MAX5184BEEG [MAXIM]

10-Bit, 40MHz, Current/Voltage-Output DACs; 10位, 40MHz的,电流/电压输出DAC
MAX5184BEEG
型号: MAX5184BEEG
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

10-Bit, 40MHz, Current/Voltage-Output DACs
10位, 40MHz的,电流/电压输出DAC

转换器 数模转换器 光电二极管
文件: 总16页 (文件大小:285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1579; Rev 0; 12/99  
10-Bit, 40MHz, Current/Voltage-Output DACs  
General Description  
Features  
The MAX5181 is a 10-bit, current-output digital-to-ana-  
log converter (DAC) designed for superior performance  
in signal reconstruction or arbitrary waveform genera-  
tion applications requiring analog signal reconstruction  
with low distortion and low-power operation. The  
MAX5184 provides equal specifications, with on-chip  
precision resistors for voltage-output operation. The  
MAX5181/MAX5184 are designed for a 10pVs glitch  
operation to minimize unwanted spurious signal com-  
ponents at the output. An on-board +1.2V bandgap cir-  
cuit provides a well-regulated, low-noise reference that  
can be disabled for external reference operation.  
+2.7V to +3.3V Single-Supply Operation  
Wide Spurious-Free Dynamic Range: 70dB  
at f = 2.2MHz  
OUT  
Fully Differential Output  
Low-Current Standby or Full Shutdown Modes  
Internal +1.2V, Low-Noise Bandgap Reference  
Small 24-Pin QSOP Package  
The devices are designed to provide a high level of sig-  
nal integrity for the least amount of power dissipation.  
They operate from a single +2.7V to +3.3V supply.  
Additionally, these DACs have three modes of opera-  
tion: normal, low-power standby, and full shutdown,  
which provides the lowest possible power dissipation  
with a 1µA max shutdown current. A fast wake-up time  
(0.5µs) from standby mode to full DAC operation facili-  
tates power conservation by activating the DAC only  
when required.  
Ordering Information  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
24 QSOP  
MAX5181BEEG  
MAX5184BEEG  
24 QSOP  
The MAX5181/MAX5184 are available in 24-pin QSOP  
packages and are specified for the extended (-40°C to  
+85°C) temperature range. For lower resolution, 8-bit  
versions, refer to the MAX5187/MAX5190 data sheet.  
Pin Configuration  
TOP VIEW  
Applications  
Signal Reconstruction  
CREF  
1
2
3
4
5
6
7
8
9
24 REFO  
23 REFR  
22 DGND  
OUTP  
OUTN  
AGND  
Arbitrary Waveform Generators (AWGs)  
Direct Digital Synthesis  
21 DV  
20 D9  
19 D8  
18 D7  
17 D6  
16 D5  
15 D4  
14 D3  
13 D2  
DD  
Imaging Applications  
MAX5181  
MAX5184  
AV  
DD  
DACEN  
PD  
CS  
CLK  
REN 10  
DO 11  
D1 12  
QSOP  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
10-Bit, 40MHz, Current/Voltage-Output DACs  
ABSOLUTE MAXIMUM RATINGS  
AV , DV  
to AGꢁD, DGꢁD .................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
DD  
Digital Inputs to DGꢁD.............................................-0.3V to +6V  
OUTP, OUTꢁ, CREF to AGꢁD .................................-0.3V to +6V  
24-Pin QSOP (derate 9.50mW/°C above +70°C) ........762mW  
Operating Temperature Range  
MAX518_BEEG................................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
V
to AGꢁD ..........................................................-0.3V to +6V  
AGꢁD to DGꢁD.....................................................-0.3V to +0.3V  
AV to DV .................................................................... 3.3V  
REF  
DD  
DD  
Maximum Current into Any Pin............................................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= DV  
= +3V 10ꢀ, AGꢁD = DGꢁD = 0, f  
= 40MHz, I = 1mA, 400differential output, C = 5pF, T = T  
to T  
,
MAX  
DD  
DD  
CLK  
FS  
L
A
MIꢁ  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
STATIC PERFORMANCE  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
10  
-2  
Bits  
LSB  
LSB  
Integral ꢁonlinearity  
Differential ꢁonlinearity  
IꢁL  
DꢁL  
0.5  
0.5  
+2  
1
Guaranteed monotonic  
-1  
MAX5181  
MAX5184  
(ꢁote 1)  
-2  
+2  
+8  
+40  
Zero-Scale Error  
LSB  
LSB  
-8  
Full-Scale Error  
-40  
15  
DYNAMIC PERFORMANCE  
Output Settling Time  
Glitch Impulse  
To 0.5LSB error band  
25  
10  
72  
70  
-70  
-68  
61  
59  
50  
10  
ns  
pVs  
f
= 550kHz  
= 2.2MHz  
= 550kHz  
= 2.2MHz  
= 550kHz  
= 2.2MHz  
OUT  
Spurious-Free Dynamic Range  
to ꢁyquist  
SFDR  
THD  
SꢁR  
f
f
f
= 40MHz  
= 40MHz  
= 40MHz  
dBc  
dB  
CLK  
CLK  
CLK  
f
57  
56  
OUT  
f
OUT  
OUT  
OUT  
OUT  
Total Harmonic Distortion  
to ꢁyquist  
f
f
f
-63  
Signal-to-ꢁoise Ratio to ꢁyquist  
dB  
Clock and Data Feedthrough  
Output ꢁoise  
All 0s to all 1s  
nVs  
pA/Hz  
ANALOG OUTPUT  
Full-Scale Output Voltage  
Voltage Compliance of Output  
Output Leakage Current  
Full-Scale Output Current  
V
400  
mV  
V
FS  
-0.3  
-1  
0.8  
1
DACEꢁ = 0, MAX5181 only  
MAX5181 only  
µA  
mA  
I
FS  
0.5  
1
1.5  
DAC External Output Resistor  
Load  
R
L
MAX5181 only  
400  
2
_______________________________________________________________________________________  
10-Bit, 40MHz, Current/Voltage-Output DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +3V 10ꢀ, AGꢁD = DGꢁD = 0, f  
= 40MHz, I = 1mA, 400differential output, C = 5pF, T = T  
to T  
,
MAX  
DD  
DD  
CLK  
FS  
L
A
MIꢁ  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
REFERENCE  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage Range  
V
1.12  
1.2  
50  
1.28  
V
REF  
Output Voltage Temperature  
Drift  
TCV  
ppm/°C  
REF  
Reference Output Drive  
Capability  
I
10  
µA  
REFOUT  
Reference Supply Rejection  
0.5  
8
mV/V  
Current Gain (I / I  
)
mA/mA  
FS REF  
POWER REQUIREMENTS  
Analog Power-Supply Voltage  
Analog Supply Current  
Digital Power-Supply Voltage  
Digital Supply Current  
AV  
2.7  
2.7  
3.3  
4.0  
3.3  
5.0  
1.5  
V
DD  
I
PD = 0, DACEꢁ = 1, digital inputs at 0 or DV  
1.7  
mA  
V
AVDD  
DD  
DV  
DD  
I
PD = 0, DACEꢁ = 1, digital inputs at 0 or DV  
PD = 0, DACEꢁ = 0, digital inputs at 0 or DV  
PD = 1, DACEꢁ = X,  
4.2  
1.0  
mA  
mA  
DVDD  
DD  
Standby Current  
I
STAꢁDBY  
DD  
Shutdown Current  
I
0.5  
1
µA  
SHDꢁ  
digital inputs at 0 or DV (X = don’t care)  
DD  
LOGIC INPUTS AND OUTPUTS  
Digital Input Voltage High  
Digital Input Voltage Low  
Digital Input Current  
V
2
V
V
IH  
V
0.8  
1
IL  
I
Iꢁ  
V
Iꢁ  
= 0 or DV  
DD  
µA  
pF  
Digital Input Capacitance  
TIMING CHARACTERISTICS  
C
10  
Iꢁ  
DAC DATA to CLK Rise Setup  
Time  
t
10  
0
ns  
ns  
DS  
DAC CLK Rise to DATA Hold  
Time  
t
DH  
5
5
ns  
ns  
µs  
µs  
ns  
ns  
ns  
CS Fall to CLK Rise Time  
CS Fall to CLK Fall Time  
DACEꢁ Rise Time to V  
0.5  
50  
OUT  
PD Fall Time to V  
OUT  
Clock Period  
t
25  
10  
10  
CLK  
Clock High Time  
Clock Low Time  
t
CH  
t
CL  
Note 1: Excludes reference and reference resistor (MAX5184) tolerance.  
_______________________________________________________________________________________  
3
10-Bit, 40MHz, Current/Voltage-Output DACs  
Typical Operating Characteristics  
(AV = DV = +3V, AGꢁD = DGꢁD = 0, I = 1mA, 400differential output, C = 5pF, T = +25°C, unless otherwise noted.)  
DD  
DD  
FS  
L
A
ANALOG SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
INTEGRAL NONLINEARITY vs.  
INPUT CODE  
DIFFERENTIAL NONLINEARITY vs.  
INPUT CODE  
3.0  
2.5  
2.0  
1.5  
1.0  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.4  
0.3  
0.2  
0.1  
0
MAX5184  
MAX5181  
-0.1  
-0.2  
-0.3  
0
-0.1  
-0.2  
0
128 256 384 512 640 768 896 1024  
INPUT CODE  
0
128 256 384 512 640 768 896 1024  
INPUT CODE  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
DIGITAL SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
ANALOG SUPPLY CURRENT vs.  
TEMPERATURE  
DIGITAL SUPPLY CURRENT vs.  
TEMPERATURE  
8
3.0  
2.5  
2.0  
4.00  
3.75  
3.50  
7
6
MAX5184  
MAX5181  
MAX5184  
MAX5181  
5
4
MAX5184  
MAX5181  
1.5  
1.0  
3.25  
3.00  
3
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHUTDOWN CURRENT vs.  
SUPPLY VOLTAGE  
STANDBY CURRENT vs.  
SUPPLY VOLTAGE  
STANDBY CURRENT vs.  
TEMPERATURE  
0.14  
610  
600  
590  
580  
570  
600  
590  
580  
570  
560  
550  
MAX5184  
0.12  
0.10  
0.08  
0.06  
0.04  
MAX5184  
MAX5181  
MAX5181  
MAX5181  
MAX5184  
3.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
2.5  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
4
_______________________________________________________________________________________  
10-Bit, 40MHz, Current/Voltage-Output DACs  
Typical Operating Characteristics (continued)  
(AV = DV = +3V, AGꢁD = DGꢁD = 0, I = 1mA, 400differential output, C = 5pF, T = +25°C, unless otherwise noted.)  
DD  
DD  
FS  
L
A
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
SHUTDOWN CURRENT vs.  
TEMPERATURE  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
0.13  
0.11  
0.09  
0.07  
0.05  
0.03  
MAX5181  
MAX5184  
MAX5181  
MAX5181  
MAX5184  
MAX5184  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT CURRENT vs.  
REFERENCE CURRENT  
DYNAMIC RESPONSE FALL TIME  
DYNAMIC RESPONSE RISE TIME  
MAX5181/4toc15  
MAX5181/4toc14  
4.0  
3.0  
2.0  
OUTP  
150mV/  
div  
OUTP  
150mV/  
div  
OUTN  
150mV/  
div  
OUTN  
150mV/  
div  
1.0  
0
500ns/div  
500ns/div  
0
100  
200  
300  
400  
500  
REFERENCE CURRENT (µA)  
SPURIOUS-FREE DYNAMIC RANGE  
vs. CLOCK FREQUENCY  
SETTLING TIME  
FFT PLOT  
MAX5181/4toc16  
100  
90  
0
-10  
f
f
= 2.2MHz  
= 40MHz  
OUT  
CLK  
-20  
-30  
OUTN  
100mV/  
div  
-40  
-50  
-60  
80  
70  
-70  
-80  
60  
50  
40  
OUTP  
100mV/  
div  
-90  
-100  
-110  
-120  
0
2
4
6
8
10 12 14 16 18 20  
10 15 20 25 30 35 40 45 50 55 60  
CLOCK FREQUENCY (MHz)  
12.5ns/div  
OUTPUT FREQUENCY (MHz)  
_______________________________________________________________________________________  
5
10-Bit, 40MHz, Current/Voltage-Output DACs  
Typical Operating Characteristics (continued)  
(AV = DV = +3V, AGꢁD = DGꢁD = 0, I = 1mA, 400differential output, C = 5pF, T = +25°C, unless otherwise noted.)  
DD  
DD  
FS  
L
A
SPURIOUS-FREE DYNAMIC RANGE vs. OUTPUT  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. OUTPUT FREQUENCY  
FREQUENCY AND CLOCK FREQUENCY  
78  
62.4  
62.2  
62.0  
f
= 20MHz  
CLK  
f
= 40MHz  
= 10MHz  
CLK  
f
= 50MHz  
= 60MHz  
CLK  
76  
74  
72  
61.8  
61.6  
61.4  
61.2  
f
CLK  
f
CLK  
70  
68  
61.0  
60.8  
f
= 30MHz  
2100  
CLK  
66  
500  
900  
1300  
1700  
0
500  
1000  
1500  
2000  
2500  
OUTPUT FREQUENCY (kHz)  
OUPUT FREQUENCY (kHz)  
MULTITONE SPURIOUS-FREE DYNAMIC RANGE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. FULL-SCALE OUTPUT CURRENT  
vs. OUTPUT FREQUENCY  
20  
74  
72  
70  
68  
0
-20  
-40  
-60  
-80  
66  
64  
-100  
-120  
62  
60  
-140  
0
2
4
6
8
10 12 14 16 18 20  
0.5  
0.75  
1.0  
1.25  
1.5  
OUTPUT FREQUENCY (MHz)  
FULL-SCALE OUTPUT CURRENT (mA)  
6
_______________________________________________________________________________________  
10-Bit, 40MHz, Current/Voltage-Output DACs  
Pin Description  
PIN  
1
NAME  
CREF  
OUTP  
OUTꢁ  
AGꢁD  
FUNCTION  
REFO  
2
Positive Analog Output. Current output for MAX5181; voltage output for MAX5184.  
ꢁegative Analog Output. Current output for MAX5181; voltage output for MAX5184.  
Analog Ground  
3
4
5
AV  
Analog Positive Supply, +2.7V to +3.3V  
DD  
DAC Enable, Digital Input  
0: Enter DAC standby mode with PD = DGꢁD  
1: Power-up DAC with PD = DGꢁD  
6
7
DACEꢁ  
PD  
X: Enter shutdown mode with PD = DV  
(X = don’t care)  
DD  
Power-Down Select  
0: Enter DAC standby mode (DACEꢁ = DGꢁD) or power-up DAC (DACEꢁ = DV  
1: Enter shutdown mode  
)
DD  
8
9
Active-Low Chip Select  
Clock Input  
CS  
CLK  
REN  
D0  
10  
Active-Low Reference Enable. Connect to DGꢁD to activate on-chip +1.2V reference.  
11  
Data Bit D0 (LSB)  
Data Bits D1–D8  
12–19  
20  
D1–D8  
D9  
Data Bit D9 (MSB)  
Digital Supply, +2.7V to +3.3V  
Digital Ground  
21  
DV  
DD  
22  
DGꢁD  
REFR  
REFO  
23  
Reference Input  
24  
Reference Output  
_______________________________________________________________________________________  
7
10-Bit, 40MHz, Current/Voltage-Output DACs  
provides a +1.2V output. Due to its limited 10µA output  
Detailed Description  
drive capability, REFO must be buffered with an exter-  
The MAX5181/MAX5184 are 10-bit digital-to-analog con-  
nal amplifier if heavier loading is required.  
verters (DACs) capable of operating with clock speeds  
The MAX5181/MAX5184 also employ a control amplifier  
designed to regulate simultaneously the full-scale out-  
put current (I ) for both outputs of the devices. The  
FS  
output current is calculated as follows:  
up to 40MHz. Each converter consists of separate input  
and DAC registers, followed by a current source array  
capable of generating up to 1.5mA full-scale output cur-  
rent (Figure 1). An integrated +1.2V voltage reference  
and control amplifier determine the data converters’ full-  
scale output currents/voltages. Careful reference design  
ensures close gain matching and excellent drift charac-  
teristics. The MAX5184’s voltage output operation fea-  
tures matched 400on-chip resistors that convert the  
current-array current into a voltage.  
I
FS  
= 8 · I  
REF  
where I  
REFO SET  
is the reference output current (I  
=
REF  
REF  
/R  
V
) and I is the full-scale output current.  
FS  
R
is the reference resistor that determines the  
SET  
amplifier’s output current on the MAX5181 (Figure 2).  
This current is mirrored into the current source array,  
where it is equally distributed between matched current  
segments and summed to valid output current readings  
for the DACs.  
Internal Reference and  
Control Amplifier  
The MAX5181/MAX5184 provide an integrated 50ppm/°C,  
+1.2V, low-noise bandgap reference that can be dis-  
abled and overridden by an external reference voltage.  
REFO serves either as an external reference input or an  
integrated reference output. If REN is connected to  
DGꢁD, the internal reference is selected and REFO  
The MAX5184 converts this output current into a differ-  
ential output voltage (V  
) with two internal, ground-  
OUT  
referenced 400load resistors. Using the internal  
+1.2V reference voltage, the MAX5184’s integrated  
AV  
AGND  
CS  
DACEN  
PD  
DD  
REN  
1.2V REF  
REFO  
REFR  
CREF  
CURRENT-  
SOURCE ARRAY  
OUTP  
OUTN  
DAC SWITCHES  
9.6k*  
OUTPUT  
LATCHES  
OUTPUT  
LATCHES  
400* 400*  
MSB  
DECODE  
MSB  
DECODE  
CLK  
MAX5181  
MAX5184  
INPUT  
LATCHES  
INPUT  
LATCHES  
DV  
DD  
DGND  
*INTERNAL 400AND 9.6kΩ  
RESISTORS FOR MAX5184 ONLY.  
D9D0  
Figure 1. Functional Diagram  
8
_______________________________________________________________________________________  
10-Bit, 40MHz, Current/Voltage-Output DACs  
reference output-current resistor (R  
= 9.6k) sets  
supply current is reduced to 1µA. To enter this mode,  
SET  
I
to 125µA and I to 1mA.  
connect PD to DV . To return to active mode, connect  
DD  
REF  
FS  
PD to DGꢁD and DACEꢁ to DV . About 50µs are  
DD  
External Reference  
required for the parts to leave shutdown mode and settle  
to their outputs’ values prior to shutdown. Table 1 lists the  
power-down mode selection.  
To disable the MAX5181/MAX5184’s internal reference,  
connect REN to DV . A temperature-stable, external  
DD  
reference may now be applied to drive the REFO pin to  
set the full-scale output (Figure 3). Choose a reference  
capable of supplying at least 150µA to drive the bias  
circuit that generates the cascode current for the cur-  
rent array. For improved accuracy and drift perfor-  
mance, choose a fixed output voltage reference such  
as the +1.2V, 25ppm/°C MAX6520 bandgap reference.  
Timing Information  
Figure 4 shows a detailed timing diagram for the  
MAX5181/MAX5184. With each high transition of the  
clock, the input latch is loaded with the digital value set  
by bits D9 through D0. The content of the input latch is  
then shifted to the DAC register, and the output up-  
dates at the rising edge of the next clock.  
Standby Mode  
To enter the lower-power standby mode, connect digital  
inputs PD and DACEꢁ to DGꢁD. In standby, both the  
reference and the control amplifier are active with the  
current array inactive. To exit this condition, DACEꢁ  
must be pulled high with PD held at DGꢁD. The  
MAX5181/MAX5184 typically require 50µs to wake up  
and let both outputs and the reference settle.  
Outputs  
The MAX5181 output is designed to supply full-scale  
output currents of 1mA into 400loads in parallel with  
a capacitive load of 5pF. The MAX5184 features inte-  
grated 400resistors that restore the array current to  
proportional, differential voltages of 400mV. These dif-  
ferential output voltages can then be used to drive a  
balun transformer or a low-distortion, high-speed oper-  
ational amplifier to convert the differential voltage into a  
single-ended voltage.  
Shutdown Mode  
For lowest power consumption, the MAX5181/MAX5184  
provide a power-down mode in which the reference, con-  
trol amplifier, and current array are inactive and the DAC  
OPTIONAL EXTERNAL BUFFER  
FOR HEAVIER LOADS  
DGND  
REN  
+1.2V  
BANDGAP  
REFERENCE  
MAX4040  
REFO  
R
SET  
I
FS  
C
*
CURRENT-  
SOURCE ARRAY  
COMP  
I
AGND  
REF  
REFR  
R
SET  
R
**  
SET  
9.6k  
MAX5181  
MAX5184  
AGND  
*COMPENSATION CAPACITOR (C  
= 100nF)  
**9.6kREFERENCE CURRENT-SET RESISTOR  
COMP  
INTERNAL TO MAX5184 ONLY. USE EXTERNAL  
R
FOR MAX5181.  
SET  
Figure 2. Setting IFS with the Internal +1.2V Reference and the Control Amplifier  
_______________________________________________________________________________________  
9
10-Bit, 40MHz, Current/Voltage-Output DACs  
Table 1. Power-Down Mode Selection  
PD  
DACEN (DAC ENABLE)  
POWER-DOWN MODE  
Standby  
OUTPUT STATE  
(POWER-DOWN SELECT)  
MAX5181  
MAX5184  
High-Z  
AGꢁD  
0
0
1
X
0
Wake-Up  
Last state prior to standby mode  
MAX5181  
MAX5184  
High-Z  
AGꢁD  
1
Shutdown  
X = Don’t care  
DV  
DD  
10µF  
0.1µF  
REN  
+1.2V  
DGND  
AV  
DD  
BANDGAP  
REFERENCE  
EXTERNAL  
+1.2V  
REFERENCE  
REFO  
REFR  
I
FS  
CURRENT-  
SOURCE ARRAY  
MAX6520  
AGND  
9.6k*  
R
SET  
AGND  
MAX5181  
MAX5184  
*9.6kREFERENCE CURRENT-SET RESISTOR  
INTERNAL TO MAX5184 ONLY. USE EXTERNAL  
R
FOR MAX5181.  
SET  
Figure 3. MAX5181/MAX5184 with External Reference  
been nullified. For a DAC, the deviations are measured  
every single step.  
Applications Information  
Static and Dynamic  
Performance Definitions  
Differential Nonlinearity  
Differential nonlinearity (DꢁL) (Figure 5b) is the differ-  
ence between an actual step height and the ideal value  
of 1LSB. A DꢁL error specification of less than 1LSB  
guarantees no missing codes and a monotonic transfer  
function.  
Integral Nonlinearity  
Integral nonlinearity (IꢁL) (Figure 5a) is the deviation of  
the values on an actual transfer function from either a  
best-straight-line fit (closest approximation to the actual  
transfer curve) or a line drawn between the endpoints  
of the transfer function once offset and gain errors have  
10 ______________________________________________________________________________________  
10-Bit, 40MHz, Current/Voltage-Output DACs  
t
t
t
CH  
CLK  
CL  
CLK  
D0D9  
N - 1  
N
N + 1  
t
DS  
t
DH  
OUT  
N - 1  
N
N + 1  
Figure 4. Timing Diagram  
Offset Error  
where V is the fundamental amplitude, and V through  
1 2  
Offset error (Figure 5c) is the difference between the  
ideal and the actual offset point. For a DAC, the offset  
point is the step value when the digital input is zero.  
This error affects all codes by the same amount and  
can usually be compensated by trimming.  
V are the amplitudes of the 2nd- through 5th-order  
5
harmonics.  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest distortion com-  
ponent.  
Gain Error  
Gain error (Figure 5d) is the difference between the  
ideal and the actual full-scale output voltage on the  
transfer curve, after nullifying the offset error. This error  
alters the slope of the transfer function and corre-  
sponds to the same percentage error in each step.  
Differential to Single-Ended Conversion  
The MAX4108 low-distortion, high-input bandwidth  
amplifier may be used to generate a voltage from the  
array current output of the MAX5181. The differential  
voltage across OUTP and OUTꢁ is converted into a  
single-ended voltage by designing an appropriate  
operational amplifier configuration (Figure 6).  
Settling Time  
Settling time is the amount of time required from the start  
of a transition until the DAC output settles its new output  
value to within the converter’s specified accuracy.  
I/Q Reconstruction  
in a QAM Application  
Digital Feedthrough  
Digital feedthrough is the noise generated on a DAC’s  
output when any digital input transitions. Proper board  
layout and grounding will significantly reduce this  
noise, but there will always be some feedthrough  
caused by the DAC itself.  
The low-distortion performance of two MAX5181/  
MAX5184s supports analog reconstruction of in-phase  
(I) and quadrature (Q) carrier components typically  
used in quadrature amplitude modulation (QAM) archi-  
tectures where two separate buses carry the I and Q  
data. A QAM signal is both amplitude (AM) and phase  
modulated, created by summing two independently  
modulated carriers of identical frequency but different  
phase (90° phase difference).  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the input signal’s first five harmonics to the fun-  
damental itself. This is expressed as:  
In a typical QAM application (Figure 7), the modulation  
occurs in the digital domain, and two DACs such as the  
MAX5181/MAX5184 may be used to reconstruct the  
analog I and Q components.  
2
2
2
2
(V + V + V + V )  
5
2
3
4
THD = 20 log  
V
1
______________________________________________________________________________________ 11  
10-Bit, 40MHz, Current/Voltage-Output DACs  
7
6
6
1 LSB  
5
4
5
4
DIFFERENTIAL LINEARITY  
ERROR (-1/4 LSB)  
AT STEP  
3
2
3
2
1
0
011 (1/2 LSB )  
1 LSB  
DIFFERENTIAL  
LINEARITY ERROR (+1/4 LSB)  
AT STEP  
1
0
001 (1/4 LSB )  
000  
001  
010  
011  
100  
101  
000 001 010 011 100 101 110 111  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
Figure 5a. Integral Nonlinearity  
Figure 5b. Differential Nonlinearity  
IDEAL FULL-SCALE OUTPUT  
7
6
5
ACTUAL  
3
2
1
0
DIAGRAM  
GAIN ERROR  
(-1 1/4 LSB)  
IDEAL DIAGRAM  
IDEAL DIAGRAM  
ACTUAL  
FULL-SCALE  
OUTPUT  
ACTUAL  
OFFSET  
POINT  
OFFSET ERROR  
(+1 1/4 LSB)  
4
0
IDEAL OFFSET  
POINT  
000 100  
101  
110  
111  
000  
001  
010  
011  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
Figure 5c. Offset Error  
Figure 5d. Gain Error  
The I/Q reconstruction system is completed by a quad-  
rature modulator that combines the reconstructed com-  
ponents with in-phase and quadrature carrier  
frequencies and then sums both outputs to provide the  
QAM signal.  
replica of the desired analog waveforms. This memory  
shares a common clock with the DAC.  
For each clock cycle, a counter adds one count to the  
address for the waveform memory. The memory then  
loads the next value to the DAC, which generates an  
analog output voltage corresponding to that data value.  
A DAC output filter can either be a simple or complex  
lowpass filter, depending on the AWG requirements for  
waveform function and frequencies. The main limita-  
tions of the AWG’s flexibility are DAC resolution and  
dynamic performance, memory length, clock frequen-  
cy, and the filter characteristics.  
Using the MAX5181/MAX5184 for  
Arbitrary Waveform Generation  
Designing a traditional arbitrary waveform generator  
(AWG) requires five major functional blocks (Figure 8a):  
clock generator, counter, waveform memory, DAC for  
waveform reconstruction, and output filter. The wave-  
form memory contains the sequentially stored digital  
Although the MAX5181/MAX5184 offer high-frequency  
operation and excellent dynamics, they are suitable for  
12 ______________________________________________________________________________________  
10-Bit, 40MHz, Current/Voltage-Output DACs  
+3V  
AV  
DD  
+
+3V  
10µF  
0.1µF  
+
0.1µF  
10µF  
0.1µF  
402Ω  
DV  
AV  
DD  
DD  
CREF  
+5V  
-5V  
402Ω  
402Ω  
OUTP  
CLK  
OUTPUT  
400*  
D0D9  
MAX5181  
MAX5184  
MAX4108  
OUTN  
REFO  
REFR  
402Ω  
0.1µF  
400*  
R
**  
SET  
DGND  
REN  
AGND  
**MAX5181 ONLY  
*400RESISTORS INTERNAL TO MAX5184 ONLY.  
Figure 6. Differential to Single-Ended Conversion Using a Low-Distortion Amplifier  
AV  
DV  
DD  
DD  
+3V  
+3V  
I COMPONENT  
BP  
FILTER  
10  
MAX5181  
MAX5184  
DIGITAL  
SIGNAL  
PROCESSOR  
IF  
0°  
CARRIER  
FREQUENCY  
AV  
DV  
DD  
DD  
Σ
90°  
Q COMPONENT  
BP  
FILTER  
10  
MAX5181  
MAX5184  
MAX2452  
QUADRATURE  
MODULATOR  
Figure 7. Using the MAX5181/MAX5184 for I/Q Signal Reconstruction  
______________________________________________________________________________________ 13  
10-Bit, 40MHz, Current/Voltage-Output DACs  
AV  
DV  
DD  
DD  
LOWPASS  
RECONSTRUCTION  
FILTER  
DATA  
10  
WAVEFORM  
MEMORY  
(RAM)  
COUNTER  
ADR  
CLOCK  
GENERATOR  
MAX5181  
MAX5184  
FILTERED  
WAVEFORM  
(ANALOG OUTPUT)  
400*  
VARIABLE  
fc  
9.6k*  
*MAX5181 ONLY  
Figure 8a. Traditional Arbitrary Waveform Generation  
CLOCK  
GENERATOR  
AV  
DV  
DD  
DD  
LOWPASS  
RECONSTRUCTION  
FILTER  
A
DATA  
10  
D
WAVEFORM  
MEMORY  
(RAM)  
D
E
R
PIR  
ADR  
PHASE  
ACCUMULATOR  
MAX5181  
MAX5184  
FILTERED  
WAVEFORM  
(ANALOG OUTPUT)  
PHASE  
INCREMENT  
REGISTER  
400*  
ACCUMULATOR  
FEEDBACK LOOP  
FOR DATA BITS  
VARIABLE  
fc  
9.6k*  
*MAX5181 ONLY  
Figure 8b. Direct Digital Synthesis AWG  
relaxed requirements in resolution (10-bit AWGs). To  
increase an AWG’s high-frequency accuracy, tempera-  
ture stability, wide-band tuning, and past phase-contin-  
uos frequency switching, the user may approach a  
direct digital synthesis (DDS) AWG (Figure 8b). This  
DDS loop supports standard waveforms that are repeti-  
tive, such as sine, square, TTL, and triangular wave-  
forms. DDS allows for precise control of the  
data-stream input to the DAC. Data for one complete  
output waveform cycle is sequentially stored in a RAM.  
As the RAM addresses are changing, the DAC con-  
verts the incoming data bits into a corresponding volt-  
age waveform. The resulting output signal frequency is  
proportional to the frequency rate at which the RAM  
addresses are changed.  
Grounding and Power-Supply Decoupling  
Grounding and power-supply decoupling strongly influ-  
ence the MAX5181/MAX5184’s performance. Unwanted  
digital crosstalk may couple through the input, refer-  
ence, power-supply, and ground connections, which  
may affect dynamic specifications like SꢁR or SFDR. In  
addition, electromagnetic interference (EMI) can either  
couple into or be generated by the MAX5181/  
MAX5184. Therefore, grounding and power-supply  
decoupling guidelines for high-speed, high-frequency  
applications should be closely followed.  
First, a multilayer PC board with separate ground and  
power-supply planes is recommended. High-speed  
signals should be run on controlled impedance lines  
14 ______________________________________________________________________________________  
10-Bit, 40MHz, Current/Voltage-Output DACs  
directly above the ground plane. Since the MAX5181/  
MAX5184 have separate analog and digital ground  
buses (AGꢁD and DGꢁD, respectively), the PC board  
should also have separate analog and digital ground  
sections with only one point connecting the two. Digital  
signals should run above the digital ground plane, and  
analog signals should run above the analog ground  
plane.  
The power-supply voltages should also be decoupled  
with large tantalum or electrolytic capacitors at the  
point they enter the PC board. Ferrite beads with addi-  
tional decoupling capacitors forming a pi network can  
also improve performance.  
Chip Information  
TRAꢁSISTOR COUꢁT: 9464  
Both devices have two power-supply inputs: analog  
V
DD  
(AV ) and digital V  
(DV ). Each AV  
input  
DD  
DD  
DD  
DD  
SUBSTRATE COꢁꢁECTED TO AGꢁD  
should be decoupled with parallel 10µF and 0.1µF  
ceramic-chip capacitors. These capacitors should be  
as close to the pin as possible, and their opposite ends  
should be as close as possible to the ground plane.  
The DV  
pins should also have separate 10µF and  
DD  
0.1µF capacitors adjacent to their respective pins. Try  
to minimize analog load capacitance for proper opera-  
tion. For best performance, bypass with low-ESR 0.1µF  
capacitors to AV  
.
DD  
______________________________________________________________________________________ 15  
10-Bit, 40MHz, Current/Voltage-Output DACs  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5184BEEG+

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.025us Settling Time, PDSO24, ROHS COMPLIANT, QSOP-24
MAXIM

MAX5184BEEG+T

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.025us Settling Time, PDSO24, 0.150 INCH, 0.025 INCH PITCH, LEAD FREE, QSOP-24
MAXIM

MAX5184BEEG-T

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.025us Settling Time, PDSO24, 0.150 INCH, 0.025 INCH PITCH, QSOP-24
MAXIM

MAX5184ETG

10-Bit, 40MHz, Current/Voltage-Output DACs
MAXIM

MAX5184ETG+

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.025us Settling Time, ROHS COMPLIANT, TQFN-24
MAXIM

MAX5184ETG+T

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.025us Settling Time, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, THIN, MO-220, QFN-24
MAXIM

MAX5184ETG-T

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.025us Settling Time, 4 X 4 MM, 0.80 MM HEIGHT, THIN, MO-220, QFN-24
MAXIM

MAX5184ETG/V+

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.025us Settling Time, ROHS COMPLIANT, TQFN-24
MAXIM

MAX5184ETV

10-Bit, 40MHz, Current/Voltage-Output DACs
MAXIM

MAX5185

Dual.10-Bit.40MHz Current/Voltage Output DACs with Alternate Phase Update
MAXIM

MAX5185BEEI

Dual, 10-Bit, 40MHz Current/Voltage Alternate-Phase Output DACs
MAXIM

MAX5185BEEI+

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.025us Settling Time, PDSO28, 0.150 INCH, 0.025 INCH PITCH, QSOP-28
MAXIM