MAX5128_07 [MAXIM]

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm レDFN Package; 128抽头,非易失,线性变化数字电位器,采用2mm x 2mmμDFN封装
MAX5128_07
型号: MAX5128_07
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm レDFN Package
128抽头,非易失,线性变化数字电位器,采用2mm x 2mmμDFN封装

电位器
文件: 总14页 (文件大小:308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3929; Rev 2; 6/07  
128-Tap, Nonvolatile, Linear-Taper Digital  
Potentiometer in 2mm x 2mm µDFN Package  
General Description  
Features  
The MAX5128 nonvolatile, single, linear-taper, digital  
potentiometer performs the function of a mechanical  
potentiometer, but replaces the mechanics with a sim-  
ple 2-wire digital interface. The MAX5128 performs the  
same function as a discrete potentiometer or variable  
resistor and features 128 taps and 22kΩ end-to-end  
resistance. The MAX5128 also features an ultra-small,  
2mm x 2mm µDFN package and low 0.5µA (typ) stand-  
by supply current, making this device ideal for portable  
applications. The MAX5128 operates from a +2.7V to  
+5.25V power supply. An integrated nonvolatile memo-  
ry recalls the programmed wiper position of the digital  
potentiometer. A simple 2-wire up/down interface pro-  
grams the wiper position. The digital potentiometer pro-  
vides a low 5ppm/°C ratiometric temperature coefficient  
and is specified over the extended -40°C to +85°C tem-  
perature range.  
Ultra-Small, 2mm x 2mm, 8-Pin µDFN Package  
Power-On Recall of Wiper Position from  
Nonvolatile Memory  
22kΩ End-to-End Resistance  
128 Tap Positions  
5ppm/°C Ratiometric Temperature Coefficient  
1.5µA (max) Standby Supply Current  
+2.7V to +5.25V Single Supply Operation  
80,000 Wiper Store Cycles  
50-Year Wiper Data Retention  
Applications  
Ordering Information  
V
Adjustment for LCD Panels  
COM  
TEMP  
RANGE  
PIN-  
TOP  
PKG  
PART  
Backlight Adjustment  
PACKAGE MARK CODE  
LED Bias Adjustment  
MAX5128ELA+ -40°C to +85°C 8 µDFN  
AAF  
L822-1  
+Denotes a lead-free package.  
Power-Supply Modules  
Fiber-Module Bias Setting  
Bias Setting for Radios  
Portable Consumer Electronics  
Functional Diagram  
H
V
CC  
POR  
7-BIT NV MEMORY  
128-POSITION  
DECODER  
W
128  
TAPS  
7
GND  
L
7
UP  
DN  
SERIAL  
INTERFACE  
MAX5128  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
128-Tap, Nonvolatile, Linear-Taper Digital  
Potentiometer in 2mm x 2mm µDFN Package  
ABSOLUTE MAXIMUM RATINGS  
CC  
UP and DN to GND ....................................-0.3V to (V  
H, L, and W to GND....................................-0.3V to (V  
Maximum Continuous Current into H, L, and W .............. 0.5mA  
Maximum Continuous Current into All Other Pins ............ 50mA  
V
to GND...........................................................-0.3V to +6.0V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
+ 0.3V)  
+ 0.3V)  
CC  
CC  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin µDFN (derate 4.7mW/°C above +70°C) ........376.5mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +2.7V to +5.25V, H = V , L = GND, T = -40°C to +85°C. Typical values are at V = +5.0V, T = +25°C, unless otherwise noted.)  
CC  
CC  
A
CC  
A
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC PERFORMANCE (voltage-divider mode)  
Resolution  
N
7
Bits  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
INL  
DNL  
(Note 2)  
(Note 2)  
1.0  
1.0  
End-to-End Resistance  
Temperature Coefficient  
TC  
50  
5
ppm/°C  
ppm/°C  
R
Ratiometric Resistance  
Temperature Coefficient  
Full-Scale Error  
Zero-Scale Error  
FSE  
ZSE  
-3  
0
0
LSB  
LSB  
+2  
DC PERFORMANCE (variable-resistor mode)  
Integral Nonlinearity  
INL  
(Note 3)  
(Note 3)  
1.75  
1
LSB  
LSB  
Differential Nonlinearity  
DNL  
DC PERFORMANCE (resistor characteristics)  
Wiper Resistance  
R
C
(Note 4)  
0.6  
20  
22  
0.8  
27  
kΩ  
pF  
kΩ  
W
W
Wiper Capacitance  
End-to-End Resistance  
DIGITAL INPUTS (UP, DN)  
R
16  
HL  
3.4V V  
2.7V V  
(Note 5)  
5.25V  
2.4  
CC  
CC  
Input-High Voltage (Note 5)  
V
V
IH  
0.7 x  
< 3.4V  
V
CC  
Input-Low Voltage  
V
V
IL  
0.8  
1
Input Leakage Current  
Input Capacitance  
I
µA  
pF  
IN  
C
5
IN  
DYNAMIC CHARACTERISTICS  
Wiper -3dB Bandwidth  
f
(Note 6)  
400  
kHz  
%
3dB  
V
= 0.3V  
, f = 1kHz, wiper set to  
H
RMS  
THD Plus Noise  
THD+N  
0.02  
midscale  
2
_______________________________________________________________________________________  
128-Tap, Nonvolatile, Linear-Taper Digital  
Potentiometer in 2mm x 2mm µDFN Package  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +2.7V to +5.25V, H = V , L = GND, T = -40°C to +85°C. Typical values are at V = +5.0V, T = +25°C, unless otherwise noted.)  
CC  
CC  
A
CC  
A
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NONVOLATILE MEMORY RELIABILITY  
Data Retention  
T
A
T
A
T
A
= +85°C  
= +25°C  
= +85°C  
50  
Years  
80,000  
50,000  
Endurance  
Stores  
POWER SUPPLY  
Supply Voltage  
V
2.70  
5.25  
400  
V
CC  
During nonvolatile write only;  
digital inputs = V or GND  
Average Programming Current  
I
220  
µA  
PG  
CC  
During nonvolatile write only;  
digital inputs = V or GND  
Peak Programming Current  
Standby Current  
I
4
mA  
µA  
PK  
CC  
I
Digital inputs = V  
or GND, T = +25°C  
0.5  
1.5  
CC  
CC  
A
TIMING CHARACTERISTICS  
(V = +2.7V to +5.25V, H = V , L = GND, T = -40°C to +85°C. Typical values are at V = +5.0V, T = +25°C, unless otherwise noted.)  
CC  
CC  
A
CC  
A
(See Figures 1, 2, 3, and 4).  
PARAMETER  
ANALOG SECTION  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Wiper Settling Time  
t
(Note 7)  
500  
ns  
S
DIGITAL SECTION  
UP or DN Pulse-Width High  
UP or DN Pulse-Width Low  
UP or DN Glitch Immunity  
t
80  
80  
20  
ns  
ns  
ns  
PWH  
t
PWL  
t
IMMU  
UP Fall to DN Rise Setup or DN  
Fall to UP Rise Setup  
t
t
80  
80  
80  
ns  
ns  
ns  
MS1  
MS2  
Before Entering NVM-Write  
Mode, UP Fall to UP Rise  
UP Rise to DN Rise Setup when  
Entering NVM-Write  
t
WS  
UP Fall to DN Fall Hold or DN Fall  
to UP Fall Hold during NVM-  
Write  
t
0
ns  
WH  
_______________________________________________________________________________________  
3
128-Tap, Nonvolatile, Linear-Taper Digital  
Potentiometer in 2mm x 2mm µDFN Package  
TIMING CHARACTERISTICS (continued)  
(V = +2.7V to +5.25V, H = V , L = GND, T = -40°C to +85°C. Typical values are at V = +5.0V, T = +25°C, unless otherwise noted.)  
CC  
CC  
A
CC  
A
(See Figures 1, 2, 3, and 4).  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NVM-Write Mode Pulse-Width  
High  
t
80  
ns  
WP  
Write NV Register Busy Time  
Power-Up Settling Time  
t
14  
ms  
µs  
BUSY  
t
(Note 8)  
2
ACC  
Note 1: All devices are production tested at T = +25°C and are guaranteed by design for T = -40°C to +85°C.  
A
A
Note 2: The DNL and INL are measured with the potentiometer configured as a voltage-divider with H = V  
and L = GND. The  
CC  
wiper terminal is unloaded and measured with a high input-impedance voltmeter.  
Note 3: The DNL and INL are measured with the potentiometer configured as a variable resistor. H is unconnected and L = GND.  
For the +5V condition, the wiper terminal is driven with a source current of 200µA and for the +2.7V condition, the wiper ter-  
minal is driven with a source current of 100µA.  
Note 4: The wiper resistance is measured using the source currents given in Note 3.  
Note 5: The device draws higher supply current when the digital inputs are driven with voltages between (V  
0.5V). See Supply Current vs. Digital Input Voltage in the Typical Operating Characteristics.  
- 0.5V) and (GND +  
CC  
Note 6: Wiper at midscale with a 10pF load, L = GND, an AC source is applied to H, and the output is measured as 3dB lower than  
the DC W/H value in dB.  
Note 7: Wiper-settling time is the worst-case 0 to 50% rise time measured between consecutive wiper positions. H = V , L = GND,  
CC  
and the wiper terminal is unloaded and measured with a 10pF oscilloscope probe. See the Tap-to-Tap Switching Transient  
in the Typical Operating Characteristics section.  
Note 8: Power-up settling time is measured from the time V  
= 2.7V to the wiper settling to 1 LSB of the final value.  
CC  
4
_______________________________________________________________________________________  
128-Tap, Nonvolatile, Linear-Taper Digital  
Potentiometer in 2mm x 2mm µDFN Package  
Typical Operating Characteristics  
(V  
= +5.0V, T = +25°C, unless otherwise noted.)  
A
CC  
INTEGRAL NONLINEARITY  
vs. CODE (VOLTAGE-DIVIDER)  
0.12  
INTEGRAL NONLINEARITY  
vs. CODE (VOLTAGE-DIVIDER)  
INTEGRAL NONLINEARITY  
vs. CODE (VOLTAGE-DIVIDER)  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
= 2.7V, T = +85°C  
A
V
= 2.7V, T = -40°C  
V
= 2.7V, T = +25°C  
CC A  
CC  
CC  
A
0.10  
0.08  
0.06  
0.04  
0.02  
0
-0.02  
-0.04  
-0.06  
-0.02  
-0.04  
-0.06  
-0.02  
-0.04  
-0.06  
0
12 24 36 48 60 72 84 96 108 120  
CODE  
0
12 24 36 48 60 72 84 96 108 120  
CODE  
0
12 24 36 48 60 72 84 96 108 120  
CODE  
DIFFERENTIAL NONLINEARITY  
vs. CODE (VOLTAGE-DIVIDER)  
DIFFERENTIAL NONLINEARITY  
vs. CODE (VOLTAGE-DIVIDER)  
DIFFERENTIAL NONLINEARITY  
vs. CODE (VOLTAGE-DIVIDER)  
0.010  
0.008  
0.006  
0.004  
0.002  
0
0.010  
0.008  
0.006  
0.004  
0.002  
0
0.010  
0.008  
0.006  
0.004  
0.002  
0
V
= 2.7V, T = +85°C  
A
V
= 2.7V, T = -40°C  
A
V
= 2.7V, T = +25°C  
A
CC  
CC  
CC  
-0.002  
-0.004  
-0.006  
-0.008  
-0.010  
-0.002  
-0.004  
-0.006  
-0.008  
-0.010  
-0.002  
-0.004  
-0.006  
-0.008  
-0.010  
0
12 24 36 48 60 72 84 96 108 120  
CODE  
0
12 24 36 48 60 72 84 96 108 120  
CODE  
0
12 24 36 48 60 72 84 96 108 120  
CODE  
INTEGRAL NONLINEARITY  
vs. CODE (VARIABLE RESISTOR)  
INTEGRAL NONLINEARITY  
vs. CODE (VARIABLE RESISTOR)  
INTEGRAL NONLINEARITY  
vs. CODE (VARIABLE RESISTOR)  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
V
= 2.7V, T = -40°C  
V
= 2.7V, T = +85°C  
CC A  
V
= 2.7V, T = +25°C  
A
CC  
A
CC  
-0.5  
-1.0  
-1.5  
-0.5  
-1.0  
-1.5  
-0.5  
-1.0  
-1.5  
0
12 24 36 48 60 72 84 96 108 120  
CODE  
0
12 24 36 48 60 72 84 96 108 120  
CODE  
0
12 24 36 48 60 72 84 96 108 120  
CODE  
_______________________________________________________________________________________  
5
128-Tap, Nonvolatile, Linear-Taper Digital  
Potentiometer in 2mm x 2mm µDFN Package  
Typical Operating Characteristics (continued)  
(V  
= +5.0V, T = +25°C, unless otherwise noted.)  
A
CC  
DIFFERENTIAL NONLINEARITY  
vs. CODE (VARIABLE RESISTOR)  
0.20  
DIFFERENTIAL NONLINEARITY  
vs. CODE (VARIABLE RESISTOR)  
DIFFERENTIAL NONLINEARITY  
vs. CODE (VARIABLE RESISTOR)  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 2.7V, T = +25°C  
A
V
= 2.7V, T = +85°C  
A
V
= 2.7V, T = -40°C  
A
CC  
CC  
CC  
0.15  
0.10  
0.05  
0
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.05  
-0.10  
-0.15  
-0.20  
-0.05  
-0.10  
-0.15  
-0.20  
0
12 24 36 48 60 72 84 96 108 120  
CODE  
0
12 24 36 48 60 72 84 96 108 120  
CODE  
0
12 24 36 48 60 72 84 96 108 120  
CODE  
RATIOMETRIC TEMPERATURE  
COEFFICIENT vs. CODE (VOLTAGE-DIVIDER)  
TEMPERATURE COEFFICIENT  
vs. CODE (VARIABLE RESISTOR)  
160  
140  
120  
100  
80  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= -40°C TO +85°C  
A
V
= 2.7V  
CC  
T
= -40°C TO +85°C  
V
= 2.7V  
A
CC  
60  
40  
20  
0
-20  
-100  
0
12 24 36 48 60 72 84 96 108 120  
CODE  
0
12 24 36 48 60 72 84 96 108 120  
CODE  
END-TO-END RESISTANCE (R  
% CHANGE vs. TEMPERATURE  
)
STANDBY SUPPLY CURRENT  
vs. TEMPERATURE  
HL  
1.0  
0.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
0.6  
0.4  
0.2  
0
V
= 5.25V  
CC  
V
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
V
= 3.3V  
CC  
= 2.7V  
CC  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
128-Tap, Nonvolatile, Linear-Taper Digital  
Potentiometer in 2mm x 2mm µDFN Package  
Typical Operating Characteristics (continued)  
(V  
= +5.0V, T = +25°C, unless otherwise noted.)  
A
CC  
WIPER RESISTANCE  
vs. TEMPERATURE  
WIPER RESPONSE  
vs. FREQUENCY  
SUPPLY CURRENT  
vs. DIGITAL INPUT VOLTAGE  
1000  
0
-2  
1000  
100  
10  
V
= 5V  
V
= 5V  
CC  
V
= 5V  
CC  
CC  
WIPER = MIDSCALE  
WIPER = MIDSCALE  
800  
600  
400  
200  
0
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
1
0.1  
-40  
-15  
10  
35  
60  
85  
0.1  
1
10  
100  
1000  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
DIGITAL INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
THD+N vs. FREQUENCY  
TAP-TO-TAP SWITCHING TRANSIENT  
MAX5128 toc21  
10  
1
V
= 5V  
CC  
WIPER = MIDSCALE  
FILTER BANDWIDTH = 80kHz  
UP  
2V/div  
0.1  
0.01  
0.001  
0.0001  
V
W
20mV/div  
AC-COUPLED  
H = V  
L = GND  
FROM MIDSCALE  
CC  
C
= 20pF  
W
0.1  
1
10  
100  
1μs/div  
FREQUENCY (kHz)  
MIDSCALE WIPER TRANSIENT  
AT POWER-ON  
WIPER RESISTANCE vs. CODE  
MAX5128 toc23  
600  
500  
400  
300  
200  
100  
0
V
CC  
2V/div  
OUTPUT  
W
2V/div  
0
12 24 36 48 60 72 84 96 108 120  
CODE  
10μs/div  
_______________________________________________________________________________________  
7
128-Tap, Nonvolatile, Linear-Taper Digital  
Potentiometer in 2mm x 2mm µDFN Package  
Pin Description  
PIN  
NAME  
FUNCTION  
with a 0.1µF capacitor to GND as close to the device as possible. For proper  
operation, limit the supply voltage slew rate to 10µs.  
Power Supply. Bypass V  
CC  
1
V
CC  
High Terminal. The voltage at H can be higher than or lower than the voltage at L. Current can flow into or  
out of H.  
2
3
4
H
W
L
Wiper Terminal  
Low Terminal. The voltage at L can be higher than or lower than the voltage at H. Current can flow into or out  
of L.  
5
6
7
8
GND  
DN  
Ground  
Down Input  
UP  
Up Input  
N.C.  
No Connection. Not internally connected.  
NVM WRITE  
t
PWH  
t
PWL  
t
MS1  
UP  
DN  
t
t
PWH  
WP  
t
PWL  
t
t
WH  
t
WS  
MS1  
Figure 1. Digital-Interface Timing Diagram  
Analog Circuitry  
Detailed Description  
The MAX5128 consists of a resistor array with 127  
resistive elements; 128 tap points along the resistor  
string between H and L are accessible to the wiper, W.  
Select the wiper tap point by programming the poten-  
tiometer through the 2-wire (UP, DN) interface.  
The MAX5128 nonvolatile, single, linear-taper, digital  
potentiometer performs the function of a mechanical  
potentiometer or variable resistor, but replaces the  
mechanics with a simple 2-wire digital interface. This  
device features 128 taps and 22kΩ end-to-end resis-  
tance with a 5ppm/°C ratiometric temperature coeffi-  
cient. The MAX5128 operates from a +2.7V to +5.25V  
power supply and consumes only 0.5µA (typ) of stand-  
by supply current. The MAX5128 includes an integrat-  
ed nonvolatile memory that recalls the stored wiper  
position of the digital potentiometer. A simple 2-wire  
up/down interface programs the wiper positions.  
The MAX5128 features power-on reset circuitry that  
loads the wiper position from the nonvolatile memory at  
power-up.  
The nonvolatile memory is programmed to midscale at  
the factory.  
8
_______________________________________________________________________________________  
128-Tap, Nonvolatile, Linear-Taper Digital  
Potentiometer in 2mm x 2mm µDFN Package  
NVM  
WRITE  
t
t
MS2  
PWH  
t
t
BUSY  
PWL  
UP  
DN  
t
WP  
t
t
WH  
WS  
Figure 2. Digital-Interface Timing Diagram with t  
BUSY  
t
t
BUSY  
BUSY  
UP  
DN  
WIPER  
DECREMENTS  
NVM  
WRITE  
WIPER  
INCREMENTS  
NVM  
WRITE  
WIPER  
INCREMENTS  
WIPER  
DECREMENTS  
Figure 3. Digital-Interface Command Diagram  
mands in the direction of the end point do not change  
the tap position.  
Digital Interface  
The MAX5128 features a 2-wire interface consisting of  
two logic inputs (UP and DN). Logic inputs UP and DN  
control the wiper position and program the position to  
the nonvolatile memory. Transition UP from high to low  
with DN low to increment the wiper position. Transition  
DN from high to low with UP low to decrement the wiper  
position (see Figures 1, 2, and 3). When the wiper decre-  
ments, it decreases the resistance between W and L  
(and it increases the resistance between H and W).  
The logic inputs also feature pulse glitch immunity  
(20ns) to protect the wiper from transitioning due to  
glitches (see Figure 4).  
Write NV Register  
The internal EEPROM consists of a 7-bit nonvolatile  
memory that retains the value written to it even after  
power-down. To program the nonvolatile memory, force  
UP high, then force DN high, and then transition either  
input (UP/DN) from high to low. A nonvolatile write  
requires a busy time of 14ms (max). During the busy  
time, any nonvolatile write requests are ignored as well  
as requests to increment or decrement the wiper posi-  
tion. Upon power-up, the wiper returns to the position  
stored in the nonvolatile register. The MAX5128 fea-  
tures a factory-default wiper position of midscale.  
To program the nonvolatile memory, force UP high,  
then force DN high, and then transition either input  
(UP/DN) from high to low (see Figure 3).  
The wiper performs a make-before-break transition,  
ensuring that an open circuit during a transition from  
one resistor tap to another does not occur. The wiper  
does not wrap around when it reaches either end of the  
resistor array (max/min). Additional transition com-  
_______________________________________________________________________________________  
9
128-Tap, Nonvolatile, Linear-Taper Digital  
Potentiometer in 2mm x 2mm µDFN Package  
t
IMMU  
t
IMMU  
UP  
DN  
t
IMMU  
t
IMMU  
PULSES WITH WIDTHS LESS THAN t  
ARE IGNORED.  
IMMU  
Figure 4. Glitch-Immunity Timing Diagram  
Standby Mode  
DC-DC Converter Applications  
Figures 6 and 7 show two applications using the  
MAX5128 to adjust the output voltage of a DC-DC con-  
verter. Figure 6 shows the MAX5128 in the grounded  
potentiometer configuration. Figure 7 shows the  
MAX5128 in a floating potentiometer configuration. The  
grounded potentiometer configuration forces the output  
voltage range of the DC-DC converter to fall within the  
supply voltage range of the MAX5128. Use the floating  
potentiometer configuration to allow the DC-DC con-  
verter’s output to exceed the supply voltage range of  
the MAX5128. The floating potentiometer configuration  
increases the output voltage range and increases the  
precision of the output voltage adjustment range.  
The MAX5128 operates in standby mode while the seri-  
al interface is inactive. Programming the MAX5128  
increases the average operating current to 400µA  
(max). When in standby mode, the static supply current  
reduces to less than 0.5µA (typ).  
Power-Up  
Upon power-up, the MAX5128 updates the wiper posi-  
tion with the data stored in the nonvolatile memory. This  
initialization period takes 2µs (typ). For proper opera-  
tion, limit the supply voltage slew rate to 10µs.  
Applications Information  
Use the MAX5128 for applications requiring digitally  
controlled adjustable resistance or voltage, such as  
LCD contrast control (where voltage biasing adjusts the  
display contrast), or DC-DC converters with adjustable  
outputs. The 22kΩ end-to-end resistance is divided into  
128 tap points of 172Ω each. Use the MAX5128 in a  
voltage-divider or variable-resistor configuration.  
LED Bias Adjustment  
Figure 8 shows a LED bias adjustment application  
using a MAX5128 to set the current of the LEDs that the  
MAX1574 drives. Use the MAX5128 for an adjustable  
LED current drive of 10mA to 60mA.  
Chip Information  
V
Generator  
COM  
Figure 5 shows an application using the MAX4238 and  
the MAX5128 to generate the V voltage for a LCD  
PROCESS: BiCMOS  
COM  
panel. Adjusting the resistor value of the MAX5128  
changes the V voltage. Adjusting the V volt-  
COM  
COM  
age changes the contrast for the LCD panel.  
10 ______________________________________________________________________________________  
128-Tap, Nonvolatile, Linear-Taper Digital  
Potentiometer in 2mm x 2mm µDFN Package  
+3.3V  
15kΩ  
120kΩ  
+5V  
H
0.1μF  
MAX5128  
W
10kΩ  
22kΩ  
51kΩ  
TIMING-CONTROL-IC  
OUTPUT SIGNAL  
L
MAX4238  
V
COM  
+3.3V  
27kΩ  
0.1μF  
36kΩ  
Figure 5. V  
COM  
Generator Circuit for LCD Panels  
V
= 2V  
OUT  
TO 5.25V  
OUT  
FB  
LX  
H
MAX1722  
W
V
= 0.8V  
IN  
BATT  
GND  
TO V  
OUT  
MAX5128  
L
Figure 6. DC-DC Converter Using a Grounded Potentiometer  
______________________________________________________________________________________ 11  
128-Tap, Nonvolatile, Linear-Taper Digital  
Potentiometer in 2mm x 2mm µDFN Package  
SW  
V
= V TO 28V  
CC  
LX  
OUT  
H
MAX8574  
V
= 2.7V TO 5.5V  
V
CC  
CC  
W
FB  
MAX5128  
L
GND  
SHDN  
Figure 7. DC-DC Converter Using a Floating Potentiometer  
Pin Configuration  
TOP VIEW  
CN  
CP  
N.C.  
8
UP  
7
DN  
6
GND  
5
V
= 2.7V  
IN  
IN  
OUT  
TO 5.5V  
MAX1574  
LED1  
MAX5128  
H
LED2  
LED3  
1
2
3
4
L
W
SET  
MAX5128  
V
CC  
H
W
2mm x 2mm μDFN  
L
GND  
Figure 8. LED Bias Adjustment Using the MAX5128  
12 ______________________________________________________________________________________  
128-Tap, Nonvolatile, Linear-Taper Digital  
Potentiometer in 2mm x 2mm µDFN Package  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
A
b
D
e
N
XXXX  
XXXX  
XXXX  
SOLDER  
MASK  
COVERAGE  
E
PIN 1  
0.10x45  
L
L1  
1
SAMPLE  
MARKING  
PIN 1  
INDEX AREA  
A
A
7
(N/2 -1) x e)  
C
L
C
L
b
L
L
A
e
e
A2  
EVEN TERMINAL  
ODD TERMINAL  
A1  
PACKAGE OUTLINE,  
6, 8, 10L uDFN, 2x2x0.80 mm  
1
-DRAWING NOT TO SCALE-  
21-0164  
A
2
______________________________________________________________________________________ 13  
128-Tap, Nonvolatile, Linear-Taper Digital  
Potentiometer in 2mm x 2mm µDFN Package  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
0.15  
0.020  
1.95  
1.95  
0.30  
NOM.  
0.75  
0.20  
0.025  
2.00  
2.00  
0.40  
MAX.  
0.80  
0.25  
0.035  
2.05  
2.05  
0.50  
A
A1  
A2  
D
-
E
L
L1  
0.10 REF.  
PACKAGE VARIATIONS  
PKG. CODE  
L622-1  
N
6
e
b
(N/2 -1) x e  
0.65 BSC  
0.50 BSC  
0.40 BSC  
0.30±0.05 1.30 REF.  
0.25±0.05 1.50 REF.  
0.20±0.03 1.60 REF.  
L822-1  
8
L1022-1  
10  
PACKAGE OUTLINE,  
6, 8, 10L uDFN, 2x2x0.80 mm  
2
21-0164  
A
-DRAWING NOT TO SCALE-  
2
Revision History  
Pages changed at Rev 1: 1, 9, 10, 13  
Pages changed at Rev 2: 1, 9–14  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  
Boblet  

相关型号:

MAX512C/D

Low-Cost, Triple, 8-Bit Voltage-Output DACs with Serial Interface
MAXIM

MAX512CPD

Low-Cost, Triple, 8-Bit Voltage-Output DACs with Serial Interface
MAXIM

MAX512CPD+

暂无描述
MAXIM

MAX512CSD

Low-Cost, Triple, 8-Bit Voltage-Output DACs with Serial Interface
MAXIM

MAX512CSD+

暂无描述
MAXIM

MAX512EPD

Low-Cost, Triple, 8-Bit Voltage-Output DACs with Serial Interface
MAXIM

MAX512ESD

Low-Cost, Triple, 8-Bit Voltage-Output DACs with Serial Interface
MAXIM

MAX512ESD+T

D/A Converter, 1 Func, Serial Input Loading, 70us Settling Time, PDSO14, PLASTIC, SOP-14
MAXIM

MAX512ESD-T

D/A Converter, 1 Func, Serial Input Loading, 70us Settling Time, PDSO14, PLASTIC, SOP-14
MAXIM

MAX512MJD

Low-Cost, Triple, 8-Bit Voltage-Output DACs with Serial Interface
MAXIM

MAX5130

+3V/+5V, 13-Bit, Serial Voltage-Output DACs with Internal Reference
MAXIM