MAX5104EEE+T [MAXIM]

D/A Converter, 1 Func, Serial Input Loading, 15us Settling Time, PDSO16, QSOP-16;
MAX5104EEE+T
型号: MAX5104EEE+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 1 Func, Serial Input Loading, 15us Settling Time, PDSO16, QSOP-16

光电二极管 转换器
文件: 总12页 (文件大小:126K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1587; Rev 0; 11/99  
Lo w -P o w e r, Du a l, Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
w it h S e ria l In t e rfa c e  
MAX5104  
Ge n e ra l De s c rip t io n  
The MAX5104 low-power, serial, voltage-output, dual  
12-bit digital-to-analog converter (DAC) consumes only  
500µA from a single +5V supply. This device features  
____________________________Fe a t u re s  
12-Bit Dual DAC with Internal Gain of +2V/V  
Rail-to-Rail Output Swing  
®
Rail-to-Rail output swing and is available in a space-  
12µs Settling Time  
saving 16-pin QSOP package. To maximize the dynamic  
range, the DAC output amplifiers are configured with an  
internal gain of +2V/V.  
+5V Single-Supply Operation  
Low Quiescent Current  
500µA (normal operation)  
2µA (power-down mode)  
The 3-wire serial interface is SPI™/QSPI™/MICROWIRE™  
compatible. Each DAC has a double-buffered input  
organized as an input register followed by a DAC register,  
which allows the input and DAC registers to be updated  
independently or simultaneously with a 16-bit serial  
word. Additional features include programmable power-  
down (2µA), hardware power-down lockout (PDL), a  
separate reference voltage input for each DAC that  
accepts AC and DC signals, and an active-low clear  
input (CL) that resets all registers and DACs to zero.  
These devices provide a programmable logic pin for  
added functionality, and a serial-data output pin for  
daisy chaining.  
SPI/QSPI/MICROWIRE Compatible  
Space-Saving 16-Pin QSOP Package  
Power-On Reset Clears Registers and DACs to Zero  
Adjustable Output Offset  
Ord e rin g In fo rm a t io n  
PIN-  
PACKAGE  
INL  
(LSB)  
PART  
TEMP. RANGE  
________________________Ap p lic a t io n s  
Industrial Process Control  
MAX5104CEE  
MAX5104EEE  
0°C to +70°C  
16 QSOP  
16 QSOP  
±4  
±4  
-40°C to +85°C  
Remote Industrial Controls  
Pin Configuration appears at end of data sheet.  
Digital Offset and Gain Adjustment  
Microprocessor-Controlled Systems  
Motion Control  
Automatic Test Equipment (ATE)  
Fu n c t io n a l Dia g ra m  
V
DD  
CL  
PDL  
DGND  
DOUT  
AGND  
REFA  
OSA  
R
DECODE  
CONTROL  
R
OUTA  
OSB  
DAC  
REG A  
INPUT  
REG A  
DAC A  
16-BIT  
SHIFT  
R
REGISTER  
MAX5104  
R
SR  
CONTROL  
OUTB  
DAC  
REG B  
INPUT  
REG B  
DAC B  
REFB  
LOGIC  
OUTPUT  
UPOH  
CS  
DIN  
SCLK  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Lo w -P o w e r, Du a l, Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
w it h S e ria l In t e rfa c e  
ABSOLUTE MAXIMUM RATINGS  
V
to AGND............................................................-0.3V to +6V  
to DGND ...........................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin QSOP (derate 8.30mW/°C above +70°C).......667mW  
Operating Temperature Ranges  
MAX5104CEE ...................................................0°C to +70°C  
MAX5104EEE.................................................-40C° to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
V
DD  
AGND to DGND..................................................................±0.3V  
OSA, OSB to AGND.......................(V - 4V) to (V + 0.3V)  
REF_, OUT_ to AGND.................................-0.3V to (V + 0.3V)  
AGND  
DD  
DD  
Digital Inputs (SCLK, DIN, CS,  
CL, PDL) to DGND...........................................(-0.3V to +6V)  
Digital Outputs (DOUT, UPO) to DGND.....-0.3V to (V + 0.3V)  
DD  
Maximum Current into Any Pin .........................................±20mA  
MAX5104  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +5V ±10%, V  
= V  
= +2.048V, R = 10k, C = 100pF, T = T  
to T , unless otherwise noted. Typical values  
MAX  
DD  
REFA  
REFB  
L
L
A
MIN  
are at T = +25°C (OS_ connected to AGND for a gain of +2V/V).)  
A
PARAMETER  
STATIC PERFORMANCE  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
Bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
(Note 1)  
±4  
±1  
DNL  
Guaranteed monotonic  
Code = 10  
LSB  
V
OS  
±10  
mV  
Offset Tempco  
TCV  
Normalized to 2.048V  
4
-0.2  
4
ppm/°C  
LSB  
OS  
Gain Error  
±8  
Gain-Error Tempco  
Normalized to 2.048V  
ppm/°C  
V
Power-Supply  
DD  
PSRR  
REF  
4.5V V 5.5V  
20  
600  
µV/V  
DD  
Rejection Ratio  
REFERENCE INPUT  
Reference Input Range  
Reference Input Resistance  
0
V
- 1.4  
V
DD  
R
Minimum with code 1554 hex  
Input code = 1FFE hex,  
14  
20  
kΩ  
REF  
MULTIPLYING-MODE PERFORMANCE  
Reference 3dB Bandwidth  
300  
-82  
75  
kHz  
dB  
V
REF_  
= 0.67Vp-p at 2.5V  
DC  
Input code = 0000 hex,  
= (V - 1.4Vp-p), f = 1kHz  
Reference Feedthrough  
V
REF_  
DD  
Signal-to-Noise plus  
SINAD  
Input code = 1FFE hex,  
V = 1Vp-p at 1.25V , f = 25kHz  
REF_  
dB  
Distortion Ratio  
DC  
DIGITAL INPUTS  
Input High Voltage  
Input Low Voltage  
Input Hysteresis  
V
3
V
V
CL, PDL, CS, DIN, SCLK  
CL, PDL, CS, DIN, SCLK  
IH  
V
IL  
0.8  
±1  
V
HYS  
200  
0.001  
8
mV  
µA  
pF  
Input Leakage Current  
Input Capacitance  
I
IN  
V
= 0 to V  
IN DD  
C
IN  
2
_______________________________________________________________________________________  
Lo w -P o w e r, Du a l, Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
w it h S e ria l In t e rfa c e  
MAX5104  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +5V ±10%, V  
= V  
= +2.048V, R = 10k, C = 100pF, T = T  
to T , unless otherwise noted. Typical values  
MAX  
DD  
REFA  
REFB  
L
L
A
MIN  
are at T = +25°C (OS_ connected to AGND for a gain of +2V/V).)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL OUTPUTS (DOUT, UPO)  
Output High Voltage  
V
I
= 2mA  
V - 0.5  
DD  
V
V
OH  
SOURCE  
Output Low Voltage  
V
OL  
I
= 2mA  
0.13  
0.40  
SINK  
DYNAMIC PERFORMANCE  
Voltage Output Slew Rate  
Output Settling Time  
SR  
0.75  
15  
V/µs  
µs  
To 1/2LSB of full-scale, V  
= 4V  
SCLK  
STEP  
Output Voltage Swing  
OSA or OSB Input Resistance  
Time Required to Exit Shutdown  
Digital Feedthrough  
Rail-to-rail (Note 2)  
0 to V  
V
DD  
R
24  
34  
25  
5
kΩ  
µs  
OS_  
nVs  
nVs  
CS = V , SCLK = 100kHz, V  
= 5Vp-p  
DD  
Digital Crosstalk  
5
POWER SUPPLIES  
Positive Supply Voltage  
Power-Supply Current  
Power-Supply Current  
V
4.5  
5.5  
V
DD  
I
DD  
(Note 3)  
(Note 3)  
0.5  
2
0.65  
mA  
I
10  
±1  
µA  
µA  
DD(SHDN)  
in Shutdown  
Reference Current in Shutdown  
TIMING CHARACTERISTICS  
SCLK Clock Period  
0
t
CP  
(Note 4)  
100  
40  
ns  
ns  
ns  
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
CH  
t
40  
CL  
CS Fall to SCLK Rise  
Setup Time  
t
40  
0
ns  
ns  
CSS  
SCLK Rise to CS Rise  
Hold Time  
t
CSH  
SDI Setup Time  
SDI Hold Time  
t
40  
0
ns  
ns  
DS  
t
DH  
SCLK Rise to DOUT  
Valid Propagation Delay  
t
t
C
C
= 200pF  
= 200pF  
80  
80  
ns  
ns  
DO1  
DO2  
LOAD  
LOAD  
SCLK Fall to DOUT  
Valid Propagation Delay  
t
10  
40  
ns  
ns  
ns  
SCLK Rise to CS Fall Delay  
CS Rise to SCLK Rise Hold  
CS Pulse Width High  
CS0  
CS1  
t
t
100  
CSW  
Note 1: Accuracy is specified from code 6 to code 4095.  
Note 2: Accuracy is better than 1LSB for V greater than 6mV and less than V - 50mV. Guaranteed by PSRR test at the  
OUT_  
DD  
end points.  
Note 3: Digital inputs are set to either V or DGND, code = 0000 hex, R = .  
DD  
L
Note 4: SCLK minimum clock period includes the rise and fall times.  
_______________________________________________________________________________________  
3
Lo w -P o w e r, Du a l, Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
w it h S e ria l In t e rfa c e  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5V, R = 10k, C = 100pF, OS_ pins connected to AGND, T = +25°C, unless otherwise noted.)  
DD  
L
L
A
REFERENCE VOLTAGE INPUT  
FREQUENCY RESPONSE  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
SUPPLY CURRENT vs. TEMPERATURE  
0
700  
650  
600  
550  
500  
450  
400  
-30  
V
= +1Vp-p AT 2.5V  
DC  
-2  
-4  
REF  
CODE = 1FFE (HEX)  
CODE = 1FFE (HEX)  
-40  
-50  
-60  
-70  
MAX5104  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
CODE = 0000 (HEX)  
V
= +0.67Vp-p AT 2.5V  
DC  
REF  
CODE = 1FFE (HEX)  
V
REF  
= +2.048V  
R =   
L
-80  
1
370  
740  
1110  
1480  
1850  
-55 -35 -15  
5
25 45 65 85 105 125  
1
10  
FREQUENCY (kHz)  
100  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
FULL-SCALE ERROR vs. RESISTIVE LOAD  
REFERENCE FEEDTHROUGH AT 1kHz  
-50  
0.50  
0.25  
0
V
REF  
= +2.048V  
V
= +3.6Vp-p AT 1.88V  
DC  
REF  
CODE = 0000 (HEX)  
-60  
-70  
-80  
-0.25  
-90  
-0.50  
-0.75  
-1.00  
-1.25  
-1.50  
-100  
-110  
-120  
-130  
-140  
-150  
0.1  
1
10  
100  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
FREQUENCY (kHz)  
R (k)  
L
SHUTDOWN CURRENT  
vs. TEMPERATURE  
OUTPUT FFT PLOT  
0
6
5
4
3
2
1
0
V
= +1V  
V
= +2.45Vp-p AT 1.225V  
REF  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
REF DC  
f = 1kHz  
CODE = 1FFE (HEX)  
NOTE: RELATIVE TO FULL SCALE  
0.5  
1.6  
2.7  
3.8  
4.9  
6.0  
-55 -35 -15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
4
_______________________________________________________________________________________  
Lo w -P o w e r, Du a l, Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
w it h S e ria l In t e rfa c e  
MAX5104  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, R = 10k, C = 100pF, OS_ pins connected to AGND, T = +25°C, unless otherwise noted.)  
DD  
L
L
A
DYNAMIC RESPONSE RISE TIME  
DYNAMIC RESPONSE FALL TIME  
CS  
CS  
5V/div  
5V/div  
OUT_  
1V/div  
OUT_  
1V/div  
2µs/div  
2µs/div  
V
REF  
= +2.048V  
V
REF  
= +2.048V  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
MAJOR-CARRY TRANSITION  
0.60  
0.55  
CODE = 1FFE (HEX)  
CS  
2V/div  
0.50  
0.45  
0.40  
CODE = OOOO (HEX)  
OUT_  
50mV/div  
AC-COUPLED  
4.50  
4.75  
5.00  
5.25  
5.50  
5µs/div  
SUPPLY VOLTAGE (V)  
TRANSITION FROM 1000 (HEX) TO 0FFE (HEX)  
ANALOG CROSSTALK  
DIGITAL FEEDTHROUGH  
SCLK  
5V/div  
OUTA  
5V/div  
OUTA  
500µV/div  
AC-COUPLED  
OUTB  
200µV/div  
AC-COUPLED  
250µs/div  
2.5µs/div  
V
REF  
= +2.048V, GAIN = +2V/V, CODE = 1FFE HEX  
_______________________________________________________________________________________  
5
Lo w -P o w e r, Du a l, Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
w it h S e ria l In t e rfa c e  
_____________________P in De s c rip t io n  
OS_  
R
R
PIN  
1
NAME  
AGND  
OUTA  
OSA  
FUNCTION  
Analog Ground  
2
DAC A Output Voltage  
DAC A Offset Adjustment  
Reference for DAC A  
OUT_  
R
R
R
3
4
REFA  
2R  
2R  
D0  
2R  
D10  
2R  
D11  
2R  
D12  
MAX5104  
Active-Low Clear Input. Resets all reg-  
isters to zero. DAC outputs go to 0V.  
5
CL  
6
7
Chip-Select Input  
Serial-Data Input  
CS  
REF_  
DIN  
AGND  
8
SCLK  
DGND  
DOUT  
UPO  
Serial-Clock Input  
Digital Ground  
Figure 1. Simplified DAC Circuit Diagram  
9
10  
11  
Serial-Data Output  
User-Programmable Output  
V
OUT  
= (V  
· NB / 4096) · 2  
REF  
where NB is the numeric value of the DACs binary input  
code (0 to 4095) and V is the reference voltage.  
REF  
Power-Down Lockout. The device can-  
not be powered down when PDL is low.  
12  
PDL  
The reference input impedance ranges from 14k(1554  
hex) to several gigohms (with an input code of 0000  
hex). The reference input capacitance is code depen-  
dent and typically ranges from 15pF with an input code  
of all zeros to 50pF with a full-scale input code.  
13  
14  
15  
16  
REFB  
OSB  
Reference for DAC B  
DAC B Offset Adjustment  
DAC B Output Voltage  
Positive Power Supply  
OUTB  
Ou t p u t Am p lifie r  
The MAX5104s output amplifiers have internal resistors  
that provide for a gain of +2V/V when OS_ is connected  
to AGND. These resistors are trimmed to minimize gain  
error. The output amplifiers have a typical slew rate of  
0.75V/µs and settle to 1/2LSB within 15µs, with a load  
of 10kin parallel with 100pF. Loads less than 2kΩ  
degrade performance.  
V
DD  
_______________De t a ile d De s c rip t io n  
The MAX5104 dual, 12-bit, voltage-output DAC is easily  
configured with a 3-wire serial interface. The device  
includes a 16-bit data-in/data-out shift register, and  
each DAC has a double-buffered input composed of an  
inp ut re g is te r a nd a DAC re g is te r (s e e Func tiona l  
Diagram). In addition, trimmed internal resistors produce  
an internal gain of +2V/V that maximizes output voltage  
swing. The amplifiers offset-adjust pin allows for a DC  
shift in the DACs output.  
The OS_ pin can be used to produce an adjustable off-  
set voltage at the output. For instance, to achieve a 1V  
offset, apply -1V to the OS_ pin to produce an output  
range from 1V to (1V + V  
· 2). Note that the DACs  
REF  
output range is still limited by the maximum output voltage  
specification.  
Both DACs use an inverted R-2R ladder network that  
produces a weighted voltage proportional to the input  
voltage value. Each DAC has its own reference input to  
facilitate independent full-scale values. Figure 1 depicts  
a simplified circuit diagram of one of the two DACs.  
P o w e r-Do w n Mo d e  
The MAX5104 features a software-programmable shut-  
down mode that reduces the typical supply current to  
2µA. The two DACs can be powered down indepen-  
dently, or simultaneously using the appropriate pro-  
g ra mming c omma nd . Ente r p owe r-d own mod e b y  
writing the appropriate input-control word (Table 1). In  
power-down mode, the reference inputs and amplifier  
outputs become high impedance, and the serial inter-  
face remains active. Data in the input registers is saved,  
Re fe re n c e In p u t s  
The reference inputs accept both AC and DC values  
with a voltage range extending from 0 to (V - 1.4V).  
DD  
Determine the output voltage using the following equa-  
tion (OS_ = AGND):  
6
_______________________________________________________________________________________  
Lo w -P o w e r, Du a l, Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
w it h S e ria l In t e rfa c e  
MAX5104  
Table 1. Serial-Interface Programming Commands  
16-BIT SERIAL WORD  
FUNCTION  
D11.......................D0  
A0 C1  
C0  
S0  
(MSB)  
(LSB)  
0
1
0
1
0
0
1
1
1
1
0
0
12-bit DAC data  
0
0
0
0
Load input register A; DAC registers are unchanged.  
Load input register B; DAC registers are unchanged.  
Load input register A; all DAC registers are updated.  
Load input register B; all DAC registers are updated.  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
Load all DAC registers from the shift register  
(start up both DACs with new data).  
0
1
1
12-bit DAC data  
0
Update both DAC registers from their respective input registers  
(start up both DACs with data previously stored in the input registers).  
1
1
0
0
1
0
0
1
0
XXXXXXXXXXXX  
XXXXXXXXXXXX  
0
0
0
Shut down both DACs (provided PDL = 1).  
Update DAC register A from input register A  
(start up DAC A with data previously stored in input register A).  
0 0 1 X XXXXXXXX  
Update DAC register B from input register B  
(start up DAC B with data previously stored in input register B).  
0
0
0
1 0 1 X XXXXXXXX  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1 1 0 X XXXXXXXX  
1 1 1 X XXXXXXXX  
0 1 0 X XXXXXXXX  
0 1 1 X XXXXXXXX  
1 0 0 1 XXXXXXXX  
1 0 0 0 XXXXXXXX  
0 0 0 X XXXXXXXX  
0
0
0
0
0
0
0
Power Down DAC A (provided PDL = 1).  
Power Down DAC B (provided PDL = 1).  
UPO goes low (default).  
UPO goes high.  
Mode 1, DOUT clocked out on SCLK’s rising edge.  
Mode 0, DOUT clocked out on SCLK’s falling edge (default).  
No operation (NOP).  
X = Dont care  
Note: D11, D10, D9, and D8 become control bits when A0, C1, and C0 = 0. S0 is a sub-bit, always zero.  
allowing the MAX5104 to recall the output state prior to  
entering power-down when returning to normal mode.  
Exit power-down by recalling the previous condition or  
b y up d a ting the DAC with ne w informa tion. Whe n  
SCLK  
SK  
returning to normal operation (exiting power-down),  
wait 20µs for output stabilization.  
MICROWIRE  
PORT  
MAX5104  
DIN  
CS  
SO  
I/O  
S e ria l In t e rfa c e  
The MAX5104s 3-wire serial interface is compatible  
with both MICROWIRE (Figure 2) and SPI/QSPI (Figure 3)  
serial-interface standards. The 16-bit serial input word  
consists of 1 address bit, 2 control bits, 12 bits of data  
(MSB to LSB), and 1 sub-bit as shown in Figure 4. The  
address and control bits determine the MAX5104s  
response, as outlined in Table 1.  
Figure 2. Connections for MICROWIRE  
_______________________________________________________________________________________  
7
Lo w -P o w e r, Du a l, Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
w it h S e ria l In t e rfa c e  
The MAX5104s d ig ita l inp uts a re d oub le buffe re d,  
which allows any of the following: loading the input reg-  
+5V  
ister(s) without updating the DAC register(s), updating  
the DAC register(s) from the input register(s), or updating  
the input and DAC registers concurrently. The address  
and control bits allow the DACs to act independently.  
SS  
Send the 16-bit data as one 16-bit word (QSPI) or two  
8-bit packets (SPI, MICROWIRE), with CS low during  
DIN  
MOSI  
SCK  
this period. The address and control bits determine  
which register will be updated, and the state of the reg-  
isters when exiting power-down. The 3-bit address/con-  
trol determines the following:  
MAX5104  
SPI/QSPI  
PORT  
MAX5104  
SCLK  
• Registers to be updated  
CS  
I/O  
• Clock edge on which data is to be clocked out via the  
serial-data output (DOUT)  
CPOL = 0, CPHA = 0  
• State of the user-programmable logic output  
• Configuration of the device after power-down  
Figure 3. Connections for SPI/QSPI  
The general timing diagram of Figure 5 illustrates how  
data is acquired. Driving CS low enables the device to  
receive data; otherwise, the interface control circuitry is  
disabled. With CS low, data at DIN is clocked into the  
register on the rising edge of SCLK. As CS goes high,  
data is latched into the input and/or DAC registers,  
depending on the address and control bits. The maximum  
clock frequency guaranteed for proper operation is  
10MHz. Figure 6 shows a more detailed timing diagram  
of the serial interface.  
MSB...................................................................................LSB  
16 Bits of Serial Data  
Sub  
Bit  
Address Bits  
A0  
Control Bits  
MSB...Data Bits...LSB  
C1, C0  
D11.......................D0  
12 Data Bits  
S0  
0
1 Address/2 Control Bits  
Figure 4. Serial-Data Format  
CS  
COMMAND  
EXECUTED  
SCLK  
1
8
9
16  
S0  
C1  
DIN  
A0  
C0 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 5. Serial-Interface Timing Diagram  
8
_______________________________________________________________________________________  
Lo w -P o w e r, Du a l, Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
w it h S e ria l In t e rfa c e  
MAX5104  
t
CSW  
CS  
t
CP  
t
CSH  
t
t
CH  
CSS  
t
t
CL  
CSO  
t
CS1  
SCLK  
DIN  
t
DS  
t
DH  
Figure 6. Detailed Serial-Interface Timing Diagram  
SCLK  
SCLK  
SCLK  
MAX5104  
MAX5104  
MAX5104  
DIN  
CS  
DOUT  
DIN  
CS  
DOUT  
DIN  
CS  
DOUT  
TO OTHER  
SERIAL DEVICES  
Figure 7. Daisy Chaining MAX5104s  
DIN  
SCLK  
CS1  
CS2  
TO OTHER  
SERIAL DEVICES  
CS3  
CS  
CS  
CS  
MAX5104  
MAX5104  
MAX5104  
SCLK  
DIN  
SCLK  
DIN  
SCLK  
DIN  
Figure 8. Multiple MAX5104s Sharing a Common DIN Line  
_______________________________________________________________________________________  
9
Lo w -P o w e r, Du a l, Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
w it h S e ria l In t e rfa c e  
S e ria l-Da t a Ou t p u t  
OS_  
+5V/+3V  
The serial-data output, DOUT, is the internal shift registers  
output. DOUT allows for daisy chaining of devices and  
data readback. The MAX5104 can be programmed to  
shift data out of DOUT on SCLK’s falling edge (Mode 0)  
or on the rising edge (Mode 1). Mode 0 provides a lag  
of 16 clock cycles, which maintains compatibility with  
SPI/QSPI and MICROWIRE interfaces. In Mode 1, the  
output data lags 15.5 clock cycles. On power-up, the  
device defaults to Mode 0.  
REF_  
V
DD  
R
R
MAX5104  
DAC_  
OUT_  
MAX5104  
AGND  
DGND  
Us e r-P ro g ra m m a b le Lo g ic Ou t p u t  
User-programmable logic output (UPO) allows an external  
device to be controlled through the serial interface  
(Table 1), thereby reducing the number of microcontroller  
I/O pins required. On power-up, UPO is low.  
GAIN = +2V/V  
Figure 9. Unipolar Output Circuit (Rail-to-Rail)  
P o w e r-Do w n Lo c k o u t In p u t  
The power-down lockout (PDL) pin disables software  
shutdown when low. When in power-down, transitioning  
PDL from high to low wakes up the part with the output  
set to the state prior to power-down. PDL can also be  
used to asynchronously wake up the device.  
OS_  
+5V/+3V  
REF_  
V
OS  
V
DD  
R
R
MAX5104  
Da is y-Ch a in in g De vic e s  
Any number of MAX5104s can be daisy-chained by  
connecting the DOUT pin of one device to the DIN pin  
of the following device in the chain (Figure 7).  
DAC _  
OUT_  
AGND  
DGND  
Since the MAX5104s DOUT pin has an internal active  
pull-up, the DOUT sink/source capability determines the  
time required to discharge/charge a capacitive load.  
See the digital output V and V specifications in the  
Electrical Characteristics.  
OH  
OL  
Figure 10. Setting OS_ for Output Offset  
Table 2. Unipolar Code Table (Gain = +2)  
Figure 8 shows an alternate method of connecting several  
MAX5104s. In this configuration, the data bus is common  
to all devices; data is not shifted through a daisy chain.  
More I/O lines are required in this configuration because  
a dedicated chip-select input (CS) is required for each IC.  
DAC CONTENTS  
ANALOG OUTPUT  
MSB  
LSB  
4095  
4096  
1 1 1 1 1 1 1 1 11 1 1 (0 )  
1 0 0 0 0 0 0 0 00 0 1 (0 )  
1 0 0 0 0 0 0 0 00 0 0 (0 )  
0 1 1 1 1 1 1 1 11 1 1 (0 )  
0 0 0 0 0 0 0 0 0 0 0 1 (0 )  
+V  
REF  
2
2
__________Ap p lic a t io n s In fo rm a t io n  
2049  
4096  
Un ip o la r Ou t p u t  
Figure 9 shows the MAX5104 configured for unipolar,  
rail-to-rail operation with a gain of +2V/V. The MAX5104  
can produce a 0 to 4.096V output with a 2.048V reference  
(Figure 9). Table 2 lists the unipolar output codes. An  
offset to the output can be achieved by connecting a  
voltage to OS_, as shown in Figure 10. By applying  
+V  
REF  
2048  
4096  
+V  
REF  
2 = V  
REF  
2047  
+V  
REF  
2
2
4096  
V
OS_  
= -1V, the output values will range between 1V  
and (1V + V  
· 2).  
REF  
1
+V  
REF  
4096  
Bip o la r Ou t p u t  
The MAX5104 can be configured for a bipolar output  
(Figure 11). The output voltage is given by the equation  
(OS_ = AGND):  
0 0 0 0 0 0 0 0 00 0 0 (0 )  
0V  
Note: ( ) are for the sub-bit.  
10 ______________________________________________________________________________________  
Lo w -P o w e r, Du a l, Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
w it h S e ria l In t e rfa c e  
MAX5104  
V
= V  
[((2 · NB) / 4096) - 1]  
Ha rm o n ic Dis t o rt io n a n d No is e  
The total harmonic distortion plus noise (THD+N) is typ-  
ically less than -78dB at full scale with a 1Vp-p input  
swing at 5kHz.  
OUT  
REF  
where NB represents the numeric value of the DACs  
binary input code. Table 3 shows digital codes and the  
corresponding output voltage for Figure 11s circuit.  
Dig it a l Ca lib ra t io n a n d  
Th re s h o ld S e le c t io n  
Us in g a n AC Re fe re n c e  
In applications where the reference has an AC signal  
component, the MAX5104 has multiplying capabilities  
within the reference input voltage range specifications.  
Figure 12 shows a technique for applying a sinusoidal  
input to REF_, where the AC signal is offset before  
being applied to the reference input.  
Figure 13 shows the MAX5104 in a digital calibration  
application. With a bright-light value applied to the pho-  
todiode (on), the DAC is digitally ramped until it trips  
the comparator. The microprocessor (µP) stores this  
high” calibration value. Repeat the process with a dim  
light (off) to obtain the dark current calibration.  
Table 3. Bipolar Code Table  
+5V/  
+3V  
DAC CONTENTS  
ANALOG OUTPUT  
MSB  
LSB  
+5V/+3V  
26k  
AC  
MAX495  
2047  
2048  
REFERENCE  
INPUT  
+V  
1 1 1 1 1 1 1 1 1 1 1 1 (0 )  
REF  
1
1 0 0 0 0 0 0 0 0 0 0 1 (0 )  
1 0 0 0 0 0 0 0 0 0 0 0 (0 )  
0 1 1 1 1 1 1 1 1 1 1 1 (0 )  
+V  
REF  
10k  
V
DD  
REF  
2048  
R
500mVp-p  
OS_  
0V  
R
DGND  
V+  
1
-V  
REF  
OUT_  
2048  
DAC_  
2047  
4096  
0 0 0 0 0 0 0 0 0 0 0 1 (0 )  
+V  
REF  
2
MAX5104  
AGND  
2048  
2048  
-V  
= - V  
REF  
0 0 0 0 0 0 0 0 0 0 0 0 (0 )  
REF  
Figure 12. AC Reference Input Circuit  
Note: ( ) are for the sub-bit.  
+5V/+3V  
REF_  
10k  
10k  
V+  
PHOTODIODE  
REF_  
+5V/+3V  
OS_  
OS_  
V
DD  
V
DD  
R
R
R
R
V+  
MAX5104  
MAX5104  
V
OUT  
10k  
V
OUT  
OUT_  
µP  
DAC _  
AGND  
DAC _  
OUT_  
V-  
DIN  
10k  
DGND  
V-  
R
DGND  
AGND  
PULLDOWN  
Figure 13. Digital Calibration  
______________________________________________________________________________________ 11  
Figure 11. Bipolar Output Circuit  
Lo w -P o w e r, Du a l, Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
w it h S e ria l In t e rfa c e  
V
DD  
OSA  
R
R
MAX5104  
REFA  
V
IN  
R1  
R3  
OUTA  
OUTB  
CS  
INPUT  
REG A  
DAC  
REG A  
DACA  
DACB  
R2  
SHIFT  
REGISTER  
SCLK  
1
INPUT  
REG B  
DAC  
REG B  
V
OUT  
DIN  
R4  
REFB  
R
R
V
REF  
V
OUT  
=
GAIN  
OFFSET  
[ ] [  
]
OSB  
2NA  
R2  
R4  
1+  
)(R1+R2)( ) ( 2NB )(R4 )  
=
V
V
REF  
IN  
(
[
R3 ] [  
]
4096  
4096 R3  
NA IS THE NUMERIC VALUE OF THE INPUT CODE FOR DACA.  
NB IS THE NUMERIC VALUE OF THE INPUT CODE FOR DACB.  
AGND  
DGND  
Figure 14. Digital Control of Gain and Offset  
The µP then programs the DAC to set an output voltage  
at the midpoint of the two calibrated values. Applications  
include tachometers, motion sensing, automatic readers,  
and liquid-clarity analysis.  
P in Co n fig u ra t io n  
TOP VIEW  
AGND  
OUTA  
OSA  
REFA  
CL  
1
2
3
4
5
6
7
8
16 V  
DD  
Dig it a l Co n t ro l o f Ga in a n d Offs e t  
The two DACs can be used to control the offset and gain  
for curve-fitting nonlinear functions, such as transducer  
linearization or analog compression/expansion applica-  
tions. The input signal is used as the reference for the  
gain-adjust DAC, whose output is summed with the output  
from the offset-adjust DAC. The relative weight of each  
DAC output is adjusted by R1, R2, R3, and R4 (Figure 14).  
15 OUTB  
14 OSB  
13 REFB  
12 PDL  
11 UPO  
10 DOUT  
MAX5104  
CS  
DIN  
P o w e r-S u p p ly Co n s id e ra t io n s  
SCLK  
9 DGND  
On power-up, the input and DAC registers clear (set to  
zero code). For rated performance, V  
should be at  
QSOP  
REF_  
least 1.4V below V . Bypass the power supply with a  
DD  
4.7µF capacitor in parallel with a 0.1µF capacitor to  
AGND. Minimize lead lengths to reduce lead inductance.  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 3053  
SUBSTRATE CONNECTED TO AGND  
Gro u n d in g a n d La yo u t Co n s id e ra t io n s  
Digital and AC transient signals on AGND can create  
noise at the output. Connect AGND to the highest quality  
ground available. Use proper grounding techniques,  
such as a multilayer board with a low-inductance ground  
plane. Carefully lay out the traces between channels to  
reduce AC cross-coupling and crosstalk. Wire-wrapped  
boards and sockets are not recommended. If noise  
becomes an issue, shielding may be required.  
P a c k a g e In fo rm a t io n  
Package information is available on Maxims website:  
www.maxim-ic.com.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5104EEE-T

D/A Converter, 1 Func, Serial Input Loading, 15us Settling Time, PDSO16, QSOP-16
MAXIM

MAX5104XXXXX

RADIATION HARD 4096 x 1 BIT STATIC RAM
ZARLINK

MAX5105

Nonvolatile, Quad, 8-Bit DACs
MAXIM

MAX5105-MAX5106

Nonvolatile, Quad, 8-Bit DACs
MAXIM

MAX5105EEP

Nonvolatile, Quad, 8-Bit DACs
MAXIM

MAX5105EEP+T

暂无描述
MAXIM

MAX5105EEP-T

D/A Converter, 1 Func, Serial Input Loading, 6us Settling Time, PDSO20, 0.150 INCH, 0.025 INCH PITCH, QSOP-20
MAXIM

MAX5105EWP

Nonvolatile, Quad, 8-Bit DACs
MAXIM

MAX5105EWP+T

D/A Converter, 1 Func, Serial Input Loading, 6us Settling Time, PDSO20, SOIC-20
MAXIM

MAX5105EWP-T

D/A Converter, 1 Func, Serial Input Loading, 6us Settling Time, PDSO20, SOIC-20
MAXIM

MAX5106

Nonvolatile, Quad, 8-Bit DACs
MAXIM

MAX5106EEE

Nonvolatile, Quad, 8-Bit DACs
MAXIM