MAX5189BEEI-T [MAXIM]

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 0.025us Settling Time, PDSO28, 0.150 INCH, 0.025 INCH PITCH, QSOP-28;
MAX5189BEEI-T
型号: MAX5189BEEI-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 0.025us Settling Time, PDSO28, 0.150 INCH, 0.025 INCH PITCH, QSOP-28

文件: 总15页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1581; Rev 3; 12/01  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Simultaneous-Output DACs  
General Description  
Features  
The MAX5186 contains two 8-bit, simultaneous-update,  
current-output digital-to-analog converters (DACs)  
designed for superior performance in communications  
systems requiring analog signal reconstruction with low  
distortion and low-power operation. The MAX5189 pro-  
vides equal specifications, with on-chip precision resis-  
tors for voltage output operation. The MAX5186/  
MAX5189 are designed for a 10pVs glitch operation to  
minimize unwanted spurious signal components at the  
output. An on-board +1.2V bandgap circuit provides a  
well-regulated, low-noise reference that can be dis-  
abled for external reference operation.  
o +2.7V to +3.3V Single-Supply Operation  
o Wide Spurious-Free Dynamic Range:  
70dB at f = 2.2MHz  
OUT  
o Fully Differential Outputs for Each DAC  
o
o
0.ꢀ5 FSR ꢁain Mismatch  
0.ꢂꢀꢃ Phase Mismatch  
o Low-Current Standby or Full Shutdown Modes  
o Internal +ꢂ.2V, Low-Noise Bandgap Reference  
o Small 28-Pin QSOP Package  
The MAX5186/MAX5189 are designed to provide a high  
level of signal integrity for the least amount of power dissi-  
pation. Both DACs operate from a single supply voltage  
of +2.7V to +3.3V. Additionally, these DACs have three  
modes of operation: normal, low-power standby, and  
complete shutdown, which provides the lowest possible  
power dissipation with a 1µA (max) shutdown current. A  
fast wake-up time (0.5µs) from standby mode to full DAC  
operation allows power conservation by activating the  
DACs only when required.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 QSOP  
MAX5186BEEI  
MAX5189BEEI  
28 QSOP  
The MAX5186/MAX5189 are packaged in a 28-pin  
QSOP and are specified for the extended (-40°C to  
+85°C) temperature range. For higher resolution, dual  
10-bit versions, refer to the MAX5180/MAX5183 data  
sheet.  
Pin Configuration  
TOP VIEW  
Applications  
Signal Reconstruction of I and Q  
Transmit Signals  
CREF1  
OUT1P  
OUT1N  
AGND  
1
2
3
4
5
6
7
8
9
28 CREF2  
27 OUT2P  
26 OUT2N  
25 REFO  
24 REFR  
Digital Signal Processing  
Arbitrary Waveform Generation (AWG)  
Imaging Applications  
AV  
DD  
MAX5186  
MAX5189  
DACEN  
PD  
23 DGND  
22 DV  
21 D7  
20 D6  
19 D5  
18 D4  
17 D3  
16 D2  
15 D1  
DD  
CS  
CLK  
N.C. 10  
REN 11  
DGND 12  
DGND 13  
D0 14  
QSOP  
________________________________________________________________ Maxim Integrated Products  
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Simultaneous-Output DACs  
ABSOLUTE MAXIMUM RATINGS  
AV , DV  
to AGꢁD, DGꢁD ................................ -0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
DD  
Digital Input to DGꢁD.............................................. -0.3V to +6V  
OUT1P, OUT1ꢁ, OUT2P, OUT2ꢁ, CREF1,  
28-Pin QSOP (derate 9.00mW/°C above +70°C) ....... 725mW  
Operating Temperature Ranges  
MAX518_BEEI................................................. -40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CREF2 to AGꢁD.................................................. -0.3V to +6V  
V
to AGꢁD ......................................................... -0.3V to +6V  
REF  
AGꢁD to DGꢁD................................................... -0.3V to +0.3V  
AV to DV .................................................................... 3.3V  
DD  
DD  
Maximum Current into Any Pin........................................... 50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= DV  
= +3V 10ꢀ, AGꢁD = DGꢁD = 0, f  
= 40MHz, I = 1mA, 400differential output, C = 5pF, T = T  
to T  
,
MAX  
DD  
DD  
CLK  
FS  
L
A
MIꢁ  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
8
-1  
Bits  
LSB  
LSB  
Integral ꢁonlinearity  
IꢁL  
DꢁL  
0.25  
0.25  
+1  
+1  
Differential ꢁonlinearity  
Guaranteed monotonic  
-1  
MAX5186  
MAX5189  
(ꢁote 1)  
-1  
+1  
Zero-Scale Error  
LSB  
LSB  
-4  
+4  
Full-Scale Error  
-20  
4
+20  
DYNAMIC PERFORMANCE  
Output Settling Time  
Glitch Impulse  
To 0.5LSB error band  
25  
10  
72  
70  
-70  
-68  
52  
52  
-60  
50  
10  
ns  
pVs  
f
f
f
f
f
f
= 550kHz  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Spurious-Free Dynamic Range  
to ꢁyquist  
SFDR  
THD  
SꢁR  
f
f
= 40MHz  
= 40MHz  
dBc  
dB  
CLK  
= 2.2MHz, T = +25°C  
A
57  
46  
= 550kHz  
Total Harmonic Distortion  
to ꢁyquist  
CLK  
= 2.2MHz, T = +25°C  
A
-63  
= 550kHz  
Signal-to-ꢁoise-Ratio to ꢁyquist  
f
f
= 40MHz  
= 2.2MHz  
dB  
CLK  
= 2.2MHz, T = +25°C  
A
DAC-to-DAC Output Isolation  
Clock and Data Feedthrough  
Output ꢁoise  
dB  
nVs  
OUT  
All 0s to all 1s  
pA/Hz  
Gain Mismatch Between DAC  
Outputs  
f
f
= 2.2MHz, T = +25°C  
A
0.5  
1
LSB  
OUT  
Phase Mismatch Between DAC  
Outputs  
= 2.2MHz  
0.15  
degrees  
OUT  
2
_______________________________________________________________________________________  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Simultaneous-Output DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +3V 10ꢀ, AGꢁD = DGꢁD = 0, f  
= 40MHz, I = 1mA, 400differential output, C = 5pF, T = T  
to T  
,
MAX  
DD  
DD  
CLK  
FS  
L
A
MIꢁ  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
ANALOG OUTPUT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Full-Scale Output Voltage  
Voltage Compliance of Output  
Output Leakage Current  
Full-Scale Output Current  
V
400  
mV  
V
FS  
-0.3  
-1  
0.8  
1
DACEꢁ = 0, MAX5186 only  
MAX5186 only  
µA  
mA  
I
FS  
0.5  
1
1.5  
DAC External Output Resistor  
Load  
R
L
MAX5186 only  
400  
REFERENCE  
Output Voltage Range  
V
1.12  
1.2  
50  
1.28  
V
REF  
Output Voltage Temperature  
Drift  
TCV  
ppm/°C  
REF  
Reference Output Drive  
Capability  
I
10  
µA  
REFOUT  
Reference Supply Rejection  
0.5  
8
mV/V  
Current Gain (I /I  
)
mA/mA  
FS REF  
POWER REQUIREMENTS  
Analog Power-Supply Voltage  
Analog Supply Current  
Digital Power-Supply Voltage  
Digital Supply Current  
AV  
2.7  
2.7  
3.3  
5.0  
3.3  
5.0  
1.5  
V
DD  
IAV  
PD = 0, DACEꢁ = 1, digital inputs at 0 or DV  
2.7  
mA  
V
DD  
DD  
DD  
DV  
IDV  
PD = 0, DACEꢁ = 1, digital inputs at 0 or DV  
PD = 0, DACEꢁ = 0, digital inputs at 0 or DV  
4.2  
1.0  
mA  
mA  
DD  
STAꢁDBY  
DD  
Standby Current  
I
DD  
PD = 1, DACEꢁ = X, digital inputs at 0 or DV  
(X = don’t care)  
DD  
Shutdown Current  
I
0.5  
1
µA  
SHDꢁ  
LOGIC INPUTS AND OUTPUTS  
Digital Input Voltage High  
Digital Input Voltage Low  
Digital Input Current  
V
2
V
V
IH  
V
0.8  
1
IL  
I
Iꢁ  
V
Iꢁ  
= 0 or DV  
DD  
µA  
pF  
Digital Input Capacitance  
TIMING CHARACTERISTICS  
C
Iꢁ  
10  
DAC1 DATA to CLK Rise  
Setup Time  
t
10  
10  
0
ns  
ns  
ns  
ns  
DS1  
DS2  
DH1  
DH2  
DAC2 DATA to CLK Fall  
Setup Time  
t
DAC1 CLK Rise to DATA  
Hold Time  
t
t
DAC2 CLK Fall to DATA  
Hold Time  
0
_______________________________________________________________________________________  
3
Dual, 8-Bit, 40MHz, Current/Voltage,  
Simultaneous-Output DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +3V 10ꢀ, AGꢁD = DGꢁD = 0, f  
= 40MHz, I = 1mA, 400differential output, C = 5pF, T = T  
to T  
,
MAX  
DD  
DD  
CLK  
FS  
L
A
MIꢁ  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
CS Fall to CLK Rise Time  
CS Fall to CLK Fall Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
5
MAX  
UNITS  
ns  
5
ns  
DACEꢁ Rise Time to V  
0.5  
50  
µs  
OUT  
PD Fall Time to V  
Clock Period  
µs  
OUT  
t
25  
10  
10  
ns  
CLK  
Clock High Time  
Clock Low Time  
t
ns  
CH  
t
CL  
ns  
Note 1: Excludes reference and reference resistor (MAX5189) tolerance.  
Typical Operating Characteristics  
(AV  
= DV  
= +3V, AGꢁD = DGꢁD = 0, 400differential output, I = 1mA, C = 5pF, T = +25°C, unless otherwise noted.)  
DD FS L A  
DD  
ANALOG SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
INTEGRAL NONLINEARITY  
vs. INPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. INPUT CODE  
2.55  
2.53  
2.51  
2.49  
2.47  
2.45  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0.100  
0.075  
0.050  
0.025  
MAX5186  
MAX5189  
0
-0.025  
-0.050  
-0.075  
0
-0.025  
-0.050  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
32 64 96 128 160 192 224 256  
INPUT CODE  
0
32 64 96 128 160 192 224 256  
INPUT CODE  
SUPPLY VOLTAGE (V)  
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
DIGITAL SUPPLY CURRENT  
vs. TEMPERATURE  
DIGITAL SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
10  
8
5
MAX5189  
4
3
2
1
0
MAX5186  
MAX5189  
6
MAX5189  
MAX5186  
MAX5186  
4
2
0
-40  
-15  
10  
35  
60  
85  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Simultaneous-Output DACs  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= +3V, AGꢁD = DGꢁD = 0, 400differential output, I = 1mA, C = 5pF, T = +25°C, unless otherwise noted.)  
DD  
DD  
FS  
L
A
STANDBY CURRENT vs. SUPPLY VOLTAGE  
STANDBY CURRENT vs. TEMPERATURE  
SHUTDOWN CURRENT vs. SUPPLY VOLTAGE  
610  
600  
590  
580  
570  
560  
0.80  
600  
590  
580  
570  
560  
550  
540  
0.75  
0.70  
MAX5186  
MAX5186  
MAX5189  
MAX5186  
0.65  
0.60  
MAX5189  
MAX5189  
0.55  
0.50  
0.45  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
4.0  
2.5  
3.0  
3.5  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
OUTPUT CURRENT  
vs. REFERENCE CURRENT  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
4
3
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
2
1
0
MAX5189  
MAX5186  
MAX5189  
MAX5186  
300  
0
100  
200  
400  
500  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
REFERENCE CURRENT (µA)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
DYNAMIC RESPONSE RISE TIME  
DYNAMIC RESPONSE FALL TIME  
SETTLING TIME  
OUT_P  
150mV/  
div  
OUT_P  
150mV/  
div  
OUT_N  
100mV/  
div  
OUT_N  
150mV/  
div  
OUT_N  
150mV/  
div  
OUT_P  
100mV/  
div  
50ns/div  
50ns/div  
12.5ns/div  
_______________________________________________________________________________________  
5
Dual, 8-Bit, 40MHz, Current/Voltage,  
Simultaneous-Output DACs  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= +3V, AGꢁD = DGꢁD = 0, 400differential output, I = 1mA, C = 5pF, T = +25°C, unless otherwise noted.)  
DD FS L A  
DD  
SPURIOUS-FREE DYNAMIC RANGE  
vs. CLOCK FREQUENCY  
FFT PLOT, DAC1  
FFT PLOT, DAC2  
100  
90  
80  
70  
60  
50  
40  
0
-10  
0
-10  
f
= 2.2MHz  
= 40MHz  
f
= 2.2MHz  
= 40MHz  
OUT  
CLK  
OUT  
CLK  
f
f
-20  
-20  
-30  
-30  
-40  
-50  
-60  
-40  
-50  
-60  
DAC2  
DAC1  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
10 15 20 25 30 35 40 45 50 55 60  
CLOCK FREQUENCY (MHz)  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
SPURIOUS-FREE DYNAMIC RANGE vs. OUTPUT  
FREQUENCY AND CLOCK FREQUENCY, DAC1  
78  
SPURIOUS-FREE DYNAMIC RANGE vs. OUTPUT  
FREQUENCY AND CLOCK FREQUENCY, DAC2  
78  
SPURIOUS-FREE DYNAMIC RANGE  
vs. FULL-SCALE OUTPUT CURRENT  
74  
72  
70  
68  
f
= 40MHz  
CLK  
f
= 60MHz  
CLK  
76  
74  
72  
70  
68  
66  
76  
74  
72  
70  
68  
66  
f
= 60MHz  
CLK  
f
= 20MHz  
CLK  
f
= 40MHz  
f
= 20MHz  
CLK  
CLK  
66  
64  
f
= 50MHz  
CLK  
f
CLK  
= 10MHz  
f
f
= 10MHz  
CLK  
= 50MHz  
CLK  
62  
60  
f
= 30MHz  
f
= 30MHz  
CLK  
CLK  
500 700 900 1100 1300 1500 1700 1900 2100 2300  
OUTPUT FREQUENCY (kHz)  
500 700 900 1100 1300 1500 1700 1900 2100 2300  
OUTPUT FREQUENCY (kHz)  
0.5  
0.75  
1.0  
1.25  
1.5  
FULL-SCALE OUTPUT CURRENT (mA)  
MULTITONE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. OUTPUT FREQUENCY  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. OUTPUT FREQUENCY  
62.5  
62.0  
61.5  
61.0  
60.5  
60.0  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
DAC2  
DAC1  
-120  
0
500  
1000  
1500  
2000  
2500  
0
2.5  
5
7.5 10 12.5 15 17.5  
OUTPUT FREQUENCY (kHz)  
OUTPUT FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Simultaneous-Output DACs  
Pin Description  
PIN  
1
NAME  
CREF1  
OUT1P  
OUT1ꢁ  
AGꢁD  
FUNCTION  
Reference Bias Bypass, DAC1  
2
Positive Analog Output, DAC1. Current output for MAX5186; voltage output for MAX5189.  
ꢁegative Analog Output, DAC1. Current output for MAX5186; voltage output for MAX5189.  
Analog Ground  
3
4
5
AV  
Analog Positive Supply, +2.7V to +3.3V  
DD  
DAC Enable, Digital Input  
0: Enter DAC standby mode with PD = DGꢁD.  
1: Power-up DAC with PD = DGꢁD.  
6
7
DACEꢁ  
PD  
X: Enter shutdown mode with PD = DV  
(X = don’t care).  
DD  
Power-Down Select  
0: Enter DAC standby mode (DACEꢁ = DGꢁD) or power-up DAC (DACEꢁ = DV ).  
DD  
1: Enter shutdown mode.  
8
9
Active-Low Chip Select  
CS  
CLK  
Clock input  
10  
11  
12  
13  
14  
15–20  
21  
22  
23  
24  
25  
26  
27  
28  
ꢁ.C.  
REN  
DGꢁD  
DGꢁD  
D0  
ꢁo Connect. Do not connect to this pin.  
Active-Low Reference Enable. Connect to DGꢁD to activate on-chip +1.2V reference.  
Digital Ground  
Digital Ground  
Data Bit D0 (LSB)  
D1–D6  
D7  
Data Bits D1–D6  
Data Bit D7 (MSB)  
DV  
Digital Supply, +2.7V to +3.3V  
DD  
DGꢁD  
REFR  
Digital Ground  
Reference Input  
REFO  
Reference Output  
OUT2ꢁ  
OUT2P  
CREF2  
ꢁegative Analog Output, DAC2. Current output for MAX5186; voltage output for MAX5189.  
Positive Analog Output, DAC2. Current output for MAX5186; voltage output for MAX5189.  
Reference Bias Bypass, DAC2  
_______________________________________________________________________________________  
7
Dual, 8-Bit, 40MHz, Current/Voltage,  
Simultaneous-Output DACs  
External Reference  
Detailed Description  
To disable the MAX5186/MAX5189’s internal reference,  
The MAX5186/MAX5189 are dual, 8-bit digital-to-ana-  
log converters (DACs) capable of operating with clock  
speeds up to 40MHz. Each of these dual converters  
consists of separate input and DAC registers, followed  
by a current source array capable of generating up to  
1.5mA full-scale output current (Figure 1). An integrat-  
ed +1.2V voltage reference and control amplifier deter-  
mine the data converters’ full-scale output currents/  
voltages. Careful reference design ensures close gain  
matching and excellent drift characteristics. The  
MAX5189’s voltage output operation features matched  
400on-chip resistors that convert the current array  
current into a voltage.  
connect REN to DV . A temperature-stable, external  
DD  
reference may now be applied to drive the REFO pin to  
set the full-scale output (Figure 3). Choose a reference  
capable of supplying at least 150µA to drive the bias  
circuit that generates the cascode current for the cur-  
rent array. For improved accuracy and drift perfor-  
mance, choose a fixed output voltage reference such  
as the +1.2V, 25ppm/°C MAX6520 bandgap reference.  
Standby Mode  
To enter the lower power standby mode, connect digi-  
tal inputs PD and DACEꢁ to DGꢁD. In standby, both  
the reference and the control amplifier are active with  
the current array inactive. To exit this condition, DACEꢁ  
must be pulled high with PD held at DGꢁD. Both the  
MAX5186/MAX5189 typically require 50µs to wake up  
and let both outputs and reference settle.  
Internal Reference and  
Control Amplifier  
The MAX5186/MAX5189 provide an integrated  
50ppm/°C, +1.2V, low-noise bandgap reference that  
can be disabled and overridden by an external refer-  
ence voltage. REFO serves either as an external refer-  
ence input or an integrated reference output. If REN is  
connected to DGꢁD, the internal reference is selected  
and REFO provides a +1.2V output. Due to its limited  
10µA output drive capability, REFO must be buffered  
with an external amplifier if heavier loading is required.  
Shutdown Mode  
For lowest power consumption, the MAX5186/MAX5189  
provide a power-down mode in which the reference,  
control amplifier, and current array are inactive and the  
DACs’ supply current is reduced to 1µA. To enter this  
mode, connect PD to DV . To return to active mode,  
DD  
connect PD to DGꢁD and DACEꢁ to DV . About 50µs  
DD  
are required for the parts to leave shutdown mode and  
settle to their outputs’ values prior to shutdown. Table 1  
lists the power-down mode selection.  
The MAX5186/MAX5189 also employ a control amplifier  
designed to simultaneously regulate the full-scale out-  
put current (I ) for both outputs of the devices. The  
FS  
output current is calculated as follows:  
Timing Information  
Both DAC cells residing in the MAX5186/MAX5189  
write to their outputs simultaneously (Figure 4). The  
input latch of the first DAC (DAC1) is loaded after the  
clock signal transitions high. When the clock signal  
transitions low, the input latch of the second DAC  
(DAC2) is loaded. The contents of both input latches  
are simultaneously shifted to the DAC registers, and  
their outputs update at the rising edge of the next  
clock.  
I
FS  
= 8  
I
REF  
where I  
REFO SET  
is the reference output current (I  
=
REF  
REF  
/R  
V
) and I is the full-scale output current.  
FS  
R
is the reference resistor that determines the  
SET  
amplifier’s output current on the MAX5186 (Figure 2).  
This current is mirrored into the current source array  
where it is equally distributed between matched current  
segments and summed to valid output current readings  
for the DACs.  
The MAX5189 converts each output current (DAC1 and  
Outputs  
The MAX5186 outputs are designed to supply full-scale  
output currents of 1mA into 400loads in parallel with  
a capacitive load of 5pF. The MAX5189 features inte-  
grated 400resistors that restore the array currents to  
proportional, differential voltages of 400mV. These dif-  
ferential output voltages can then be used to drive a  
balun transformer or a low-distortion, high-speed oper-  
ational amplifier to convert the differential voltage into a  
single-ended voltage.  
DAC2) into an output voltage (V  
, V  
) with two  
OUT1 OUT2  
internal, ground-referenced 400load resistors. Using  
the internal +1.2V reference voltage, the MAX5189’s  
integrated reference output-current resistor (R  
=
SET  
9.6k) sets I  
to 125µA and I to 1mA.  
FS  
REF  
8
_______________________________________________________________________________________  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Simultaneous-Output DACs  
AV  
AGND  
CS  
DACEN  
PD  
DD  
REN  
1.2V REF  
REFO  
REFR  
CREF1  
CREF2  
CURRENT-  
SOURCE ARRAY  
OUT1P  
DAC1 SWITCHES  
DAC2 SWITCHES  
OUT1N  
OUT2N  
OUT2N  
9.6k*Ω  
OUTPUT  
LATCHES  
OUTPUT  
LATCHES  
400* 400* 400* 400*  
MSB  
DECODE  
MSB  
DECODE  
CLK  
MAX5186  
MAX5189  
INPUT  
LATCHES  
INPUT  
LATCHES  
DV  
DD  
DGND  
*INTERNAL 400AND 9.6kΩ  
RESISTORS FOR MAX5189 ONLY.  
D7D0  
Figure 1. Functional Diagram  
Offset Error  
Applications Information  
Offset error (Figure 5c) is the difference between the  
ideal and the actual offset point. For a DAC, the offset  
point is the step value when the digital input is zero.  
This error affects all codes by the same amount and  
can usually be compensated by trimming.  
Static and Dynamic  
Performance Definitions  
Integral Nonlinearity  
Integral nonlinearity (IꢁL) (Figure 5a) is the deviation of  
the values on an actual transfer function from either a  
best-straight-line fit (closest approximation to the actual  
transfer curve) or a line drawn between the endpoints  
of the transfer function once offset and gain errors have  
been nullified. For a DAC, the deviations are measured  
every single step.  
Gain Error  
Gain error (Figure 5d) is the difference between the  
ideal and the actual full-scale output voltage on the  
transfer curve after nullifying the offset error. This error  
alters the slope of the transfer function and corre-  
sponds to the same percentage error in each step.  
Differential Nonlinearity  
Differential nonlinearity (DꢁL) (Figure 5b) is the differ-  
ence between an actual step height and the ideal value  
of 1LSB. A DꢁL error specification of less than 1LSB  
guarantees no missing codes and a monotonic transfer  
function.  
Settling Time  
Settling time is the amount of time required from the start  
of a transition until the DAC output settles its new output  
value to within the converter’s specified accuracy.  
_______________________________________________________________________________________  
9
Dual, 8-Bit, 40MHz, Current/Voltage,  
Simultaneous-Output DACs  
OPTIONAL EXTERNAL BUFFER  
FOR HEAVIER LOADS  
REN  
+1.2V  
DGND  
MAX4040  
BANDGAP  
REFERENCE  
REFO  
REFR  
I
FS  
C
CURRENT-  
SOURCE ARRAY  
COMP*  
I
REF  
AGND  
**  
R
SET  
9.6kΩ  
R
SET  
MAX5186  
MAX5189  
AGND  
V
R
REF  
I
=
REF  
SET  
*COMPENSATION CAPACITOR (C  
= 100nF)  
**9.6kREFERENCE CURRENT-SET RESISTOR  
COMP  
INTERNAL TO MAX5189 ONLY. USE EXTERNAL  
R
FOR MAX5186.  
SET  
Figure 2. Setting I with the Internal +1.2V Reference and the Control Amplifier  
FS  
DV  
DD  
10µF  
0.1µF  
DGND  
REN  
+1.2V  
AV  
DD  
BANDGAP  
REFERENCE  
EXTERNAL  
+1.2V  
REFERENCE  
REFO  
REFR  
I
FS  
CURRENT-  
SOURCE ARRAY  
MAX6520  
AGND  
*
9.6kΩ  
R
SET  
MAX5186  
MAX5189  
AGND  
*9.6kREFERENCE CURRENT-SET RESISTOR  
INTERNAL TO MAX5189 ONLY. USE EXTERNAL  
FOR MAX5186.  
R
SET  
Figure 3. MAX5186/MAX5189 with External Reference  
10 ______________________________________________________________________________________  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Simultaneous-Output DACs  
Table 1. Power-Down Mode Selection  
PD  
DACEN (DAC  
ENABLE)  
POWER-DOWN  
MODE  
OUTPUT STATE  
(POWER-DOWN SELECT)  
MAX5186  
MAX5189  
High-Z  
AGꢁD  
0
0
1
0
1
X
Standby  
Wake-Up  
Shutdown  
Last state prior to standby mode  
MAX5186  
MAX5189  
High-Z  
AGꢁD  
X = Don’t care  
t
t
t
CH  
CLK  
CL  
CLK  
D0D7  
DAC1  
DAC2  
DAC1  
DAC2  
DAC1  
DAC2  
t
t
t
t
DH1  
DS1  
DS2  
DH1  
OUT1  
OUT2  
N - 2  
N - 2  
N - 1  
N - 1  
N
N
Figure 4. Timing Diagram  
Digital Feedthrough  
where V is the fundamental amplitude, and V through  
1 2  
Digital feedthrough is the noise generated on a DAC’s  
output when any digital input transitions. Proper board  
layout and grounding will significantly reduce this  
noise, but there will always be some feedthrough  
caused by the DAC itself.  
V are the amplitudes of the 2nd- through 5th-order  
5
harmonics.  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next largest distortion  
component.  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the input signal’s first four harmonics to the fun-  
damental itself. This is expressed as:  
Differential to Single-Ended Conversion  
The MAX4108 low-distortion, high-input bandwidth  
amplifier may be used to generate a voltage from the  
array current output of the MAX5186. The differential  
voltage across OUT1P (or OUT2P) and OUT1ꢁ (or  
OUT2ꢁ) is converted into a single-ended voltage by  
designing an appropriate operational amplifier configu-  
ration (Figure 6).  
2
2
2
2
(V + V + V  
+ V )  
5
2
3
4
THD = 20×log  
V
1
______________________________________________________________________________________ 11  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Simultaneous-Output DACs  
7
6
6
5
5
1 LSB  
DIFFERENTIAL LINEARITY  
ERROR (-1/4 LSB)  
4
4
AT STEP  
011 (1/2 LSB )  
3
3
2
1
0
1 LSB  
2
1
0
DIFFERENTIAL  
LINEARITY ERROR (+1/4 LSB)  
AT STEP  
001 (1/4 LSB )  
000 001 010 011 100 101 110 111  
DIGITAL INPUT CODE  
000  
001  
010  
011  
100  
101  
DIGITAL INPUT CODE  
Figure 5a. Integral Nonlinearity  
Figure 5b. Differential Nonlinearity  
IDEAL FULL-SCALE OUTPUT  
7
6
5
ACTUAL  
3
2
1
0
DIAGRAM  
GAIN ERROR  
(-1 1/4 LSB)  
IDEAL DIAGRAM  
IDEAL DIAGRAM  
ACTUAL  
FULL-SCALE  
OUTPUT  
ACTUAL  
OFFSET  
POINT  
OFFSET ERROR  
(+1 1/4 LSB)  
4
0
IDEAL OFFSET  
POINT  
000 100  
101  
110  
111  
000  
001  
010  
011  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
Figure 5c. Offset Error  
Figure 5d. Gain Error  
MAX5189’s dual DACs may be used to reconstruct the  
analog I and Q components.  
I/Q Reconstruction in a QAM Application  
The MAX5186/MAX5189’s low distortion supports ana-  
log reconstruction of in-phase (I) and quadrature (Q)  
carrier components typically used in quadrature ampli-  
tude modulation (QAM) architectures where I and Q  
data are interleaved on a common data bus. A QAM  
signal is both amplitude and phase modulated, created  
by summing two independently modulated carriers of  
identical frequency but different phase (90° phase dif-  
ference).  
The I/Q reconstruction system is completed by a quad-  
rature modulator that combines the reconstructed I and  
Q components with in-phase and quadrature carrier  
frequencies and then sums both outputs to provide the  
QAM signal.  
Grounding and Power-Supply Decoupling  
Grounding and power-supply decoupling strongly influ-  
ence the MAX5186/MAX5189’s performance. Unwanted  
digital crosstalk may couple through the input, refer-  
In a typical QAM application (Figure 7), the modulation  
occurs in the digital domain and the MAX5186/  
12 ______________________________________________________________________________________  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Simultaneous-Output DACs  
ence, power-supply, and ground connections, which  
necting the two. Digital signals should run above the  
digital ground plane, and analog signals should run  
above the analog ground plane. Digital signals should  
be kept far away from the sensitive analog reference  
and clock input.  
may affect dynamic specifications like signal-to-noise  
ratio or SFDR. In addition, electromagnetic interference  
(EMI) can either couple into or be generated by the  
MAX5186/MAX5189. Therefore, grounding and power-  
supply decoupling guidelines for high-speed, high-fre-  
quency applications should be closely followed.  
Both devices have two power-supply inputs: analog  
V
DD  
(AV ) and digital V  
(DV ). Each AV  
input  
DD  
DD  
DD  
DD  
First, a multilayer printed circuit (PC) board with sepa-  
rate ground and power-supply planes is recommend-  
ed. High-speed signals should be run on controlled  
impedance lines directly above the ground plane.  
Since the MAX5186/MAX5189 have separate analog  
and digital ground buses (AGꢁD and DGꢁD, respec-  
tively), the PC board should also have separate analog  
and digital ground sections with only one point con-  
should be decoupled with parallel 10µF and 0.1µF  
ceramic-chip capacitors. These capacitors should be  
as close to the pin as possible, and their opposite ends  
should be as close to the ground plane as possible.  
The DV  
pins should also have separate 10µF and  
DD  
0.1µF capacitors adjacent to their respective pins. Try  
to minimize analog load capacitance for proper opera-  
tion. For best performance, it is recommended to  
+3V  
+
10µF  
AV  
AV  
DD  
DD  
+3V  
0.1µF  
+
0.1µF  
0.1µF  
10µF  
0.1µF  
AV  
DV  
DD  
DD  
CREF1  
402Ω  
CREF2  
+5V  
-5V  
402Ω  
402Ω  
CLK  
OUT1P  
OUTPUT 1  
*
400Ω  
D0D7  
MAX5186  
MAX5189  
MAX4108  
REFO  
0.1µF  
OUT1N  
402Ω  
*
400Ω  
REFR  
402Ω  
+5V  
402Ω  
402Ω  
RSET**  
OUT2P  
OUT2N  
OUTPUT 2  
400*  
MAX4108  
-5V  
DGND  
REN  
AGND  
402Ω  
*
400Ω  
**MAX5186 ONLY  
*400RESISTORS INTERNAL TO MAX5189 ONLY.  
Figure 6. Differential to Single-Ended Conversion Using a Low-Distortion Amplifier  
______________________________________________________________________________________ 13  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Simultaneous-Output DACs  
+3V  
+3V  
+3V  
I COMPONENT  
BP  
DAC1  
FILTER  
DIGITAL  
SIGNAL  
PROCESSOR  
IF  
0°  
CARRIER  
FREQUENCY  
MAX5186  
MAX5189  
Σ
90°  
Q COMPONENT  
BP  
DAC2  
FILTER  
MAX2452  
QUADRATURE  
MODULATOR  
Figure 7. Using the MAX5186/MAX5189 for I/Q Signal Reconstruction  
bypass CREF1 and CREF2 with low-ESR 0.1µF capaci-  
Chip Information  
TRAꢁSISTOR COUꢁT: 9464  
SUBSTRATE COꢁꢁECTED TO AGꢁD  
tors to AV  
.
DD  
The power-supply voltages should also be decoupled  
with large tantalum or electrolytic capacitors at the  
point they enter the PC board. Ferrite beads with addi-  
tional decoupling capacitors forming a pi network can  
also improve performance.  
14 ______________________________________________________________________________________  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Simultaneous-Output DACs  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX518ACPA

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX518ACPA+

D/A Converter, 2 Func, Serial Input Loading, 6us Settling Time, PDIP8, 0.300 INCH, PLASTIC, DIP-8
MAXIM

MAX518ACSA

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX518AEPA

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX518AEPA+

暂无描述
MAXIM

MAX518AESA

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX518AESA+

D/A Converter, 2 Func, Serial Input Loading, 6us Settling Time, PDSO8, 0.150 INCH, SO-8
MAXIM

MAX518BC/D

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX518BCPA

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX518BCSA

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX518BCSA+

D/A Converter, 2 Func, Serial Input Loading, 6us Settling Time, PDSO8, 0.150 INCH, SO-8
MAXIM

MAX518BCSA-T

暂无描述
MAXIM