input current of the buck converter  
causes large input ripple currents and therefore, the  
input capacitor must be carefully chosen to keep the  
input voltage ripple within design requirements. The  
greater duty cycle. The response time (t  
)
RESPONSE  
depends on the closed-loop bandwidth of the converter  
(see the Compensation Network section). The resistive  
drop across the output capacitor’s ESR, the drop  
across the capacitor’s ESL, and the capacitor dis-  
charge, causes a voltage drop during the load step.  
Use a combination of low-ESR tantalum/aluminum elec-  
trolytic and ceramic capacitors for better transient load  
and voltage ripple performance. Non-leaded capaci-  
tors and/or multiple parallel capacitors help reduce the  
ESL. Keep the maximum output voltage deviation  
below the tolerable limits of the electronics being pow-  
ered. Use the following equations to calculate the  
required ESR, ESL, and capacitance value during a  
load step:  
input voltage ripple is comprised of V (caused by  
Q
the capacitor discharge) and V  
(caused by the  
ESR  
ESR of the input capacitor). The total voltage ripple is  
the sum of V and V . Calculate the input capaci-  
Q
ESR  
tance and ESR required for a specified ripple using the  
following equations (continuous mode):  
V  
ESR  
ESR=  
I  
PP  
2
I
+
OUT_MAX  
I
×D(1D)  
OUT_MAX  
C
=
IN  
V × f  
Q
SW  
where  
V  
ESR  
ESR=  
(V V  
)× V  
OUT  
× f ×L  
IN  
OUT  
I  
STEP  
I  
=
and  
PP  
V
IN SW  
I
× t  
V  
STEP RESPONSE  
C
=
OUT  
V
V
OUT  
Q
D =  
IN  
V  
× t  
ESL STEP  
ESL =  
I
I
is the maximum output current and D is the  
OUT_MAX  
duty cycle.  
STEP  
______________________________________________________________________________________ 15  
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
Compensation Network  
The MAX5096/MAX5097 in LDO Mode are compensat-  
ed internally with a compensation network around the  
LDO error amplifier. When in Buck Mode, the DC-DC  
Switching Between LDO Mode  
and Buck Mode  
The MAX5096/MAX5097 switch between the Buck  
Mode and LDO Mode on the fly. However, care must  
be taken to reduce output glitch or overshoot during  
the switching.  
g
amplifier must be externally compensated using a  
M
network connected from COMP to ground. The current-  
mode control architecture reduces the compensation  
network to a single pole-zero. The RC and C network,  
connected from the internal transconductance amplifier  
output to SGND, can provide a single pole-zero pair.  
Choose all the power components like the inductor,  
output capacitor, and ESR first and design the com-  
pensation network around them. Choose the closed-  
Buck Mode to LDO Mode  
The LDO Mode is intended for the low 100mA output  
current while the buck converter delivers up to 600mA  
output current. It is important to first reduce the output  
load below 100mA before switching to the LDO Mode.  
If the output load is higher than 100mA, the  
MAX5096/MAX5097 may go into the current limit and  
the output will drop significantly. Whenever the mode is  
changed, output is expected to glitch because the loop  
dynamics change due to different error amplifiers when  
operating in the LDO and Buck Modes. The output volt-  
age undershoot can be minimized by reducing the out-  
put load during switching and using larger output  
capacitance.  
loop bandwidth (f ) to be approximately 1/10 of the  
C
switching frequency. See the following equations to cal-  
culate the compensation values for the low-ESR output  
capacitor with ESR zero frequency, approximately a  
decade higher than f .  
C
Calculate the dominant pole due to the output capaci-  
tor (C  
) and the load (R  
):  
OUT  
OUT  
1
f
=
PO  
LDO Mode to Buck Mode  
When switching from the LDO Mode to Buck Mode, a  
fixed amount of delay (32 cycles) is applied so that the  
buck converter control loop and oscillator reach their  
steady-state conditions. The 32-cycle delay translates  
to approximately 250µs and 100µs for 150kHz and  
330kHz switching frequency versions, respectively. It is  
recommended that the output load of 600mA must be  
delayed by at least this much time to allow the  
MAX5096/MAX5097 to switch to high-current Buck  
Mode. This ensures that the output does not drop due  
to the LDO current-limit protection mechanism.  
2× π ×C  
×R  
OUT  
OUT  
where R  
= V  
/ I  
.
OUT  
OUT LOAD  
Calculate the R using following equation:  
C
V
× f  
C
O
R
=
C
g
×R  
×g × V × f  
ADJ PO  
MC  
OUT  
m
where g  
is the control to output gain of the  
MC  
MAX5096/MAX5097 buck converter and is equal to  
1.06. V  
is the feedback set point equal to 1.237V  
ADJ  
and g (transconductance amplifier gain) is equal to  
m
PC Board Layout Guidelines  
136µS. See Figure 2.  
1) Proper PC board layout is essential. Minimize  
ground noise by connecting the anode of the free-  
wheeling rectifier, the input bypass capacitor  
ground lead, and the output filter capacitor ground  
lead to a large PGND plane.  
Place a zero (f ) at 0.9 x f  
:
PO  
Z
1
C
=
C
2× π ×R  
× f  
CFPO PO  
2) Minimize lead lengths to reduce stray capacitance,  
trace resistance, and radiated noise. In particular,  
place the Schottky/fast recovery rectifier diode right  
next to the device.  
Finally, place a high-frequency pole at the frequency  
equal to half of the converter switching frequency (f ).  
SW  
1
C =  
P
π ×R × f  
C
SW  
Place the compensation network physically close to the  
MAX5096/MAX5097.  
16 ______________________________________________________________________________________  
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
3) Connect the exposed pad of the IC to the SGND  
Chip Information  
plane. Do not make a direct connection between the  
exposed pad plane and SGND (pin 2) under the IC.  
Connect the exposed pad and pin 2 to the SGND  
plane separately. Connect the ground connection of  
the feedback resistive divider, the soft-start capaci-  
tor, the adjustable reset timeout capacitor, and the  
compensation network to the SGND plane. Connect  
the SGND plane and PGND plane at one point near  
PROCESS: BiCMOS  
the input bypass capacitor at V .  
IN  
4) Use the large SGND plane as a heatsink for the  
MAX5096/MAX5097. Use large PGND and LX  
planes as heatsinks for the rectifier diode and the  
inductor.  
Selector Guide  
OUTPUT  
VOLTAGE  
(V)  
SWITCHING  
FREQUENCY  
(kHz)  
PART  
MAX5096A_ _ _  
MAX5096B_ _ _  
MAX5097A_ _ _  
MAX5097B_ _ _  
+3.3/Adjustable  
+5.0/Adjustable  
+3.3/Adjustable  
+5.0/Adjustable  
135  
135  
330  
330  
______________________________________________________________________________________ 17  
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
1
K
21-0140  
2
18 ______________________________________________________________________________________  
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
2
K
21-0140  
2
______________________________________________________________________________________ 19  
40V, 600mA Buck Converters with Low-  
Quiescent-Current Linear Regulator Mode  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
XX XX  
PACKAGE OUTLINE, TSSOP, 4.40 MM BODY,  
EXPOSED PAD  
1
E
21-0108  
1
Revision History  
Pages changed at Rev 1: 1, 2, 3, 5, 20  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  
Boblet  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY