MAX509BCPP [MAXIM]

Quad, Serial 8-Bit DACs with Rail-to-Rail Outputs; 四,串行8位DAC,具有轨至轨输出
MAX509BCPP
型号: MAX509BCPP
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Quad, Serial 8-Bit DACs with Rail-to-Rail Outputs
四,串行8位DAC,具有轨至轨输出

文件: 总20页 (文件大小:235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0155; Rev 2; 1/96  
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
9/MAX510  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Single +5V or Dual ±5V Supply Operation  
The MAX509/MAX510 are quad, serial-input, 8-bit volt-  
age-output digital-to-analog converters (DACs). They  
operate with a single +5V supply or dual ±5V supplies.  
Internal, precision buffers swing rail-to-rail. The refer-  
ence input range includes both supply rails.  
Output Buffer Amplifiers Swing Rail-to-Rail  
Reference Input Range Includes Both Supply Rails  
Calibrated Offset, Gain, and Linearity (1LSB TUE)  
10MHz Serial Interface, Compatible with SPI, QSPI  
The MAX509 has four separate reference inputs, allow-  
ing each DAC's full-scale range to be set independently.  
20-pin DIP, SSOP, and SO packages are available. The  
MAX510 is identical to the MAX509 except it has two ref-  
erence inputs, each shared by two DACs. The MAX510  
is housed in space-saving 16-pin DIP and SO packages.  
(CPOL = CPHA = 0) and Microwire  
Double-Buffered Registers for Synchronous  
Updating  
Serial Data Output for Daisy-Chaining  
Power-On Reset Clears Serial Interface and Sets  
All Registers to Zero  
The serial interface is double-buffered: A 12-bit input  
shift register is followed by four 8-bit buffer registers and  
four 8-bit DAC registers. A 12-bit serial word is used to  
load data into each register. Both input and DAC regis-  
ters can be updated independently or simultaneously  
with single software commands. Two additional asyn-  
chronous control pins provide simultaneous updating  
(LDAC) or clearing (CLR) of input and DAC registers.  
______________Ord e rin g In fo rm a t io n  
TUE  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
MAX509ACPP  
MAX509BCPP  
MAX509ACWP  
MAX509BCWP  
MAX509ACAP  
MAX509BCAP  
MAX509BC/D  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
20 Plastic DIP  
20 Plastic DIP  
20 Wide SO  
20 Wide SO  
20 SSOP  
±1  
±1 1/2  
±1  
The interface is compatible with MicrowireTM and SPI/  
QSPITM  
. All digital inputs and outputs are TTL/CMOS  
±1 1/2  
±1  
compatible. A buffered data output provides for read-  
back or daisy-chaining of serial devices.  
20 SSOP  
±1 1/2  
±1 1/2  
Dice*  
Ordering Information continued on last page.  
* Dice are specified at +25°C, DC parameters only.  
_______________Fu n c t io n a l Dia g ra m s  
**Contact factory for availability and processing to MIL-STD-883.  
CLR  
LDAC  
DGND  
AGND  
V
SS  
DOUT  
V
DD  
REFB REFA  
_________________P in Co n fig u ra t io n s  
MAX509  
DECODE  
CONTROL  
TOP VIEW  
OUTA  
INPUT  
REG A  
DAC  
REG A  
DAC A  
DAC B  
DAC C  
DAC D  
OUTB  
OUTA  
OUTC  
OUTD  
V
1
2
20  
19  
OUTB  
OUTC  
OUTD  
V
SS  
3
18 DD  
12-BIT  
SHIFT  
REGISTER  
INPUT  
REG B  
DAC  
REG B  
REFB  
REFC  
4
MAX509  
17  
16  
15  
14  
13  
12  
11  
REFA  
AGND  
N.C.  
REFD  
CS  
5
INPUT  
REG C  
6
DAC  
REG C  
N.C.  
SCLK  
DIN  
7
DGND  
LDAC  
8
INPUT  
REG D  
DAC  
REG D  
SR  
CONTROL  
9
DOUT  
CLR  
10  
REFD  
DIP/SO/SSOP  
SCLK  
REFC  
CS DIN  
Pin Configurations continued at end of data sheet.  
Microwire is a trademark of National Semiconductor. SPI and QSPI are trademarks of Motorola.  
________________________________________________________________ Maxim Integrated Products  
Functional Diagrams continued at end of data sheet.  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to DGND ..............................................................-0.3V, +6V  
to AGND...............................................................-0.3V, +6V  
to DGND...............................................................-6V, +0.3V  
to AGND ...............................................................-6V, +0.3V  
20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW  
20-Pin Wide SO (derate 10.00mW/°C above +70°C) .......800mW  
20-Pin SSOP (derate 10.00mW/°C above +70°C)............800mW  
20-Pin CERDIP (derate 11.11mW/°C above +70°C) ........889mW  
Operating Temperature Ranges:  
V
DD  
V
SS  
V
SS  
V
DD  
to V .................................................................-0.3V, +12V  
SS  
Digital Input Voltage to DGND ......................-0.3V, (V + 0.3V)  
MAX5_ _ _C_ _.....................................................0°C to +70°C  
MAX5_ _ _E_ _ ..................................................-40°C to +85°C  
MAX5_ _ _MJ_ ................................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
REF_....................................................(V - 0.3V), (V + 0.3V)  
SS  
DD  
OUT_..............................................................................V , V  
DD SS  
Maximum Current into Any Pin............................................50mA  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW  
16-Pin Wide SO (derate 9.52mW/°C above +70°C) .........762mW  
16-Pin CERDIP (derate 10.00mW/°C above +70°C) ........800mW  
Note: The outputs may be shorted to V , V , or AGND if the package power dissipation is not exceeded. Typical short-circuitcurrent  
DD SS  
to AGND is 50mA. Do not bias AGND more than +1V above DGND, or more than 2.5V below DGND.  
9/MAX510  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +5V ±10%, V = 0V to -5.5V, V  
= 4V, AGND = DGND = 0V, R = 10k, C = 100pF, T = T  
to T ,  
MAX  
DD  
SS  
REF  
L
L
A
MIN  
unless otherwise noted.)  
PARAMETER  
STATIC ACCURACY  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
8
Bits  
MAX5_ _A  
MAX5_ _B  
MAX5_ _A  
MAX5_ _B  
±1  
VREF = +4V,  
= 0V or -5V ±10%  
V
SS  
VREF = -4V,  
= -5V ±10%  
±1.5  
LSB  
±1  
Total Unadjusted Error  
Differential Nonlinearity  
TUE  
DNL  
V
SS  
±1.5  
Guaranteed monotonic  
±1  
14  
16  
LSB  
MAX5_ _C  
MAX5_ _E  
Code = 00 hex,  
V
= 0V  
SS  
MAX5_ _M  
MAX5_ _C  
MAX5_ _E  
20  
Zero-Code Error  
ZCE  
mV  
±14  
±16  
Code = 00 hex,  
= -5V ±10%  
V
SS  
MAX5_ _M  
±20  
Code = 00 hex, V = 5V ±10%,  
DD  
Zero-Code-Error Supply Rejection  
1
2
mV  
V
= 0V or -5V ±10%  
SS  
Zero-Code  
Temperature Coefficient  
Code = 00 hex  
±10  
µV/°C  
mV  
Full-Scale Error  
Code = FF hex  
Code = FF hex,  
±14  
4
MAX5_ _C  
MAX5_ _E  
MAX5_ _M  
1
1
1
8
Full-Scale-Error Supply Rejection  
V
DD  
= +5V ±10%,  
mV  
V
SS  
= 0V or -5V ±10%  
12  
Full-Scale-Error  
Temperature Coefficient  
Code = FF hex  
±10  
µV/°C  
2
_______________________________________________________________________________________  
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
9/MAX510  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V ±10%, V = 0V to -5.5V, V  
= 4V, AGND = DGND = 0V, R = 10k, C = 100pF, T = T  
to T ,  
MAX  
DD  
SS  
REF  
L
L
A
MIN  
unless otherwise noted.)  
PARAMETER  
REFERENCE INPUTS  
Input Voltage Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
SS  
V
V
DD  
MAX509  
MAX510  
MAX509  
MAX510  
16  
24  
12  
Input Resistance (Note 1)  
Input Capacitance (Note 2)  
Code = 55 hex  
kΩ  
8
15  
Code = 00 hex  
pF  
30  
Channel-to-Channel Isolation  
AC Feedthrough  
(Note 3)  
(Note 4)  
-60  
-70  
dB  
dB  
DAC OUTPUTS  
Full-Scale Output Voltage  
V
SS  
V
DD  
V
VREF = 4V, load regulation 1/4LSB  
2
VREF = -4V, V = -5V ±10%,  
SS  
load regulation 1/4LSB  
2
Resistive Load  
kΩ  
VREF = V MAX5_ _C/E,  
DD  
load regulation 1LSB  
10  
VREF = V MAX5_ _M,  
DD  
load regulation 2LSB  
10  
DIGITAL INPUTS  
Input High Voltage  
Input Low Voltage  
Input Current  
V
2.4  
V
V
IH  
V
IL  
0.8  
1.0  
10  
I
IN  
V
= 0V or V  
µA  
pF  
IN  
DD  
Input Capacitance  
DIGITAL OUTPUTS  
Output High Voltage  
Output Low Voltage  
DYNAMIC PERFORMANCE  
C
(Note 5)  
IN  
V
OH  
I
= 0.2mA  
V - 0.5  
DD  
V
V
SOURCE  
V
OL  
I
= 1.6mA  
0.4  
SINK  
MAX5_ _C  
MAX5_ _E  
MAX5_ _M  
1.0  
0.7  
0.5  
Voltage-Output Slew Rate  
Positive and negative  
V/µs  
Output Settling Time (Note 6)  
Digital Feedthrough  
To 1/2LSB, 10kII 100pF load  
6
5
µs  
Code = 00 hex, all digital inputs  
nV-s  
nV-s  
from 0V to V  
DD  
Code 128127  
Digital-to-Analog Glitch Impulse  
12  
87  
VREF = 4V at 1kHz, V = 5V,  
p-p  
DD  
code = FF hex  
Signal-to-Noise + Distortion Ratio  
SINAD  
dB  
VREF = 4V at 20kHz, V = -5V ±10%  
74  
1
p-p  
SS  
Multiplying Bandwidth  
VREF = 0.5V , 3dB bandwidth  
MHz  
p-p  
Wideband Amplifier Noise  
60  
µV  
RMS  
_______________________________________________________________________________________  
3
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V ±10%, V = 0V to -5.5V, V  
= 4V, AGND = DGND = 0V, R = 10k, C = 100pF, T = T  
to T ,  
MAX  
DD  
SS  
REF  
L
L
A
MIN  
unless otherwise noted.)  
PARAMETER  
POWER SUPPLIES  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Positive Supply Voltage  
Negative Supply Voltage  
V
For specified performance  
For specified performance  
4.5  
5.5  
0
V
V
DD  
V
SS  
-5.5  
MAX5_ _C/E  
MAX5_ _M  
5
5
10  
12  
Outputs unloaded, all  
digital inputs = 0V or V  
Positive Supply Current  
I
DD  
mA  
DD  
V
= -5V ±10%, outputs  
SS  
MAX5_ _C/E  
MAX5_ _M  
5
5
10  
12  
Negative Supply Current  
I
SS  
unloaded, all digital  
inputs = 0V or V  
mA  
DD  
Note 1: Input resistance is code dependent. The lowest input resistance occurs at code = 55 hex.  
Note 2: Input capacitance is code dependent. The highest input capacitance occurs at code = 00 hex.  
Note 3: VREF = 4V , 10kHz. Channel-to-channel isolation is measured by setting the code of one DAC to FF hex and setting the  
p-p  
9/MAX510  
code of all other DACs to 00 hex.  
Note 4: VREF = 4V , 10kHz. DAC code = 00 hex.  
p-p  
Note 5: Guaranteed by design.  
Note 6: Output settling time is measured by taking the code from 00 hex to FF hex, and from FF hex to 00 hex.  
TIMING CHARACTERISTICS  
(V  
= +5V ±10%, V = 0V to -5V, V  
= 4V, AGND = DGND = 0V, C = 50pF, T = T  
to T , unless otherwise noted.)  
MAX  
DD  
SS  
REF  
L
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
40  
50  
0
TYP  
20  
MAX UNITS  
MAX5_ _C/E  
MAX5_ _M  
(Notes 7, 8)  
MAX5_ _C/E  
MAX5_ _M  
t
ns  
ns  
ns  
LDAC Pulse Width Low  
LDW  
25  
t
CS Rise to LDAC Fall Setup Time  
CLR Pulse Width Low  
CLL  
40  
50  
20  
25  
t
CLW  
SERIAL INTERFACE TIMING  
CS Fall to SCLK Setup Time  
MAX5_ _C/E  
MAX5_ _M  
40  
50  
0
t
ns  
CSS  
t
ns  
ns  
ns  
SCLK Fall to CS Rise Hold Time  
SCLK Rise to CS Rise Hold Time  
SCLK Fall to CS Fall Hold Time  
CSH2  
t
(Note 9)  
40  
0
CSH1  
t
(Note 7)  
CSH0  
MAX5_ _C/E  
MAX5_ _M  
40  
50  
0
DIN to SCLK Rise Setup Time  
DIN to SCLK Rise Hold Time  
SCLK Clock Frequency  
t
ns  
DS  
t
ns  
DH  
MAX5_ _C/E  
MAX5_ _M  
MAX5_ _C/E  
MAX5_ _M  
MAX5_ _C/E  
MAX5_ _M  
MAX5_ _C/E  
MAX5_ _M  
20  
20  
12.5  
MHz  
10  
f
CLK  
40  
50  
40  
50  
10  
10  
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
ns  
ns  
CH  
t
CL  
100  
ns  
SCLK to DOUT Valid  
t
DO  
100  
Note 7: Guaranteed by design.  
Note 8: If LDAC is activated prior to CS's rising edge, it must stay low for t  
Note 9: Minimum delay from 12th clock cycle to CS rise.  
or longer after CS goes high.  
LDW  
4
_______________________________________________________________________________________  
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
9/MAX510  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT  
vs. TEMPERATURE  
OUTPUT SOURCE CURRENT  
vs. OUTPUT VOLTAGE  
OUTPUT SINK CURRENT  
vs. (V - V  
)
OUT SS  
-25  
-20  
7
6
12  
10  
V
= VREF = +5V  
= GND  
DD  
V
SS  
DIGITAL INPUT = FF HEX  
5
4
3
2
1
0
I
8
6
4
2
0
DD  
-15  
-10  
-5  
I
SS  
V
V
SS  
= +5.5V  
= -5.5V  
DD  
V
= VREF = +5V  
= GND = 0V  
DD  
VREF = -4.75  
ALL DIGITAL INPUTS = +5V  
V
SS  
ALL DIGITAL INPUTS = 00 HEX  
0
3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0  
-60 -40 -20  
0
20 40 60 80 100 120 140  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
OUT  
(V)  
TEMPERATURE (°C)  
V
OUT  
- V (V)  
SS  
THD + NOISE AT DAC OUTPUT  
vs. REFERENCE FREQUENCY  
SUPPLY CURRENT  
vs. REFERENCE VOLTAGE  
THD + NOISE AT DAC OUTPUT  
vs. REFERENCE AMPLITUDE  
-20  
-30  
-40  
-50  
-60  
10%  
1%  
6
5
-40  
1%  
V
V
SS  
= +5V  
= -5V  
DD  
V
V
= +5V  
= -5V  
DD  
-45  
-50  
SS  
V
SS  
= 0V  
INPUT CODE = FF HEX  
FREQ = SWEPT  
INPUT CODE = FF HEX  
V
= -5V  
SS  
4
3
2
1
0
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
0.1%  
VREF = 8Vp-p  
0.1%  
0.01%  
FREQ = 20kHz  
-70  
-80  
-90  
VREF = 1Vp-p  
FREQ = 1kHz  
V
DD  
= +5V  
ALL LOGIC  
INPUTS = +5V  
0.01%  
VREF = 4Vp-p  
1k  
10  
100  
10k  
100k  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
0
2
4
6
8
10  
REFERENCE FREQUENCY (Hz)  
VREF VOLTAGE (V)  
REFERENCE AMPLITUDE (Vp-p)  
REFERENCE VOLTAGE INPUT  
FREQUENCY RESPONSE  
REFERENCE VOLTAGE INPUT  
FREQUENCY RESPONSE  
REFERENCE VOLTAGE INPUT  
FREQUENCY RESPONSE  
0
0
0
-10  
-10  
-10  
-20  
-30  
-20  
-30  
-20  
-30  
V
DD  
= +5V  
V
DD  
= +5V  
V
= +5V  
= -5V  
DD  
V
= AGND  
V
= AGND  
SS  
SS  
V
SS  
VREF = 2.5VDC + 0.5Vp-p SINE WAVE  
VREF = 2.5VDC + 0.05Vp-p SINE WAVE  
-40  
-40  
-40  
VREF = 2.5VDC + 4Vp-p SINE WAVE  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
5
Qu a d , S e ria l 8 -DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
ZERO-CODE ERROR  
vs. NEGATIVE SUPPLY VOLTAGE  
5.0  
REFERENCE FEEDTHROUGH AT 40kHz  
WORST-CASE 1LSB DIGITAL STEP CHANGE  
2V  
20mV  
V
= +5V  
DD  
VREF = +4V  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
A
A
B
B
200nS  
9/MAX510  
A = REFA, 10V  
p-p  
A = CS, 2V/div  
B = OUTA, 20mV ˜  
TIMEBASE = 200ns/div  
0
-1  
-2  
-3  
(V)  
-4  
-5  
-6  
B = OUTA, 100µV/div, UNLOADED  
TIMEBASE = 10µs/div  
= +5V, V = -5V  
DD SS  
CODE = ALL 0s  
V
SS  
V
REFERENCE FEEDTHROUGH AT 10kHz  
REFERENCE FEEDTHROUGH AT 4kHz  
50µV  
REFERENCE FEEDTHROUGH AT 400Hz  
5V  
A
A
A
B
B
B
10  
100µS  
A = REFA, 10V  
p-p  
A = REFA, 10V  
p-p  
A = REFA, 10V  
p-p  
B = OUTA, 50µV/div, UNLOADED  
TIMEBASE = 50µs/div  
B = OUTA, 50µV/div, UNLOADED  
TIMEBASE = 100µs/div  
B = OUTA, 50µV/div, UNLOADED  
TIMEBASE = 1ms/div  
6
_______________________________________________________________________________________  
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
9/MAX510  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
POSITIVE SETTLING TIME  
(V = AGND OR -5V)  
SS  
CLOCK FEEDTHROUGH  
5V  
100mV  
A
B
A
B
1µS  
A = DIGITAL INPUT, 5V/div  
B = OUT_ , 2V/div  
TIMEBASE = 1µs/div  
A = SCLK, 333kHz  
B = OUT_, 10mV/div  
TIMEBASE = 2µs/div  
V
DD  
= +5V  
REF_ = +4V  
ALL BITS OFF TO ALL BITS ON  
R = 10k, C = 100pF  
L
L
NEGATIVE SETTLING TIME  
NEGATIVE SETTLING TIME  
(V = -5V)  
(V = AGND)  
SS  
SS  
5V  
100mV  
5V  
100mV  
A
A
B
B
1µS  
1µS  
A = DIGITAL INPUT, 5V/div  
B = OUT_ , 2V/div  
A = DIGITAL INPUT, 5V/div  
B = OUT_ , 2V/div  
TIMEBASE = 1µs/div  
TIMEBASE = 1µs/div  
V
DD  
= +5V  
V = +5V  
DD  
REF_ = +4V  
REF_ = +4V  
ALL BITS ON TO ALL BITS OFF  
ALL BITS ON TO ALL BITS OFF  
R = 10k, C = 100pF  
L
L
R = 10k, C = 100pF  
L L  
_______________________________________________________________________________________  
7
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
MAX509 MAX510  
OUTB  
OUTA  
DAC B Voltage Output  
DAC A Voltage Output  
1
1
2
3
4
5
6
2
3
V
SS  
Negative Power Supply, 0V to -5V ±10%. Connect to AGND for single-supply operation.  
Reference Voltage Input for DAC B  
Reference Voltage Input for DACs A and B  
Reference Voltage Input for DAC A  
Analog Ground  
4
REFB  
REFAB  
REFA  
AGND  
N.C.  
5
6
9/MAX510  
7, 14  
8
Not Internally Connected  
DGND  
Digital Ground  
Load DAC Input (active low). Driving this asynchronous input low (level sensitive)  
transfers the contents of each input latch to its respective DAC latch.  
9
7
8
9
LDAC  
Serial Data Output. Can sink and source current. Data at DOUT is adjustable to be  
clocked out on rising or falling edge of SCLK.  
10  
11  
DOUT  
Clear DAC input (active low). Driving CLR low causes an asynchronous clear of input  
and DAC registers and sets all DAC outputs to zero.  
CLR  
DIN  
Serial Data Input. TTL/CMOS-compatible input. Data is clocked into DIN on the  
rising edge of SCLK. CS must be low for data to be clocked in.  
12  
13  
15  
10  
11  
12  
Serial Clock Input. Data is clocked in on the rising edge and clocked out on either the  
rising (default) or the falling edge.  
SCLK  
CS  
Chip-Select Input (active low). Data is shifted in and out when CS is low. Programming  
commands are executed when CS rises.  
16  
REFD  
REFCD  
REFC  
Reference Voltage Input for DAC D  
Reference Voltage Input for DACs C and D  
Reference Voltage Input for DAC C  
Positive Power Supply, +5V ±10%  
DAC D Output Voltage  
13  
17  
18  
19  
20  
14  
15  
16  
V
DD  
OUTD  
OUTC  
DAC C Output Voltage  
8
_______________________________________________________________________________________  
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
9/MAX510  
b e twe e n up d a te s . DOUT d oe s not g o into a hig h-  
impedance state if the clock or CS is high.  
_______________De t a ile d De s c rip t io n  
S e ria l In t e rfa c e  
At p owe r-on, the s e ria l inte rfa c e a nd a ll DACs a re  
cleared and set to code zero. The serial data output  
(DOUT) is set to transition on SCLK's rising edge.  
Serial data is clocked into the data registers in MSB-  
first format, with the address and configuration infor-  
ma tion p re c e d ing the a c tua l DAC d a ta . Da ta is  
clocked in on SCLK's rising edge while CS is low. Data  
at DOUT is clocked out 12 clock cycles later, either at  
SCLK's rising edge (default or mode 1) or falling edge  
(mode 0).  
The MAX509/MAX510 communicate with microproces-  
sors through a synchronous, full-duplex, 3-wire inter-  
face (Figure 1). Data is sent MSB first and can be  
transmitted in one 4-bit and one 8-bit (byte) packet or  
in one 12-bit word. If a 16-bit control word is used, the  
first four bits are ignored. A 4-wire interface adds a line  
for LDAC and allows asynchronous updating. The serial  
clock (SCLK) synchronizes the data transfer. Data is  
transmitted and received simultaneously.  
Chip select (CS) must be low to enable the DAC. If CS  
is high, the interface is disabled and DOUT remains  
unchanged. CS must go low at least 40ns before the  
first rising edge of the clock pulse to properly clock in  
the firs t b it. With CS low, d a ta is c loc ke d into the  
MAX509/MAX510's internal shift register on the rising  
edge of the external serial clock. SCLK can be driven  
at rates up to 12.5MHz.  
Fig ure 2 s hows a d e ta ile d s e ria l inte rfa c e timing .  
Please note that the clock should be low if it is stopped  
INSTRUCTION  
EXECUTED  
CS  
• • •  
• • •  
SCLK  
DIN  
• • •  
A1  
A1  
C1  
A1  
C0  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB LSB  
A1 A0 C1 C0  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB LSB  
A0  
DACA  
DACD  
DOUT  
MODE 1  
(DEFAULT)  
• • •  
A1  
A1  
A0 C1 C0 D7  
D0  
D6 D5 D4 D3 D2 D1  
A1 A0 C1 C0 D7  
D6 D5 D4 D3 D2 D1 D0  
A1  
A1  
DATA FROM PREVIOUS DATA INPUT  
DATA FROM PREVIOUS DATA INPUT  
DOUT  
MODE 0  
• • •  
D0  
A1 A0 C1 C0 D7  
D6 D5 D4 D3 D2 D1 D0  
A1 A0 C1 C0 D7  
D6 D5 D4 D3 D2 D1  
A1  
Figure 1. MAX509/MAX510 3-Wire Interface Timing  
_______________________________________________________________________________________  
9
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
t
CLL  
CS  
t
CSH2  
• • •  
t
t
CH  
CSS  
t
CSH0  
• • •  
SCLK  
DIN  
t
CL  
t
DS  
t
CSH1  
t
DH  
• • •  
9/MAX510  
t
DO  
• • •  
DOUT  
LDAC  
• • •  
NOTE: TIMING SPECIFICATION t IS RECOMMENDED TO MINIMIZE OUTPUT GLITCH, BUT IS NOT MANDATORY.  
CLL  
t
LDW  
Figure 2. Detailed Serial Interface Timing (Mode 0 Shown)  
Table 1. Serial-Interface Programming Commands  
12-Bit Serial Word  
LDAC  
Function  
A1  
A0  
C1  
C0  
D7 . . . . . . . . D0  
0
0
1
1
0
1
0
1
0
0
0
0
1
1
1
1
8-Bit DAC Data  
8-Bit DAC Data  
8-Bit DAC Data  
8-Bit DAC Data  
1
1
1
1
Load DAC A input register, DAC output unchanged.  
Load DAC B input register, DAC output unchanged.  
Load DAC C input register, DAC output unchanged.  
Load DAC D input register, DAC output unchanged.  
0
0
1
1
0
1
0
1
1
1
1
1
1
1
1
1
8-Bit DAC Data  
8-Bit DAC Data  
8-Bit DAC Data  
8-Bit DAC Data  
1
1
1
1
Load input and DAC register A.  
Load input and DAC register B.  
Load input and DAC register C.  
Load input and DAC register D.  
X
X
0
1
0
0
0
0
8-Bit DAC Data  
X X X X X X X X  
X
X
Update all DACs from shift register.  
No Operation (NOP), shifts data in shift register.  
LDAC” Command, all DACs updated from respective  
input registers.  
0
1
1
X
1
1
1
0
0
0
X X X X X X X X  
X X X X X X X X  
X X X X X X X X  
X
X
X
Mode 1, DOUT clocked out on rising edge of SCLK  
(default). All DACs updated from respective input  
registers.  
1
Mode 0, DOUT clocked out on falling edge of SCLK.  
All DACs updated from input registers.  
0
10 ______________________________________________________________________________________  
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
9/MAX510  
Serial Input Data Format and Control Codes  
The 12-bit serial input format shown in Figure 3 com-  
prises two DAC address bits (A1, A0), two control bits  
(C1, C0) and eight bits of data (D0...D7).  
Update All DACs from Shift Registers  
A1 A0 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0  
x
0
0
0
8-Bit DAC Data  
(LDAC = x)  
The 4-bit address/control code configures the DAC as  
shown in Table 1.  
All four DAC registers are updated with shift-register  
data. This command allows all DACs to be set to any  
analog value within the reference range. This command  
can be used to substitute CLR if code 00 hex is pro-  
grammed, which clears all DACs.  
This is the first bit shifted in  
MSB  
LSB  
● ● ●  
A1  
A0  
C1 C0  
D7 D1D6 D0  
DOUT  
DIN  
No Operation (NOP)  
Control and  
Address bits  
8-bit DAC data  
A1 A0 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0  
x
1
0
0
x
x
x
x
x
x
x
x
Figure 3. Serial Input Format  
(LDAC = x)  
Load Input Register, DAC Registers Unchanged  
(Single Update Operation)  
The NOP command (no operation) allows data to be shift-  
ed through the MAX509/MAX510 shift register without  
affecting the input or DAC registers. This is useful in daisy  
chaining (also see the Daisy-Chaining Devices section).  
For this command, the data bits are "Don't Cares." As an  
example, three MAX509/MAX510s are daisy-chained (A, B  
and C), and DAC A and DAC C need to be updated. The  
36-bit-wide command would consist of one 12-bit word for  
device C, followed by an NOP instruction for device B and  
a third 12-bit word with data for device A. At CS's rising  
edge, only device B is not updated.  
A1 A0 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0  
Address  
0
1
8-Bit Data  
(LDAC = H)  
When performing a single update operation, A1 and A0  
select the respective input register. At the rising edge  
of CS, the selected input register is loaded with the cur-  
re nt s hift-re g is te r d a ta . All DAC outp uts re ma in  
unchanged. This preloads individual data in the input  
register without changing the DAC outputs.  
“LDAC” Command (Software)  
A1 A0 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0  
Load Input and DAC Registers  
0
x
1
0
x
x
x
x
x
x
x
x
A1 A0 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0  
(LDAC = x)  
Address  
1
1
8-Bit Data  
All DAC registers are updated with the contents of their  
respective input registers at CS's rising edge. With the  
exception of using CS to execute, this performs the  
same function as the asynchronous LDAC.  
(LDAC = H)  
This command directly loads the selected DAC register  
at CS's rising edge. A1 and A0 set the DAC address.  
Current shift-register data is placed in the selected  
input and DAC registers.  
Set DOUT Phase – SCLK Rising (Mode 1, Default)  
A1 A0 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0  
For example, to load all four DAC registers simultaneously  
with individual settings (DAC A = 1V, DAC B = 2V, DAC  
C = 3V and DAC D = 4V), five commands are required.  
First, perform four single input register update opera-  
tions. Next, perform an LDACcommand as a fifth  
command. All DACs will be updated from their respec-  
tive input registers at the rising edge of CS.  
1
1
1
0
x
x
x
x
x
x
x
x
(LDAC = x)  
Mode 1 resets the serial output DOUT to transition at  
SCLK's ris ing e d g e . This is the MAX509/MAX510s  
d e fa ult s e tting a fte r the s up p ly volta g e ha s b e e n  
applied.  
The command also loads all DAC registers with the con-  
tents of their respective input registers, and is identical to  
the “LDACcommand.  
______________________________________________________________________________________ 11  
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
Set DOUT Phase – SCLK Falling (Mode 0)  
A1 A0 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0  
SCLK  
DIN  
SK  
SO  
1
0
1
0
x
x
x
x
x
x
x
x
MAX509  
MAX510  
(LDAC = x)  
MICROWIRE  
PORT  
DOUT  
CS  
SI  
This command resets DOUT to transition at SCLK's falling  
edge. Once this command is issued, the phase of DOUT is  
latched and will not change except on power-up or if the  
specific command is issued that sets the phase to rising  
edge.  
I/0  
THE DOUT-SI CONNECTION IS NOT REQUIRED FOR WRITING TO THE  
MAX509/MAX510, BUT MAY BE USED FOR READ-BACK PURPOSES.  
The same command also updates all DAC registers with  
the contents of their respective input registers, identical to  
the “LDAC” command.  
Figure 4. Connections for Microwire  
LDAC Operation (Hardware)  
LDAC is typically used in 4-wire interfaces (Figure 7).  
LDAC allows asynchronous hardware control of the DAC  
outputs and is level-sensitive. With LDAC low, the DAC reg-  
isters are transparent and any time an input register is  
updated, the DAC output immediately follows.  
9/MAX510  
DOUT  
DIN  
MISO  
MOSI  
MAX509  
MAX510  
SPI  
PORT  
Clear DACs with CLR  
Strobing the CLR pin low causes an asynchronous clear of  
input and DAC registers and sets all DAC outputs to zero.  
Similar to the LDAC pin, CLR can be invoked at any time,  
typically when the device is not selected (CS = H). When  
the DAC data is all zeros, this function is equivalent to the  
"Update all DACs from Shift Registers" command.  
SCLK  
CS  
SCK  
I/0  
CPOL = 0, CPHA = 0  
THE DOUT-MISO CONNECTION IS NOT REQUIRED FOR WRITING TO THE  
MAX509/MAX510, BUT MAY BE USED FOR READ-BACK PURPOSES.  
Digital Inputs and Outputs  
Digital inputs and outputs are compatible with both TTL and  
Figure 5. Connections for SPI  
5V CMOS logic. The power-supply current (I ) depends  
DD  
The MAX509/MAX510 c a n inte rfa c e with Inte l's  
80C5X/80C3X family in mode 0 if the SCLK clock polarity is  
inverted. More universally, if a serial port is not available,  
three lines from one of the parallel ports can be used for bit  
manipulation.  
on the input logic levels. Using CMOS logic to drive CS,  
SCLK, DIN, CLR and LDAC turns off the internal level trans-  
lators and minimizes supply currents.  
Serial Data Output  
DOUT is the output of the internal shift register. DOUT can be  
programmed to clock out data on SCLK's falling edge (mode  
0) or rising edge (mode 1). In mode 0, output data lags the  
input data by 12.5 clock cycles, maintaining compatibility with  
Microwire, SPI, and QSPI. In mode 1, output data lags the input  
by 12 clock cycles. On power-up, DOUT defaults to mode 1  
timing. DOUT never three-states; it always actively drives either  
high or low and remains unchanged whenCS is high.  
Digital feedthrough at the voltage outputs is greatly mini-  
mized by operating the serial clock only to update the regis-  
ters. Also see the Clock Feedthrough photo in the Typical  
Operating Characteristics section. The clock idle state is low.  
Daisy-Chaining Devices  
Any number of MAX509/MAX510s can be daisy-chained by  
connecting the DOUT pin of one device to the DIN pin of the  
following device in the chain. The NOP instruction (Table 1)  
allows data to be passed from DIN to DOUT without chang-  
ing the input or DAC registers of the passing device. A three-  
wire inte rfa c e up d a te s d a is y-c ha ine d or ind ivid ua l  
MAX509/MAX510s simultaneously by bringing CS high.  
Interfacing to the Microprocessor  
The MAX509/MAX510 are Microwire, SPI, and QSPI compati-  
ble. For SPI and QSPI, clear the CPOL and CPHA configura-  
tion bits (CPOL = CPHA = 0). The SPI/QSPI CPOL = CPHA  
= 1 configuration can also be used if the DOUT output is  
ignored.  
12 ______________________________________________________________________________________  
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
9/MAX510  
MAX509  
MAX510  
MAX509  
MAX510  
MAX509  
MAX510  
SCLK  
DIN  
CS  
SCLK  
DIN  
CS  
SCLK  
DIN  
CS  
SCLK  
DIN  
CS  
DOUT  
DOUT  
DOUT  
TO OTHER  
SERIAL DEVICES  
MAX509  
MAX510  
SCLK  
DIN  
CS  
SCLK  
DIN  
CS  
Figure 6. Daisy-chained or individual MAX509/MAX510s are simultaneously updated by bringing CS high. Only three wires are  
required.  
DIN  
SCLK  
LDAC  
CS1  
TO OTHER  
SERIAL  
DEVICES  
CS2  
CS3  
CS  
CS  
CS  
MAX509  
MAX510  
MAX509  
MAX510  
MAX509  
MAX510  
LDAC  
LDAC  
LDAC  
SCLK  
DIN  
SCLK  
DIN  
SCLK  
DIN  
Figure 7. Multiple MAX509/MAX510 DACs sharing one DIN line. Simultaneously update by strobing LDAC, or specifically update by  
enabling individual CS.  
______________________________________________________________________________________ 13  
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
dependent: 15pF typical for the MAX509 and 30pF  
typical for the MAX510.  
The output voltage for any DAC can be represented by  
a digitally programmable voltage source as:  
R
R
R
OUT_  
VOUT = (NB x VREF) / 256  
where NB is the numerical value of the DAC's binary  
input code.  
2R  
2R  
D0  
2R  
D5  
2R  
D6  
2R  
D7  
Output Buffer Amplifiers  
All MAX509/MAX510 volta g e outp uts a re inte rna lly  
buffered by precision unity-gain followers that slew at  
REF_  
AGND  
up to 1V/µs. The outputs can swing from V to V  
.
SS  
DD  
With a 0V to +4V (or +4V to 0V) output transition, the  
amplifier outputs will settle to 1/2LSB in typically 6µs  
when loaded with 10kin parallel with 100pF.  
SHOWN FOR ALL 1 ON DAC  
Figure 8. DAC Simplified Circuit Diagram  
9/MAX510  
The buffer amplifiers are stable with any combination of  
resistive loads 2kand capacitive loads 300pF.  
If multiple devices share a common DIN line, Figure 7's  
configuration provides simultaneous update by strob-  
ing LDAC low. CS1, CS2, CS3... are driven separately,  
thus controlling which data are written to devices 1, 2, 3....  
__________Ap p lic a t io n s In fo rm a t io n  
P o w e r S u p p ly a n d  
Re fe re n c e Op e ra t in g Ra n g e s  
The MAX509/MAX510 are fully specified to operate with  
An a lo g S e c t io n  
DAC Operation  
The MAX509/MAX510 contain four matched voltage-  
output DACs. The DACs are inverted R-2R ladder net-  
works that convert 8-bit digital words into equivalent  
analog output voltages in proportion to the applied ref-  
erence voltages. Each DAC in the MAX509 has a sepa-  
rate reference input, while the two reference inputs in  
the MAX510 each share a pair of DACs. The two refer-  
ence inputs permit different full-scale output voltage  
ranges for each pair of DACs. A simplified diagram of  
one of the four DACs is shown in Figure 8.  
V
= 5V ±10% and V = 0V to -5.5V. 8-bit perfor-  
DD  
SS  
mance is guaranteed for both single- and dual-supply  
operation. The zero-code output error is less than 14mV  
when operating from a single +5V supply.  
The DACs work well with reference voltages from V  
to V . The reference voltage is referred to AGND.  
SS  
DD  
The preferred power-up sequence is to apply V and  
then V , but bringing up both supplies at the same  
time is also acceptable. In either case, the voltage  
applied to REF should not exceed V  
SS  
DD  
during power-  
DD  
up or at any other time. If proper power sequencing is  
not p os s ib le , c onne c t a n e xte rna l Sc hottky d iod e  
Reference Input  
The MAX509/MAX510 c a n b e us e d for multip lying  
applications. The reference accepts both DC and AC  
signals. The voltage at each REF input sets the full-  
scale output voltage for its respective DAC(s). If the ref-  
e re nc e volta g e is p os itive , b oth the MAX509 a nd  
MAX510 can be operated from a single supply. If dual  
supplies are used, the reference input can vary from  
between V and AGND to ensure compliance with the  
SS  
Absolute Maximum Ratings. Do not apply signals to  
the digital inputs before the device is fully powered up.  
P o w e r-S u p p ly Byp a s s in g  
a n d Gro u n d Ma n a g e m e n t  
In single-supply operation (AGND = DGND = V  
=
SS  
V
SS  
to V , but is always referred to AGND. The input  
0V), AGND, DGND a nd V  
s hould b e c onne c te d  
DD  
SS  
impedance at REF is code dependent, with the lowest  
value (16kfor the MAX509 and 8kfor the MAX510)  
occurring when the input code is 55 hex or 0101 0101.  
The maximum value, practically infinity, occurs when  
the input code is 00 hex. Since the REF input imped-  
ance is code dependent, the DAC's reference sources  
must have a low output impedance (no more than 32Ω  
for the MAX509 and 16for the MAX510) to maintain  
output linearity. The REF input capacitance is also code  
together in a "star" ground at the chip. This ground  
should then return to the highest quality ground avail-  
able. Bypass V  
with a 0.1µF capacitor, located as  
DD  
close to V  
and DGND as possible. In dual-supply  
DD  
operation, bypass V to AGND with 0.1µF.  
SS  
Careful PC board layout minimizes crosstalk among  
DAC outp uts , re fe re nc e inp uts , a nd d ig ita l inp uts .  
Figures 9 and 10 show suggested circuit board layouts  
to minimize crosstalk.  
14 ______________________________________________________________________________________  
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
9/MAX510  
SYSTEM GND  
SYSTEM GND  
OUTC  
OUTD  
OUTB  
OUTA  
OUTC  
OUTD  
OUTB  
OUTA  
V
DD  
V
SS  
V
REFC  
REFD  
REFB  
REFA  
AGND  
V
SS  
DD  
REFCD  
REFAB  
AGND  
Figure 9. Suggested MAX509 PC Board Layout for Minimizing  
Crosstalk (Bottom View)  
Figure 10. Suggested MAX510 PC Board Layout for Minimizing  
Crosstalk (Bottom View)  
Un ip o la r-Ou t p u t , 2 -Qu a d ra n t Mu lt ip lic a t io n  
In unipolar operation, the output voltages and the refer-  
ence input(s) are the same polarity. Figures 11 and 12  
show the MAX509/MAX510 unipolar configurations.  
Both devices can be operated from a single supply if  
the reference inputs are positive. If dual supplies are  
Bip o la r-Ou t p u t , 2 -Qu a d ra n t Mu lt ip lic a t io n  
Bipolar-output, 2-quadrant multiplication is achieved by  
offsetting AGND positively or negatively. Table 3 shows  
the bipolar code.  
AGND can be biased above DGND to provide an arbi-  
trary nonzero output voltage for a 0 input code, as  
shown in Figure 13. The output voltage at OUTA is:  
used, the reference input can vary from V to V  
.
SS  
DD  
Table 2 shows the unipolar code.  
V
OUTA  
= V  
+ (NB/256)(V ),  
IN  
BIAS  
Table 3. Bipolar Code Table  
Table 2. Unipolar Code Table  
DAC CONTENTS  
DAC CONTENTS  
ANALOG  
OUTPUT  
ANALOG  
OUTPUT  
MSB  
LSB  
MSB  
LSB  
127  
255  
256  
1 1 1 1  
1 1 1 1  
+V  
REF  
(
––––  
128  
)
)
1 1 1 1  
1 1 1 1  
+V  
(
(
––––  
)
)
REF  
1
128  
129  
1 0 0 0  
1 0 0 0  
0 1 1 1  
0 0 0 1  
0 0 0 0  
1 1 1 1  
+V  
(
––––  
1 0 0 0  
1 0 0 0  
0 1 1 1  
0 0 0 1  
0 0 0 0  
1 1 1 1  
+V  
––––  
REF  
REF  
256  
0V  
V
REF  
128  
–––  
2
+V  
(
––––  
)
= +  
REF  
256  
1
-V  
(
––––)  
128  
REF  
127  
+V  
(
––––  
256  
)
)
REF  
127  
0 0 0 0  
0 0 0 0  
0 0 0 1  
0 0 0 0  
-V  
(
––––  
)
REF  
128  
1
0 0 0 0  
0 0 0 0  
0 0 0 1  
0 0 0 0  
-8  
+V  
(
––––  
REF  
256  
128  
128  
-V  
(
––––  
)
= -V  
REF  
REF  
0V  
1
Note: 1LSB = (V ) (2 ) = +VREF (––––)  
REF  
256  
______________________________________________________________________________________ 15  
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
REFERENCE INPUTS (V TO V  
)
DD  
+5V  
18  
V
DD  
SS  
16  
+5V  
18  
V
DD  
5
4
17  
5
REFA REFB REFC REFD  
REFA  
2
OUTA  
DAC A  
2
OUTA  
DAC A  
V
IN  
6
1
AGND  
OUTB  
OUTC  
OUTD  
DAC B  
DAC C  
DAC D  
MAX509  
SERIAL  
INTERFACE  
NOT SHOWN  
V
BIAS  
V
SS  
DGND  
8
3
20  
-5V (OR GND)  
+5V  
9/MAX510  
14  
V
DD  
4
REFAB  
19  
2
DGND  
8
V
AGND  
6
SS  
OUTA  
DAC A  
3
V
IN  
-5V (OR GND)  
5
MAX509  
AGND  
MAX510  
Figure 11. MAX509 Unipolar Output Circuit  
V
DGND  
6
V
BIAS  
SS  
3
-5V (OR GND)  
SERIAL INTERFACE NOT SHOWN  
REFERENCE INPUTS (V TO V  
SS  
)
DD  
+5V  
14  
4
V
DD  
REFAB  
Figure 13. MAX509/MAX510 AGND Bias Circuits (Positive  
Offset)  
2
OUTA  
DAC A  
whe re NB re p re s e nts the d ig ita l inp ut word . Sinc e  
AGND is common to all four DACs, all outputs will be  
1
offset by V  
in the same manner. Do not bias AGND  
BIAS  
OUTB  
OUTC  
OUTD  
DAC B  
DAC C  
DAC D  
more than +1V above DGND, or more than 2.5V below  
DGND.  
SERIAL  
INTERFACE  
NOT SHOWN  
Figures 14 and 15 illustrate the generation of negative  
offsets with bipolar outputs. In these circuits, AGND is  
biased negatively (up to -2.5V with respect to DGND) to  
provide an arbitrary negative output voltage for a 0  
input code. The output voltage at OUTA is:  
16  
15  
OUTA = -(R2/R1)(2.5V) + (NB/256)(2.5V)(R2/R1+1)  
whe re NB re p re s e nts the d ig ita l inp ut word . Sinc e  
AGND is common to all four DACs, all outputs will be  
DGND  
6
V
REFCD  
AGND  
5
SS  
offs e t b y V  
in the s a me ma nne r. Ta b le 3, with  
3
13  
BIAS  
V
= 2.5V, shows the digital code vs. output voltage  
REF  
-5V (OR GND)  
for Fig ure 14 a nd 15's c irc uits with R1 = R2. The  
ICL7612 op amp is chosen because its common-mode  
range extends to both supply rails.  
MAX510  
Figure 12. MAX510 Unipolar Output Circuit  
16 ______________________________________________________________________________________  
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
9/MAX510  
REFERENCE INPUTS  
+5V  
0.1µF  
5
4
17  
16  
18  
V
DD  
+5V  
SERIAL  
INTERFACE  
NOT SHOWN  
MAX509  
0.1µF  
2
1
OUTA  
OUTB  
DAC A  
R1  
330k  
0.1%  
R2  
330k  
0.1%  
MAX873  
DAC B  
DAC C  
DAC D  
+2.5V  
+5V  
20  
19  
0.1µF  
0.1µF  
OUTC  
OUTD  
7
2
6
3
8
1
ICL7611A  
DGND  
8
V
AGND  
6
SS  
3
-5V  
0.1µF  
-5V  
Figure 14. MAX509 AGND Bias Circuit (Negative Offset)  
4 -Qu a d ra n t Mu lt ip lic a t io n  
Each DAC output may be configured for 4-quadrant  
multiplication using Figure 16 and 17's circuit. One op  
amp and two resistors are required per channel. With  
R1 = R2:  
VOUT = VREF [2(NB/256)-1]  
where NB represents the digital word in DAC register A.  
The recommended value for resistors R1 and R2 is  
330k(±0.1%). Table 3 shows the digital code vs. out-  
put voltage for Figure 16 and 17's circuit.  
______________________________________________________________________________________ 17  
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
+5V  
14  
REFERENCE INPUTS  
13  
4
+5V  
0.1µF  
V
DD  
SERIAL  
INTERFACE  
MAX510  
0.1µF  
2
1
NOT SHOWN  
OUTA  
DAC A  
2
R1  
330k  
0.1%  
R2  
330k  
0.1%  
6
MAX873  
4
OUTB  
DAC B  
DAC C  
DAC D  
+2.5V  
+5V  
16  
15  
0.1µF  
0.1µF  
OUTC  
OUTD  
7
2
3
6
8
9/MAX510  
1
ICL7611A  
V
AGND  
5
DGND  
6
SS  
3
-5V  
0.1µF  
-5V  
Figure 15. MAX510 AGND Bias Circuit (Negative Offset)  
REFERENCE INPUTS (V TO V  
)
DD  
SS  
+5V  
0.1µF  
+5V  
18  
V
DD  
5
4
17 16  
R2  
R1  
0.1µF  
MAX509  
ICL7612A*  
+5V  
V
OUT  
2
DAC A  
OUTA  
0.1µF  
-5V  
1
SERIAL  
INTERFACE  
NOT SHOWN  
DAC B  
DAC C  
DAC D  
OUTB  
0.1µF  
R2  
20  
OUTC  
R1  
ICL7612A*  
V
OUT  
19  
OUTD  
0.1µF  
V
AGND  
6
DGND  
SS  
-5V  
3
8
0.1µF  
*CONNECT ICL7612A PIN 8 TO AGND  
AGND OR -5V  
Figure 16. MAX509 Bipolar Output Circuit  
18 ______________________________________________________________________________________  
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
9/MAX510  
REFERENCE INPUTS  
+5V  
+5V  
14  
V
4
13  
0.1µF  
0.1µF  
DD  
R1  
MAX510  
R2  
ICL7612A*  
V
OUT  
2
DAC A  
OUTA  
0.1µF  
0.1µF  
-5V  
+5V  
1
SERIAL  
INTERFACE  
NOT SHOWN  
DAC B  
DAC C  
DAC D  
OUTB  
16  
R1  
OUTC  
R2  
ICL7612A*  
V
OUT  
15  
OUTD  
0.1µF  
V
DGND  
6
SS  
AGND  
5
-5V  
3
0.1µF  
*CONNECT ICL7612A PIN 8 TO AGND  
AGND OR -5V  
Figure 17. MAX510 Bipolar Output Circuit  
____P in Co n fig u ra t io n s (c o n t in u e d )  
__Fu n c t io n a l Dia g ra m s (c o n t in u e d )  
CLR  
DOUT LDAC  
DGND  
AGND  
V
SS  
V
DD  
REFB REFA  
TOP VIEW  
MAX509  
DECODE  
CONTROL  
OUTA  
OUTB  
OUTA  
OUTC  
OUTD  
V
1
2
3
4
5
6
7
8
16  
15  
INPUT  
REG A  
DAC  
REG A  
DAC A  
DAC B  
DAC C  
DAC D  
V
SS  
14 DD  
OUTB  
OUTC  
OUTD  
REFAB  
REFCD  
MAX510  
13  
12  
11  
10  
9
12-BIT  
SHIFT  
REGISTER  
INPUT  
REG B  
DAC  
REG B  
AGND  
DGND  
LDAC  
DOUT  
CS  
SCLK  
DIN  
CLR  
INPUT  
REG C  
DAC  
REG C  
DIP/Wide SO  
INPUT  
REG D  
DAC  
REG D  
SR  
CONTROL  
REFD  
SCLK  
REFC  
CS DIN  
______________________________________________________________________________________ 19  
Qu a d , S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
___________________Ch ip To p o g ra p h y  
MAX509/MAX510  
TUE  
PART  
TEMP. RANGE PIN-PACKAGE  
OUTB  
OUTD  
V
SS  
(LSB)  
OUTA  
OUTC  
V
DD  
MAX509AEPP  
MAX509BEPP  
MAX509AEWP  
MAX509BEWP  
MAX509AEAP  
MAX509BEAP  
MAX509AMJP  
MAX509BMJP  
MAX510ACPE  
MAX510BCPE  
MAX510ACWE  
MAX510BCWE  
MAX510AEPE  
MAX510BEPE  
MAX510AEWE  
MAX510BEWE  
MAX510AMJE  
MAX510BMJE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
20 Plastic DIP  
20 Plastic DIP  
20 Wide SO  
20 Wide SO  
20 SSOP  
±1  
REFC  
(REFCD)  
±1 1/2  
±1  
REFB  
(REFAB)  
REFD  
(REFCD)  
±1 1/2  
±1  
CS  
REFA  
(REFAB)  
20 SSOP  
±1 1/2  
±1  
0. 121"  
(3. 07mm)  
-55°C to +125°C 20 CERDIP**  
-55°C to +125°C 20 CERDIP**  
AGND  
±1 1/2  
±1  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
16 Plastic DIP  
16 Plastic DIP  
16 Wide SO  
16 Wide SO  
16 Plastic DIP  
16 Plastic DIP  
16 Wide SO  
16 Wide SO  
±1 1/2  
±1  
9/MAX510  
DGND  
SCLK  
±1 1/2  
±1  
LDAC DOUT  
CLR DIN  
0. 128"  
(3. 25mm)  
±1 1/2  
±1  
±1 1/2  
±1  
NOTE: LABELS IN ( ) ARE FOR MAX510 ONLY.  
-55°C to +125°C 16 CERDIP**  
-55°C to +125°C 16 CERDIP**  
TRANSISTOR COUNT: 2235;  
SUBSTRATE CONNECTED TO V  
±1 1/2  
.
DD  
**Contact factory for availability and processing to MIL-STD-883.  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.068  
MAX  
0.078  
0.008  
0.015  
0.009  
0.289  
0.212  
MIN  
1.73  
0.05  
0.25  
0.13  
7.07  
5.20  
MAX  
1.99  
0.21  
0.38  
0.22  
7.33  
5.38  
A
e
A1 0.002  
B
C
D
E
e
0.010  
0.005  
0.278  
0.205  
E
H
0.0256 BSC  
0.65 BSC  
H
L
0.301  
0.311  
0.037  
8˚  
7.65  
0.55  
0˚  
7.90  
0.95  
0.022  
0˚  
α
8˚  
21-0003A  
D
α
A
0.127mm  
0.004in.  
20-PIN PLASTIC  
SHRINK  
SMALL-OUTLINE  
PACKAGE  
A1  
B
C
L
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX509BCWP

Quad, Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX509BCWP+T

D/A Converter, 4 Func, Serial Input Loading, 6us Settling Time, PDSO20, SOP-20
MAXIM

MAX509BCWP-T

D/A Converter, 4 Func, Serial Input Loading, 6us Settling Time, PDSO20, SOP-20
MAXIM

MAX509BEAP

Quad, Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX509BEAP+

D/A Converter, 4 Func, Serial Input Loading, 6us Settling Time, PDSO20, SSOP-20
MAXIM

MAX509BEAP+T

D/A Converter, 4 Func, Serial Input Loading, 6us Settling Time, PDSO20, SSOP-20
MAXIM

MAX509BEAP-T

D/A Converter, 4 Func, Serial Input Loading, 6us Settling Time, PDSO20, SSOP-20
MAXIM

MAX509BEPP

Quad, Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX509BEWP

Quad, Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX509BMJP

Quad, Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM
LITTELFUSE

MAX510

Quad, Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM