MAX513MJD [MAXIM]

Low-Cost, Triple, 8-Bit Voltage-Output DACs with Serial Interface; 低成本,三路, 8位电压输出DAC,串行接口
MAX513MJD
型号: MAX513MJD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Cost, Triple, 8-Bit Voltage-Output DACs with Serial Interface
低成本,三路, 8位电压输出DAC,串行接口

文件: 总16页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0252; Rev 2; 5/96  
Lo w -Co s t , Trip le , 8 -Bit Vo lt a g e -Ou t p u t DACs  
w it h S e ria l In t e rfa c e  
2/MAX513  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX512/MAX513 contain three 8-bit, voltage-output  
digital-to-analog converters (DAC A, DAC B, and DAC C).  
Output buffer amplifiers for DACs A and B provide voltage  
outputs while reducing external component count. The  
output buffer for DAC A can source or sink 5mA to within  
Operate from a Single +5V (MAX512) or  
+3V (MAX513) Supply, or from Bipolar Supplies  
Low Power Consumption  
1mA Operating Current  
<1µA Shutdown Current  
0.5V of V or V . The buffer for DAC B can source or  
DD  
SS  
s ink 0.5mA to within 0.5V of V  
unbuffered, providing a third voltage output with increased  
a c c ura c y. The MAX512 op e ra te s with s ing le  
or V . DAC C is  
DD  
SS  
Unipolar or Bipolar Outputs  
5MHz, 3-Wire Serial Interface  
a
SPI, QSPI, and Microwire Compatible  
Two Buffered, Bipolar-Output DACs (DACs A/B)  
Independently Programmable Shutdown Mode  
Space-Saving 14-Pin SO/DIP Packages  
Pin and Software Reset  
+5V ±10% supply, and the MAX513 operates with a  
+2.7V to +3.6V supply. Both devices can also operate  
with split supplies.  
The 3-wire serial interface has a maximum operating fre-  
quency of 5MHz and is compatible with SPI™, QSPI™,  
and Microwire. The serial input shift register is 16 bits  
long and consists of 8 bits of DAC input data and 8 bits  
for DAC selection and shutdown. DAC registers can be  
______________Ord e rin g In fo rm a t io n  
loaded independently or in parallel at the positive edge  
–  
of CS. A latched logic output is also available for auxil-  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
14 Plastic DIP  
14 SO  
iary control.  
MAX512CPD  
MAX512CSD  
MAX512C/D  
Ultra -low p owe r c ons ump tion a nd s ma ll p a c ka g e s  
(14-pin DIP/SO) make the MAX512/MAX513 ideal for  
portable and battery-powered applications. Supply cur-  
rent is only 1mA, dropping to less than 1µA in shutdown.  
Any of the three DACs can be independently shut down.  
In shutdown mode, the DAC's R-2R ladder network is  
disconnected from the reference input, minimizing sys-  
tem power consumption.  
Dice*  
Ordering Information continued at end of data sheet.  
* Contact factory for dice specifications.  
________________Fu n c t io n a l Dia g ra m  
________________________Ap p lic a t io n s  
DIN  
1
CS  
2
REFAB REFC  
12 11  
Digital Gain and Offset Adjustment  
Programmable Attenuators  
Programmable Current Sources  
Programmable Voltage Sources  
RF Digitally Adjustable Bias Circuits  
VCO Tuning  
SCLK  
3
OUTA  
8
DAC  
DAC A  
LATCH  
A
OUTB  
9
DAC  
LATCH  
B
DAC B  
DAC C  
__________________P in Co n fig u ra t io n  
TOP VIEW  
DIN  
CS  
DAC  
LATCH  
C
1
2
3
4
5
6
7
14  
13  
12  
LOUT  
I.C.  
OUTC  
10  
MAX512  
MAX513  
SCLK  
RESET  
REFAB  
MAX512  
MAX513  
11 REFC  
V
DD  
10  
9
OUTC  
OUTB  
OUTA  
LOUT  
14  
LATCH  
GND  
V
SS  
8
4
5
7
6
V
DD  
V
SS  
GND  
RESET  
DIP/SO  
Microwire is a trademark of National Semiconductor Corp. SPI and QSPI are trademarks of Motorola Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
Lo w -Co s t , Trip le , 8 -Bit Vo lt a g e -Ou t p u t DACs  
w it h S e ria l In t e rfa c e  
ABSOLUTE MAXIMUM RATINGS  
VDD to GND ................................................................ -0.3V, +6V  
VSS to GND................................................................. -6V, +0.3V  
VDD to VSS ................................................................ -0.3V, +12V  
Digital Inputs and Outputs to GND............... -0.3V, (VDD + 0.3V)  
REFAB ................................................ (VSS - 0.3V), (VDD + 0.3V)  
OUTA, OUTB (Note 1)....................................................VSS, VDD  
OUTC.............................................................-0.3V, (VDD + 0.3V)  
REFC..............................................................-0.3V, (VDD + 0.3V)  
Continuous Power Dissipation (TA = +70°C)  
Plastic DIP (derate 10.00mW/°C above +70°C) ............800mW  
SO (derate 8.33mW/°C above +70°C)...........................667mW  
CERDIP (derate 9.09mW/°C above +70°C)...................727mW  
Operating Temperature Ranges  
MAX51_C_ _ .........................................................0°C to +70°C  
MAX51_E_ _.......................................................-40°C to +85°C  
MAX51_MJD....................................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +165°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Note 1: The outputs may be shorted to VDD, VSS, or GND if the package power dissipation is not exceeded. Typical short-circuit cur-  
rent to GND is 50mA.  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(VDD = + 4.5V to + 5.5V for MAX512, VDD = + 2.7V to + 3.6V for MAX513, VSS = GND = 0V, REFAB = REFC = VDD  
TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)  
2/MAX513  
,
PARAMETER  
STATIC PERFORMANCE  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
N
8
Bits  
Differential Nonlinearity  
DNL  
Guaranteed monotonic  
±1  
±1.5  
±1  
LSB  
DAC A/B (Note 2)  
DAC C  
Integral Nonlinearity  
INL  
LSB  
Total Unadjusted Error  
TUE  
(Note 2)  
±1  
100  
5
LSB  
DAC A/B  
DAC C  
Zero-Code Temperature  
Coefficient  
µV/°C  
MAX512, 4.5V V 5.5V,  
REFAB = REFC = 4.096V  
DD  
0.01  
Power-Supply Rejection Ratio  
PSRR  
%/%  
MAX513, 2.7V V 3.6V,  
REFAB = REFC = 2.4V  
DD  
0.015  
REFERENCE INPUTS  
REFAB  
REFC  
V
V
DD  
SS  
Reference Input Voltage Range  
Reference Input Capacitance  
Reference Input Resistance  
V
GND  
V
DD  
25  
2
pF  
kΩ  
REFAB (Note 3)  
REFC (Note 3)  
8
RREF  
12  
Reference Input Resistance  
(shutdown mode)  
REFAB, REFC  
MΩ  
2
_______________________________________________________________________________________  
Lo w -Co s t , Trip le , 8 -Bit Vo lt a g e -Ou t p u t DACs  
w it h S e ria l In t e rfa c e  
2/MAX513  
ELECTRICAL CHARACTERISTICS (continued)  
(VDD = + 4.5V to + 5.5V for MAX512, VDD = + 2.7V to + 3.6V for MAX513, VSS = GND = 0V, REFAB = REFC = VDD  
TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)  
,
PARAMETER  
DAC OUTPUTS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage Range  
0
REF_  
V
DAC A  
DAC B  
DAC C  
DAC A  
DAC B  
DAC C  
0.10  
0.01  
0
Capacitive Load  
µF  
0.050  
0.500  
24  
Output Resistance  
kΩ  
DIGITAL INPUTS  
Input High Voltage  
Input Low Voltage  
V
(0.7)(V )  
DD  
V
V
IH  
V
IL  
(0.3)(V  
)
DD  
Input Current  
I
V
= 0V or V  
DD  
0.1  
±10  
µA  
pF  
IN  
IN  
Input Capacitance  
DIGITAL OUTPUT  
Output High Voltage  
Output Low Voltage  
DYNAMIC PERFORMANCE  
Voltage-Output Slew Rate  
C
(Notes 4, 5)  
10  
IN  
V
OH  
I
1.6mA  
V - 0.4  
DD  
V
V
SOURCE  
V
OL  
I
1.6mA  
0.4  
SINK  
SR  
C
= 0.1µF (DAC A), C = 0.01µF (DAC B)  
0.1  
70  
70  
35  
10  
V/µs  
µs  
L
L
C
C
C
= 0.1µF (DAC A)  
= 0.01µF (DAC B)  
= 0.1nF (DAC C)  
L
L
L
1
Voltage-Output Settling Time  
To ± ⁄ LSB  
2
Digital Feedthrough and Crosstalk  
All 0s to all 1s  
nV-s  
POWER SUPPLIES  
MAX512  
MAX513  
MAX512  
MAX513  
4.5  
5.5  
3.6  
Positive Supply Voltage Range  
V
V
V
DD  
2.7  
-5.5  
-3.6  
-4.5  
-2.7  
2.8  
Negative Supply Voltage Range  
(Note 6)  
V
SS  
MAX512 (V = 5.5V)  
1.3  
0.9  
-1.3  
0.1  
DD  
Positive Supply Current  
I
DD  
All inputs = 0V  
mA  
MAX513 (V = 3.6V)  
2.5  
DD  
Negative Supply Current  
Shutdown Supply Current  
I
SS  
All inputs = 0V, V = -5.5V  
mA  
µA  
SS  
Note 2: Digital code from 24 through 232 are due to swing limitations of output amplifiers on DAC A and DAC B. See Typical  
Operating Characteristics.  
Note 3: Reference input resistance is code dependent. The lowest input resistance occurs at code 55hex. Refer to the reference  
input section in the Detailed Description.  
Note 4: Guaranteed by design. Not production tested.  
Note 5: Input capacitance is code dependent. The highest capacitance occurs at code 00hex.  
Note 6: For single-supply mode, tie V to GND.  
SS  
_______________________________________________________________________________________  
3
Lo w -Co s t , Trip le , 8 -Bit Vo lt a g e Ou t p u t DACs  
w it h S e ria l In t e rfa c e  
TIMING CHARACTERISTICS (Note 4)  
(VDD = +4.5V to +5.5V for MAX512, VDD = +2.7V to +3.6V for MAX513, VSS = GND = 0V, TA = TMIN to TMAX, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
SERIAL INTERFACE TIMING  
–  
CS Fall to SCLK Rise Setup Time  
t
150  
150  
50  
ns  
ns  
ns  
ns  
ns  
ns  
CSS  
–  
SCLK Rise to CS Rise Setup Time  
t
CSH  
DIN to SCLK Rise Setup Time  
DIN to SCLK Rise Hold Time  
SCLK Pulse Width High  
SCLK Pulse Width Low  
Output Delay LOUT  
t
DS  
DH  
CH  
t
t
50  
100  
100  
t
CL  
t
C
= 100pF  
L
150  
ns  
ns  
OD  
–  
CS Pulse Width High  
t
200  
CSPWH  
Note 4: Guaranteed by design. Not production tested.  
2/MAX513  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
OUTPUT VOLTAGE vs.  
OUTPUT VOLTAGE vs.  
OUTPUT VOLTAGE vs.  
OUTPUT SOURCE CURRENT (V = 3V)  
DD  
OUTPUT SOURCE CURRENT (V = 5V)  
DD  
OUTPUT SINK CURRENT  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
3.5  
900  
800  
700  
600  
500  
400  
300  
V
= 3V, V = GND = 0V  
SS  
DD  
DAC A  
DAC A  
DAC B  
REFAB = V  
DD  
CODE = ALL 1s  
3
DAC A  
2.5  
DAC B  
2
DAC B  
1.5  
1
V
= 3V, V = GND = 0V  
SS  
V
= 5V, V = GND = 0V  
SS  
DD  
DD  
200  
REFAB = V  
DD  
CODE = ALL 1s  
REFAB = V  
DD  
CODE = ALL 1s  
4.0  
3.8  
0.5  
0
100  
0
0.0001 0.001 0.01  
0.1  
1
10  
100  
0.0001 0.001 0.01  
0.1  
1
10  
100  
0.0001 0.001 0.01  
0.1  
1
10  
100  
OUTPUT SOURCE CURRENT (mA)  
OUTPUT SOURCE CURRENT (mA)  
OUTPUT SINK CURRENT (mA)  
TOTAL UNADJUSTED ERROR  
vs. DIGITAL CODE (Single Supply)  
TOTAL UNADJUSTED ERROR  
vs. DIGITAL CODE (Dual Supplies)  
POSITIVE SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
0
-5  
1.5  
1.4  
12  
REFAB = REFC = V  
ALL LOGIC INPUTS GROUNDED  
V
= +3V, V = -3V  
DD  
DD  
SS  
DAC A LOADED WITH 5mA  
DAC B LOADED WITH 0.5mA  
REFAB = V , REFC = V  
CODE = ALL 1s  
SS  
DD  
10  
8
1.3  
1.2  
-10  
-15  
1.1  
1.0  
0.9  
0.8  
6
4
2
DAC A LOADED WITH 5mA  
-20  
DAC B LOADED WITH 0.5mA  
-25  
-30  
-35  
DAC A NO LOAD  
DAC B NO LOAD  
0.7  
0.6  
0
V
= 3V, V = GND = 0V  
DD SS  
REFAB = 3V  
DAC C NO LOAD  
0.5  
-2  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
0
32 64 96 128 160 192 224 255  
DIGITAL CODE  
0
32 64 96 128 160 192 224 255  
DIGITAL CODE  
V
DD  
4
_______________________________________________________________________________________  
Lo w -Co s t , Trip le , 8 -Bit Vo lt a g e Ou t p u t DACs  
w it h S e ria l In t e rfa c e  
2/MAX513  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
POSITIVE SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. REFERENCE VOLTAGE  
1.5  
1.370  
4.5  
4.0  
V
= +5V, V = GND = 0V  
SS  
DD  
REFAB = REFC = V  
DD  
I
, V = 5V, V = -5V  
DD DD SS  
1.365  
1.360  
ALL LOGIC INPUTS = +5V  
1.0  
0.5  
3.5  
3.0  
I
, V = 3V, V = -3V  
DD DD SS  
2.5  
2.0  
1.5  
1.0  
REFC GROUNDED FOR REF_ < 0  
CODE = ALL 1s  
1.355  
1.350  
0
I
, V = 3V, V = -3V  
SS DD SS  
-0.5  
V
= +5V, V = GND = 0V  
SS  
DD  
REFAB = REFC = V  
ALL LOGIC INPUTS = +5V  
ALL DACs SET TO ALL 1s  
DD  
1.345  
1.340  
-1.0  
-1.5  
I
, V = 5V, V = -5V  
SS DD  
SS  
0.5  
0
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-5 -4 -3 -2 -1  
0
1
2
3
4
TEMPERATURE (°C)  
TEMPERATURE (°C)  
REFAB = REFC (V)  
REFERENCE FEEDTHROUGH  
vs. FREQUENCY  
REFERENCE LARGE-SIGNAL  
FREQUENCY RESPONSE  
REFERENCE SMALL-SIGNAL  
FREQUENCY RESPONSE  
0
5
0
V
DD  
= 3V, V = GND = 0V  
SS  
REF_ FROM 0V TO 2.9V  
-20 NO LOAD  
CODE = ALL 0s  
0
DAC A  
DAC C  
-20  
-40  
-5  
-40  
DAC B  
DAC C  
-10  
-60  
-15  
-80  
DAC A, B  
-60  
-80  
V
= 3V, V = GND = 0V  
SS  
DD  
V
= 3V, V = GND = 0V  
-20  
-25  
-100  
-120  
DD SS  
REFAB, REFC  
SINE WAVE 0V TO V  
REFAB, REFC  
SINE WAVE ±40mV  
DD  
0.01  
0.1  
1
10  
100  
1000  
0.001 0.01 0.1  
1
10  
100 1000  
0.1k  
1k  
10k  
100k 1M  
10M  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
5
Lo w -Co s t , Trip le , 8 -Bit Vo lt a g e Ou t p u t DACs  
w it h S e ria l In t e rfa c e  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
LINE-TRANSIENT RESPONSE (OUTC)  
LINE-TRANSIENT RESPONSE (OUTA)  
3.14V  
3.14V  
2.86V  
A
B
A
2.86V  
B
2/MAX513  
20µs/div  
20µs/div  
REFC = 2.56V, NO LOAD, CODE = ALL 1s  
REFAB = 2.56V, NO LOAD, CODE = ALL 1s  
A : V , 100mV/div  
DD  
A : V 100mV/div  
DD,  
B : OUTA, 500µV/div  
B : OUTC, 2mV/div  
CLOCK FEEDTHROUGH (OUTA)  
CLOCK FEEDTHROUGH (OUTC)  
A
B
A
B
1µs/div  
1µs/div  
V = 0V, CS = HIGH  
SS  
V
SS  
= 0V, CS = HIGH  
A: SCLK, 333kHz, 0V TO 2.9V, 2V/div  
B: OUTC, 2mV/div  
A: SCLK, 333kHz, 0V TO 2.9V, 2V/div  
B: OUTA, 2mV/div  
6
_______________________________________________________________________________________  
Lo w -Co s t , Trip le , 8 -Bit Vo lt a g e Ou t p u t DACs  
w it h S e ria l In t e rfa c e  
2/MAX513  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
POSITIVE SETTLING TIME (DAC A)  
POSITIVE SETTLING TIME (DAC B)  
A
B
A
B
20µs/div  
20µs/div  
V
DD  
= 3V, V = 0V, REFAB = V R = 1k , C = 0.1µF  
V
DD  
= 3V, V = 0V, REFAB = V R = 10k , C = 0.01µF  
SS  
DD,  
L
L
SS  
DD,  
L
L
ALL BITS OFF TO ALL BITS ON  
ALL BITS OFF TO ALL BITS ON  
A: CS, 2V/div  
A: CS, 2V/div  
B: OUTA, 20mV/div  
B: OUTB, 20mV/div  
POSITIVE SETTLING TIME (DAC C)  
POSITIVE SETTLING TIME WITH DUAL SUPPLIES  
A
A
B
B
10µs/div  
10µs/div  
V
DD  
= 3V, V = 0V, REFC = V R = , C = 122pF  
SS DD, L L  
V
DD  
= 5V, V = -5V, REFAB = 2.56V, R = 1k , C = 0.1µF  
SS L L  
ALL BITS OFF TO ALL BITS ON  
ALL BITS OFF TO ALL BITS ON  
A: CS, 2V/div  
A: CS, 5V/div  
B: OUTC, 20mV/div  
B: OUTA, 10mV/div  
_______________________________________________________________________________________  
7
Lo w -Co s t , Trip le , 8 -Bit Vo lt a g e -Ou t p u t DACs  
w it h S e ria l In t e rfa c e  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(TA = +25°C, unless otherwise noted.)  
TIME EXITING SHUTDOWN MODE  
OUTPUT VOLTAGE NOISE DC TO 1MHz  
A
B
OUTA,  
200µV/div  
2/MAX513  
20µs/div  
2ms/div  
V
DD  
= 3V, V = 0V, REFAB = V R = 1k , C = 0.1µF  
DIGITAL CODE = 80, REFAB = V NO LOAD  
DD,  
SS  
DD,  
L
L
DAC LOADED WITH ALL 1s  
A: CS, 2V/div  
B: OUTA, 1V/div  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
DIN  
Serial Data Input of the 16-bit shift register. Data is clocked into the register on the rising edge of SCLK.  
1
Chip Select (active low). Enables data to be shifted into the 16-bit shift register. Programming commands  
are executed at the rising edge of CS.  
–  
CS  
2
3
4
–  
SCLK  
Serial Clock Input. Data is clocked in on the rising edge of SCLK.  
Asynchronous reset input (active low). Clears all registers to their default state (FFhex for DAC A and  
DAC B registers); all other registers are reset to 0 (including the input shift register).  
–————–  
RES ET  
5
6
V
Positive Power Supply (2.7V to 5.5V). Bypass with 0.22µF to GND.  
Ground  
DD  
GND  
Negative Power Supply 0V or (-1.5V to -5.5V). Tie to GND for single supply operation. If a negative supply  
is applied, bypass with 0.22µF to GND.  
7
V
SS  
8
OUTA  
OUTB  
OUTC  
REFC  
REFAB  
I.C.  
DAC A Output Voltage (Buffered). Resets to full scale. Connect 0.1µF capacitor or greater to GND.  
DAC B Output Voltage (Buffered). Resets to full scale. Connect 0.01µF capacitor or greater to GND.  
DAC C Output Voltage (Unbuffered). Resets to zero.  
DAC C Reference Voltage  
9
10  
11  
12  
13  
14  
DAC A/B Reference Voltage  
Internally connected. Do not make connections to this pin.  
Logic Output (latched)  
LOUT  
8
_______________________________________________________________________________________  
Lo w -Co s t , Trip le , 8 -Bit Vo lt a g e -Ou t p u t DACs  
w it h S e ria l In t e rfa c e  
2/MAX513  
_______________De t a ile d De s c rip t io n  
An a lo g S e c t io n  
The MAX512/MAX513 contain three 8-bit, voltage-out-  
R
R
R
OUT  
put, digital-to-analog converters (DACs). The DACs are  
“inverted” R-2R ladder networks using complementary  
switches that convert 8-bit digital inputs into equivalent  
analog output voltages in proportion to the applied ref-  
erence voltages.  
2R  
2R  
2R  
2R  
2R  
The MAX512/MAX513 have two reference inputs: one is  
shared by DAC A and DAC B and the other is used by  
DAC C. These inputs allow different full-scale output  
voltages and different output voltage polarities for the  
DAC pair A/B and DAC C.  
REF  
GND  
SHOWN FOR ALL 1s ON DAC; DAC C IS NOT BUFFERED  
The MAX512/MAX513 include output buffer amplifiers  
for DACs A and B and input logic for simple micro-  
processor (µP) and CMOS interfaces.  
Figure 1. DAC Simplified Circuit Diagram  
The MAX512/MAX513 operate in either single-supply or  
Output Buffer Amplifiers (DAC A / DAC B)  
DAC A a nd DAC B volta g e outp uts a re inte rna lly  
b uffe re d . The b uffe r a mp lifie rs ha ve a ra il-to-ra il  
(V to V ) output voltage range.  
SS DD  
dual-supply mode, as determined by V . If V is with-  
SS  
SS  
in approximately -0.5V of GND, single-supply mode is  
assumed. If V is below -1.5V, the devices are in dual-  
SS  
supply mode.  
In single-supply mode, the DAC outputs A and B are  
internally divided by two and the buffer is set to a gain  
of two, eliminating the need for a buffer input voltage  
range to the positive supply rail.  
Reference Inputs and DAC Output Range  
The voltage at REF_ sets the full-scale output of the  
DACs. The input impedance of the REF_ inputs is code  
dependent. The lowest value, approximately 12kfor  
REFC (8kfor REFAB), occurs when the input code is  
01010101 (55he x). The ma ximum va lue of infinity  
occurs when the input code is zero.  
In dual-supply mode, the DAC outputs are not attenuat-  
ed and the buffer is set to unity gain.  
Although only necessary for negative output voltages,  
the dual-supply mode may be used even if the desired  
DAC output voltage is positive. Possible errors associ-  
ated with the divide-by-two attenuator and gain-of-two  
buffers in single-supply mode are eliminated in dual-  
supply mode. In this case, do not use reference volt-  
In shutdown mode, the selected DAC output is set to  
zero while the value stored in the DAC register remains  
unchanged. This removes the load from the reference  
input to save power. Bringing the MAX512/MAX513 out  
of shutdown mode restores the DAC output voltage.  
Because the input resistance at REF_ is code depen-  
dent, the DACs reference sources should have an out-  
put impedance of no more than 5. The input capaci-  
tance at the REF_ pins is also code dependent and  
typically does not exceed 25pF.  
ages higher than (V - 1.5V).  
DD  
DAC A’s output amplifier can source and sink up to 5mA  
of c urre nt (0.5mA for DAC B b uffe r). Se e the Tota l  
Unadjusted Error vs. Digital Code graph in the Typical  
Operating Characteristics for dual and single supplies.  
The amplifier is unity-gain stable with a capacitive load of  
0.05µF (0.01µF for DAC B buffer) or greater. The slew  
rate is limited by the load capacitor and is typically  
0.1V/µs with a 0.1µF load (0.01µF for DAC B buffer).  
The reference voltage on REFAB can range anywhere  
between the supply rails. In dual-supply mode, a posi-  
tive reference input voltage on REFAB should be less  
than (V - 1.5V) to avoid saturating the buffer ampli-  
DD  
Unbuffered Output (DAC C)  
The output of DAC C is unbuffered and has a typical out-  
put impedance of 24k. It can be used to drive a high-  
impedance load, such as an op amp or comparator, and  
has 35µs typical settling time to 1/2LSB with a single 3V  
supply. Use DAC C if a quick dynamic response is  
required.  
fiers. The reference voltage includes the negative sup-  
ply rail. See the Output Buffer Amplifier section for more  
information. The REFC input accepts positive voltages  
up to V and should not be forced below ground.  
DD  
The absolute difference between any reference voltage  
and GND should not exceed 6V.  
_______________________________________________________________________________________  
9
Lo w -Co s t , Trip le , 8 -Bit Vo lt a g e -Ou t p u t DACs  
w it h S e ria l In t e rfa c e  
Shutdown Mode  
When programmed to shutdown mode, the outputs of  
Table 1. Input Shift Register  
B0*  
DAC Data Bit 0 (LSB)  
DAC A and B go into a high-impedance state. Virtually  
no current flows into or out of the buffer amplifiers in  
that state. The output of DAC C goes to 0V when shut  
down. In shutdown mode, the REF_ inputs are high  
impedance (2Mtyp) to conserve current drain from  
the system reference; therefore, the system reference  
does not have to be powered down. The logic output  
LOUT remains active in shutdown.  
B1  
DAC Data Bit 1  
B2  
DAC Data Bit 2  
B3  
DAC Data Bit 3  
B4  
DAC Data Bit 4  
B5  
DAC Data Bit 5  
B6  
DAC Data Bit 6  
Coming out of shutdown, the DAC outputs return to the  
values kept in the registers. The recovery time is equiv-  
alent to the DAC settling time.  
B7  
DAC Data Bit 7 (MSB)  
Load Reg DAC A, Active High  
Load Reg DAC B, Active High  
Load Reg DAC C, Active High  
Shut Down DAC A, Active High  
Shut Down DAC B, Active High  
Shut Down DAC C, Active High  
Logic Output  
LA  
LB  
LC  
SA  
SB  
SC  
Q1  
Q2**  
Reset  
———–  
———–  
The RESET input is active low. When asserted (RESET  
= 0), DACs A and B are set to full scale (FFhex) and  
active, while DAC C is set to zero code (00hex) and  
active. The 16-bit serial register is cleared to 0000hex.  
LOUT is reset to zero.  
2/MAX513  
S e ria l In t e rfa c e  
An active-low chip select (CS) enables the shift register  
Uncommitted Bit  
–  
**Clocked in last.  
**Clocked in first.  
to re c e ive d a ta from the s e ria l d a ta inp ut. Da ta is  
clocked into the shift register on every rising edge of  
the serial clock signal (SCLK). The clock frequency can  
be as high as 5MHz.  
–  
the input shift register, the rising edge of CS updates  
the DAC outputs, the shutdown status, and the status of  
the logic output. Because of their single buffered struc-  
ture, DACs cannot be simultaneously updated to differ-  
ent digital values.  
Data is sent MSB first and can be transmitted in one  
16-bit word. The write cycle can be interrupted at any  
–  
time when CS is kept active (low) to allow, for example,  
two 8-bit-wide transfers. After clocking all 16 bits into  
CS  
INSTRUCTION  
EXECUTED  
SCLK  
OPTIONAL  
SDIN  
Q2 Q1 SC SB SA LC LB LA  
(CONTROL BYTE)  
D7 D6 D5 D4 D3 D2 D1 D0  
(DATA BYTE)  
Figure 2. MAX512/MAX513 3-Wire Serial-Interface Timing Diagram  
10 ______________________________________________________________________________________  
Lo w -Co s t , Trip le , 8 -Bit Vo lt a g e -Ou t p u t DACs  
w it h S e ria l In t e rfa c e  
2/MAX513  
Table 2. Serial-Interface Programming Commands  
CONTROL  
DATA  
FUNCTION  
MSB  
LSB  
Q2 Q1 SC SB SA LC LB LA B7 B6 B5 B4 B3 B2 B1 B0  
*
*
*
*
*
*
*
*
*
*
*
*
0
0
0
1
1
*
*
0
1
0
0
1
*
*
*
*
*
*
*
0
0
1
0
1
*
*
*
*
*
*
*
0
0
0
1
1
*
*
*
*
*
*
*
X
X
X
X
X
X
X
X
No Operation to DAC Registers  
Load Register to DAC C  
Load Register to DAC B  
Load Register to DAC A  
Load All DAC Registers  
All DACs Active  
*
*
*
*
0
0
1
0
1
*
*
8-Bit DAC Data  
8-Bit DAC Data  
8-Bit DAC Data  
8-Bit DAC Data  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
X
X
*
*
*
*
*
0
1
0
1
0
0
1
*
*
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Shut Down DAC C  
Shut Down DAC B  
Shut Down DAC A  
Shut Down All DACs  
Reset LOUT  
Set LOUT  
X
*
Dont care.  
Not shown for clarity. The functions of loading and shutting down the DACs and programming the logic can be combined in a single command.  
Serial-Input Data Format and Control Codes  
Digital Inputs  
The digital inputs are compatible with CMOS logic.  
Supply current increases slightly when toggling the  
log ic inp uts throug h the tra ns ition zone b e twe e n  
Table 2 lists the serial-input data format. The 16-bit  
input word consists of an 8-bit control byte and an 8-bit  
data byte. The 8-bit control byte is not decoded inter-  
nally. Every control bit performs one function. Data is  
clocked in starting with Q2 (uncommitted bit), followed  
by the remaining control bits and the data byte. The  
LSB of the data byte (B0) is the last bit clocked into the  
shift register (Figure 2).  
(0.3)(V ) and (0.7)(V ).  
DD  
DD  
Digital Output  
The latched digital output (LOUT) has a 1.6mA source  
capability while maintaining a (V - 0.4V) output level.  
DD  
With a 1.6mA sink current, the output voltage is guaran-  
teed to be no more than 0.4V. The output can be used  
for digital auxiliary control. Please note that the digital  
output remains fully active during shutdown mode.  
Example of a 16-bit input word:  
Loaded  
in First  
Loaded  
in Last  
Q2 Q1 SC SB SA LC LB LA B7 B6 B5 B4 B3 B2 B1 B0  
Microprocessor Interfacing  
The MAX512/MAX513 serial interface is compatible with  
Microwire, SPI, and QSPI. For SPI and QSPI, clear the  
CPOL a nd CPHA b its (CPOL = 0 a nd CPHA = 0).  
CPOL = 0 sets the inactive state of clock to zero and  
CPHA = 0 changes data at the falling edge of SCLK.  
This setting allows both SPI and QSPI to run at full clock  
speeds (0.5MHz and 4MHz, respectively). If a serial port  
is not available on your µP, three bits of a parallel port  
can be used to emulate a serial port by bit manipulation.  
Minimize digital feedthrough at the voltage outputs by  
operating the serial clock only when necessary.  
X
0
1
0
0
0
1
1
1
0
0
0
0
0
0
0
The example above performs the following functions:  
• 80hex (128 decimal) loaded into DAC registers  
A and B.  
• Content of the DAC C register remains unchanged.  
• DAC A and DAC B are active.  
• DAC C is shut down.  
• LOUT is reset to 0.  
______________________________________________________________________________________ 11  
Lo w -Co s t , Trip le , 8 -Bit Vo lt a g e -Ou t p u t DACs  
w it h S e ria l In t e rfa c e  
CS  
t
CSPWH  
t
t
CSH  
CSS  
t
CH  
SCLK  
t
CL  
t
DS  
t
DH  
DIN  
2/MAX513  
t
OD  
LOUT  
Figure 3. MAX512/MAX513 Detailed Serial-Interface Timing Diagram  
P o w e r-S u p p ly Byp a s s in g a n d  
Gro u n d Ma n a g e m e n t  
_____________ Ap p lic a t io n s In fo rm a t io n  
P o w e r-S u p p ly a n d Re fe re n c e  
Op e ra t in g Ra n g e s  
The MAX512 is fully s p e c ifie d to op e ra te with  
In single-supply operation (V = GND), GND and V  
SS  
SS  
should be connected to the highest quality ground  
available. Bypass V with a 0.1µF to 0.22µF capacitor  
DD  
V
= 5V ±10% and V = GND = 0V. The MAX513 is  
to GND. For dual-supply operation, bypass V with a  
DD  
SS  
SS  
specified for single-supply operation with V ranging from  
0.1µF to 0.22µF capacitor to GND. Reference inputs  
can be used without bypassing. For optimum line/load-  
transient response and noise performance, bypass the  
reference inputs with 0.1µF to 4.7µF to GND. Careful  
PC board layout minimizes crosstalk among DAC out-  
puts, reference inputs, and digital inputs. Separate ana-  
log lines with ground traces between them. Make sure  
that high-frequency digital lines are not routed in paral-  
lel to analog lines.  
DD  
2.7V to 3.6V, covering all commonly used supply voltages  
in 3V systems. The MAX512/MAX513 can also be used  
with a negative supply ranging from -1.5V to -5.5V. Using a  
negative supply typically improves zero-code error and  
s e ttling time (a s s hown in the Typ ic a l Op e ra ting  
Characteristics graphs).  
The two separate reference inputs for the DAC pair A/B  
and the unbuffered output C allow different full-scale out-  
put voltages and, if a negative supply is used, also allow  
different polarity. In dual-supply mode, REFAB can vary  
from V to (V - 1.5V). In single-supply mode, the  
Un ip o la r Ou t p u t  
With unipolar output, the output voltage and the refer-  
e nc e volta g e a re the s a me p ola rity. The MAX512/  
MAX513 can be used with a single supply if the refer-  
ence voltages are positive. With a negative supply,  
SS  
DD  
specified range for REFAB is 0V to V . REFC can range  
DD  
from GND to V . Do not force REFC below ground.  
DD  
th e REFAB volta g e c a n va ry from  
V
to  
Power-supply sequencing is not critical. If a negative sup-  
SS  
approximately (V - 1.5V), allowing two-quadrant mul-  
ply is used, make sure V is never more than 0.3V above  
DD  
SS  
tiplication.  
ground. Do not apply signals to the digital inputs until the  
device is powered-up. If this is not possible, add current-  
limiting resistors to the digital inputs.  
12 ______________________________________________________________________________________  
Lo w -Co s t , Trip le , 8 -Bit Vo lt a g e -Ou t p u t DACs  
w it h S e ria l In t e rfa c e  
2/MAX513  
Table 3. Unipolar Code Table  
Table 4. Bipolar Code Table  
DAC CONTENTS  
DAC CONTENTS  
ANALOG  
OUTPUT  
ANALOG  
OUTPUT  
B7 B6 B5 B4 B3 B2 B1 B0  
B7 B6 B5 B4 B3 B2 B1 B0  
255  
256  
127  
128  
+REF_ ×  
+REF_ ×  
+REF_ ×  
+REF_ ×  
+REF_ ×  
+REF_ ×  
1
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
1
1
1
1
1
1
1
1
129  
256  
1
+REF_ ×  
0V  
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
0
1
128  
128  
REF_  
2
=
+
256  
1
REF_ ×  
128  
127  
256  
127  
128  
REF_ ×  
REF_ ×  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
256  
128  
=
REF_  
128  
0V  
Note :  
1LSB  
Note :  
1LSB  
1
1
(8 - 1)  
8  
=
REF_ × 2  
= REF_ ×  
=
REF_ × 2  
= REF_ ×  
128  
256  
D
D
ANALOG OUTPUT = REF_ ×  
1  
ANALOG OUTPUT = REF_ ×  
128  
256  
Bip o la r Ou t p u t  
RF Ap p lic a t io n s  
Using Figure 4s circuit, the MAX512/MAX13 can be con-  
figured for bipolar outputs. Table 4 lists the bipolar codes  
and corresponding output voltages. There are two ways to  
a c hie ve ra il-to-ra il outp uts : 1) Op e ra te the  
MAX512/MAX513 with a single supply and positive refer-  
ence voltages or 2) Use dual supplies with a positive or  
negative voltage at REFAB and a positive voltage at REFC.  
In either case, the op amps need dual supplies. When  
using the dual-supply mode, possible errors associated  
with the divide-by-two attenuator and gain-of-two buffer are  
eliminated (see the Output Buffer Amplifier section). For  
maximum output swing of all outputs in dual-supply mode,  
Both the MAX512 and MAX513 can bias GaAs FETs,  
where the gate of the FETs must be negatively biased  
to ensure that there is no drain current. In a typical  
application, power to the RF amplifiers should not be  
turned on until the bias voltages provided by DAC A  
and DAC B are fully established; likewise, the supply  
should be turned off before the bias voltage is switched  
off. Figure 5 shows how DAC B supplies the negative  
bias V  
negative bias V  
for the driver stage and DAC A provides the  
GG1  
for the output stage [1].  
GG2  
The DAC A and DAC B outputs are also ideal for con-  
trolling VCOs in mobile radios or cellular phones. Other  
applications include varactor and PIN diode circuits.  
connect REFAB to V and REFC to V . In single-supply  
SS  
DD  
mode, connect REFAB, REFC, and V together.  
DD  
The unbuffered DAC C provides a span within GND  
and V and is individually set at REF C. DAC C typi-  
cally adjusts offset and gain in the system.  
With dual supplies, DACs A and B can perform four-  
quadrant multiplication. Please note that in dual-supply  
DD  
mod e , the REFAB inp ut ra ng e s from V to (V  
-
SS  
DD  
1.5V). Because REFC accepts only positive inputs,  
DAC C performs two-quadrant multiplication.  
Figure 4 shows Maxims ICL7612A with rail-to-rail input  
common-mode range and rail-to-rail output voltage  
swingideal for a high output voltage swing from low  
supply voltages.  
1 [John Wachsmann. A High-Efficiency GaAs MMIC Power Amplifier for  
1.9GHz PCS Applications,” Proceedings of the First Annual Wireless  
Symposium, pp. 375, Penton Publishing, Jan. 1993.]  
______________________________________________________________________________________ 13  
Lo w -Co s t , Trip le , 8 -Bit Vo lt a g e -Ou t p u t DACs  
w it h S e ria l In t e rfa c e  
REFAB  
V
DD  
REFC  
11  
R*  
DIN  
1
CS  
R*  
0.1µF  
0.1µF  
12  
2
SCLK  
3
V
OUT  
8
ICL7612A**  
DAC  
OUTA  
DAC A  
LATCH  
A
0.05µF  
0.1µF  
V
SS  
R*  
9
DAC  
LATCH  
B
OUTB  
DAC B  
DAC C  
V
DD  
R*  
0.1µF  
0.1µF  
DAC  
LATCH  
C
10  
OUTC  
V
OUT  
ICL7612A**  
2/MAX513  
MAX512  
MAX513  
14  
LATCH  
LOUT  
V
SS  
V
V
7
RESET  
4
DD  
SS  
GND  
6
5
* R IN 10kRANGE  
** CONNECT PIN 8 TO GND  
0.22µF  
0.22µF  
V
DD  
V
SS  
Figure 4. Bipolar Output Circuit  
V
DD1  
V
DD2  
RF  
IN  
RF  
OUT  
REFAB = -4.2V  
MAX512  
V
GG1  
V
GG2  
MAX513  
OUTB  
DAC B  
0.01µF  
0.05µF  
OUTA  
DAC A  
Figure 5. RF Bias Circuit  
14 ______________________________________________________________________________________  
Lo w -Co s t , Trip le , 8 -Bit Vo lt a g e -Ou t p u t DACs  
w it h S e ria l In t e rfa c e  
2/MAX513  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
___________________Ch ip To p o g ra p h y  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
PIN-PACKAGE  
14 Plastic DIP  
14 SO  
OUTC OUTB OUTA  
V
SS  
GND  
MAX512EPD  
MAX512ESD  
MAX512MJD  
MAX513CPD  
MAX513CSD  
MAX513C/D  
MAX513EPD  
MAX513ESD  
MAX513MJD  
V
DD  
14 CERDIP  
14 Plastic DIP  
14 SO  
REFC  
0°C to +70°C  
REFAB  
0°C to +70°C  
Dice*  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
14 Plastic DIP  
14 SO  
0. 122"  
14 CERDIP  
(3. 099mm)  
* Contact factory for dice specifications.  
RESET  
SCLK  
LOUT  
DIN CS  
0. 081"  
(2. 057mm)  
TRANSISTOR COUNT: 1910  
SUBSTRATE CONNECTED TO V  
DD  
______________________________________________________________________________________ 15  
Lo w -Co s t , Trip le , 8 -Bit Vo lt a g e -Ou t p u t DACs  
w it h S e ria l In t e rfa c e  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
D1  
MIN  
MAX  
0.200  
MIN  
MAX  
5.08  
A
A1 0.015  
A2 0.125  
A3 0.055  
0.38  
3.18  
1.40  
0.41  
1.27  
0.20  
18.67  
1.27  
7.62  
6.10  
0.150  
0.080  
0.022  
0.065  
0.012  
0.765  
0.080  
0.325  
0.280  
3.81  
2.03  
0.56  
1.65  
0.30  
19.43  
2.03  
8.26  
7.11  
B
0.016  
B1 0.050  
C
D
0.008  
0.735  
E
D1 0.050  
0.300  
E1 0.240  
E
E1  
D
e
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
A3  
e
A
B
2/MAX513  
A2  
A1  
A
L
e
0.115  
0˚  
0.400  
0.150  
15˚  
10.16  
3.81  
L
2.92  
0˚  
α
15˚  
21-330A  
α
14-PIN PLASTIC  
DUAL-IN-LINE  
PACKAGE  
C
e
B1  
e
e
A
B
B
INCHES  
MILLIMETERS  
DIM  
MIN  
0.053  
MAX  
0.069  
0.010  
0.019  
0.010  
0.344  
0.157  
MIN  
1.35  
0.10  
0.35  
0.19  
8.55  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
8.75  
4.00  
A
A1 0.004  
B
C
D
E
e
0.014  
0.007  
0.337  
0.150  
E
H
0.050 BSC  
1.27 BSC  
H
h
0.228  
0.010  
0.016  
0˚  
0.244  
0.020  
0.050  
8˚  
5.80  
0.25  
0.40  
0˚  
6.20  
0.50  
1.27  
L
α
8˚  
21-331A  
h x 45˚  
D
α
A
0.127mm  
0.004in.  
14-PIN PLASTIC  
SMALL-OUTLINE  
PACKAGE  
e
A1  
C
B
L
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX514

CMOS Quad.12-Bit.Serial-Input Multiplying DAC
MAXIM

MAX5140

8-Bit, Ultra-High-Speed DAC
MAXIM

MAX5140IPG

8-Bit, Ultra-High-Speed DAC
MAXIM

MAX5141

+3V/+5V, Serial-Input, Voltage-Output, 14-Bit DACs
MAXIM

MAX5141-MAX5144

+3V/+5V, Serial-Input, Voltage-Output, 14-Bit DACs
MAXIM

MAX5141EUA

+3V/+5V, Serial-Input, Voltage-Output, 14-Bit DACs
MAXIM

MAX5141EUA+

暂无描述
MAXIM

MAX5141EUA+T

暂无描述
MAXIM

MAX5141EUA-T

D/A Converter, 1 Func, Serial Input Loading, 1us Settling Time, PDSO8, 3 X 5 MM, MINIATURE, MICRO MAX PACKAGE-8
MAXIM

MAX5142

+3V/+5V.Serial-Input.Voltage-Output.14-Bit DACs
MAXIM

MAX5142EUB

+3V/+5V, Serial-Input, Voltage-Output, 14-Bit DACs
MAXIM

MAX5142EUB+

D/A Converter, 1 Func, Serial Input Loading, 1us Settling Time, PDSO10, MICRO MAX PACKAGE-10
MAXIM