MAX519AESE [MAXIM]

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs; 2线串行8位DAC,具有轨至轨输出
MAX519AESE
型号: MAX519AESE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
2线串行8位DAC,具有轨至轨输出

文件: 总16页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0393; Rev 0; 5/95  
2 -Wire S e ria l 8 -Bit DACs w it h  
Ra il-t o -Ra il Ou t p u t s  
78/MAX519  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Single +5V Supply  
Simple 2-Wire Serial Interface  
I2C Compatible  
Output Buffer Amplifiers Swing Rail-to-Rail  
Space-Saving 8-pin DIP/SO Packages  
(MAX517/MAX518)  
The MAX517/MAX518/MAX519 are 8-bit voltage output  
digital-to-analog converters (DACs) with a simple 2-wire  
serial interface that allows communication between  
multiple devices. They operate from a single 5V supply  
and their internal precision buffers allow the DAC out-  
puts to swing rail-to-rail.  
The MAX517 is a single DAC and the MAX518/MAX519  
are dual DACs. The MAX518 uses the supply voltage  
as the reference for both DACs. The MAX517 has a ref-  
e re nc e inp ut for its s ing le DAC a nd e a c h of the  
MAX519s two DACs has its own reference input.  
Reference Input Range Includes Both Supply Rails  
(MAX517/MAX519)  
Power-On Reset Clears All Latches  
4µA Power-Down Mode  
The MAX517/MAX518/MAX519 feature a serial interface  
and internal software protocol, allowing communication  
at data rates up to 400kbps. The interface, combined  
with the double-buffered input configuration, allows the  
DAC registers of the dual devices to be updated indi-  
vidually or simultaneously. In addition, the devices can  
be put into a low-power shutdown mode that reduces  
supply current to 4µA. Power-on reset ensures the DAC  
outputs are at 0V when power is initially applied.  
______________Ord e rin g In fo rm a t io n  
TUE  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
MAX517ACPA  
MAX517BCPA  
MAX517ACSA  
MAX517BCSA  
MAX517BC/D  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
8 Plastic DIP  
8 Plastic DIP  
8 SO  
1
1.5  
1
8 SO  
1.5  
1.5  
Dice*  
The MAX517/MAX518 are available in space-saving 8-  
pin DIP and SO packages. The MAX519 comes in 16-  
pin DIP and SO packages.  
Ordering Information continued at end of data sheet.  
*Dice are specified at T = +25°C, DC parameters only.  
A
**Contact factory for availability and processing to MIL-STD-883.  
________________________Ap p lic a t io n s  
Minimum Component Analog Systems  
Digital Offset/Gain Adjustment  
________________Fu n c t io n a l Dia g ra m  
V
DD  
7
Industrial Process Control  
Automatic Test Equipment  
REF  
1
Programmable Attenuators  
INPUT  
LATCH 0  
OUTPUT  
LATCH 0  
DAC0  
OUT0  
_________________P in Co n fig u ra t io n s  
REF  
8
INPUT  
LATCH 1  
OUTPUT  
LATCH 1  
DAC1  
OUT1  
TOP VIEW  
1
2
3
4
8
7
6
5
OUT0  
GND  
SCL  
8-BIT  
SHIFT  
REGISTER  
OUT1 (REF0)  
MAX518  
ADDRESS  
COMPARATOR  
V
DD  
MAX517  
MAX518  
3
4
AD0  
AD1  
SCL  
SDA  
SDA  
START/STOP  
DETECTOR  
DECODE  
DIP/SO  
( ) ARE FOR MAX517  
Pin Configurations continued at end of data sheet.  
6
5
2
GND  
AD0 AD1  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
2 -Wire S e ria l 8 -Bit DACs w it h  
Ra il-t o -Ra il Ou t p u t s  
ABSOLUTE MAXIMUM RATINGS  
DD  
OUT_ ..........................................................-0.3V to (V + 0.3V)  
REF_ (MAX517, MAX519)...........................-0.3V to (V + 0.3V)  
V
to GND..............................................................-0.3V to +6V  
16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)..842mW  
16-Pin Narrow SO (derate 8.70mW/°C above +70°C) ...696mW  
16-Pin CERDIP (derate 10.00mW/°C above +70°C)......800mW  
Operating Temperature Ranges  
DD  
DD  
DD  
AD_.............................................................-0.3V to (V + 0.3V)  
SCL, SDA to GND.....................................................-0.3V to +6V  
Maximum Current into Any Pin............................................50mA  
MAX51_C_ _ .......................................................0°C to +70°C  
MAX51_E_ _.....................................................-40°C to +85°C  
MAX51_MJB ..................................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ...727mW  
8-Pin SO (derate 5.88mW/°C above +70°C)................471mW  
8-Pin CERDIP (derate 8.00mW/°C above +70°C)........640mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 5V ±10%, V  
= 4V (MAX517, MAX519), R = 10k, C = 100pF, T = T  
to T , unless otherwise noted.  
MAX  
DD  
REF_  
L
L
A
MIN  
Typical values are T = +25°C.)  
A
PARAMETER  
STATIC ACCURACY  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
8
Bits  
LSB  
LSB  
MAX51 _A  
MAX51 _B  
±1  
Total Unadjusted Error (Note 1)  
Differential Nonlinearity (Note 1)  
TUE  
DNL  
±1.5  
±1  
18  
Guaranteed monotonic  
MAX51 _C  
MAX51 _E  
78/MAX519  
Zero-Code Error  
ZCE  
Code = 00 hex  
20  
mV  
MAX51 _BM  
MAX51 _C  
MAX51 _E  
20  
±1  
±1  
Zero-Code-Error Supply Rejection  
Code = 00 hex  
Code = 00 hex  
mV  
MAX51 _BM  
±1  
Zero-Code-Error Temperature Coefficient  
±10  
µV/°C  
MAX51 _C  
MAX51 _E  
MAX51 _BM  
±18  
±20  
±20  
Code = FF hex,  
MAX518 unloaded  
Full-Scale Error  
mV  
MAX51 _C  
MAX51 _E  
MAX51 _BM  
±1  
±1  
MAX517, MAX519  
Code = FF hex  
Full-Scale-Error Supply Rejection  
mV  
V
= +5V ±10%  
DD  
±1  
Full-Scale-Error Temperature Coefficient  
Code = FF hex  
±10  
µV/°C  
2
_______________________________________________________________________________________  
2 -Wire S e ria l 8 -Bit DACs w it h  
Ra il-t o -Ra il Ou t p u t s  
78/MAX519  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V ±10%, V  
= 4V (MAX517, MAX519), R = 10k, C = 100pF, T = T  
to T , unless otherwise noted.  
MAX  
DD  
REF_  
L
L
A
MIN  
Typical values are T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
REFERENCE INPUTS (MAX517, MAX519)  
Input Voltage Range  
0
V
DD  
V
Input Resistance  
Input Current  
R
Code = 55 hex (Note 2)  
Power-down mode  
16  
24  
kΩ  
µA  
pF  
IN  
±10  
Input Capacitance  
Code = FF hex (Note 3)  
30  
-60  
-70  
Channel-to-Channel Isolation  
(MAX519)  
(Note 4)  
(Note 5)  
dB  
dB  
AC Feedthrough  
DAC OUTPUTS  
Full-Scale Output Voltage  
0
V
DD  
V
OUT_ = 4V, 0mA to 2.5mA  
0.25  
1.5  
MAX51 _C/E, REF_ = V  
DD  
(MAX517, MAX519), code = FF hex,  
0µA to 500µA  
Output Load Regulation  
LSB  
µA  
MAX51 _M, REF_ = V  
(MAX517, MAX519), code = FF hex,  
0µA to 500µA  
DD  
2.0  
Output Leakage Current  
DIGITAL INPUTS SCL, SDA  
Input High Voltage  
OUT_ = 0V to V , power-down mode  
±10  
DD  
V
0.7V  
V
V
IH  
DD  
Input Low Voltage  
V
IL  
0.3V  
DD  
Input Leakage Current  
Input Hysteresis  
I
0V V V  
±10  
µA  
V
IN  
IN  
DD  
V
0.05V  
DD  
HYST  
Input Capacitance  
C
(Note 6)  
10  
pF  
IN  
DIGITAL INPUTS AD0, AD1, AD2, AD3  
Input High Voltage  
V
2.4  
V
V
IH  
Input Low Voltage  
V
IL  
0.8  
Input Leakage Current  
DIGITAL OUTPUT SDA (Note 7)  
I
IN  
V
IN  
= 0V to V  
DD  
±10  
µA  
I
= 3mA  
= 6mA  
0.4  
0.6  
±10  
10  
SINK  
Output Low Voltage  
V
V
OL  
I
SINK  
Three-State Leakage Current  
Three-State Output Capacitance  
DYNAMIC PERFORMANCE  
I
V
= 0V to V  
DD  
µA  
pF  
L
IN  
C
(Note 6)  
OUT  
MAX51 _C  
MAX51 _E  
MAX51 _M  
2.0  
1.4  
1.0  
Voltage Output Slew Rate  
Positive and negative  
V/µs  
Output Settling Time  
Digital Feedthrough  
To 1/2 LSB, 10kand 100pF load (Note 8)  
Code = 00 hex, all digital inputs from 0V to V  
6
5
µs  
nV-s  
DD  
_______________________________________________________________________________________  
3
2 -Wire S e ria l 8 -Bit DACs w it h  
Ra il-t o -Ra il Ou t p u t s  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V ±10%, V  
= 4V (MAX517, MAX519), R = 10k, C = 100pF, T = T  
to T , unless otherwise noted.  
MAX  
DD  
REF_  
L
L
A
MIN  
Typical values are T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Digital-Analog Glitch Impulse  
Code 128 to 127  
12  
nV-s  
Signal to Noise + Distortion  
Ratio (MAX517, MAX519)  
V
= 4Vp-p at 1kHz, V = 5V,  
REF_ DD  
SINAD  
87  
dB  
Code = FF hex  
Multiplying Bandwidth  
(MAX517, MAX519)  
V
REF_  
= 4Vp-p, 3dB bandwidth  
1
MHz  
Wideband Amplifier Noise  
POWER REQUIREMENTS  
Supply Voltage  
60  
µV  
RMS  
V
4.5  
5.5  
3.0  
3.5  
5
V
DD  
MAX517C  
1.5  
1.5  
2.5  
2.5  
4
Normal mode, output(s)  
unloaded, all digital inputs  
MAX517E/M  
mA  
µA  
Supply Current  
I
DD  
MAX518C, MAX519C  
at 0V or V  
DD  
MAX518E/M, MAX519E/M  
6
Power-down mode  
20  
TIMING CHARACTERISTICS  
(V = 5V ±10%, T = T  
to T  
, unless otherwise noted. Typical values are T = +25°C.)  
DD  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
400  
UNITS  
Serial Clock Frequency  
f
0
kHz  
SCL  
78/MAX519  
Bus Free Time Between a STOP and a  
START Condition  
t
1.3  
µs  
BUF  
Hold Time, (Repeated) Start Condition  
Low Period of the SCL Clock  
t
t
0.6  
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
µs  
pF  
ns  
HD, STA  
t
LOW  
High Period of the SCL Clock  
t
HIGH  
Setup Time for a Repeated START Condition  
Data Hold Time  
SU, STA  
HD, DAT  
t
(Note 9)  
0.9  
Data Setup Time  
t
100  
SU, DAT  
Rise Time of Both SDA and SCL Signals, Receiving  
Fall Time of Both SDA and SCL Signals, Receiving  
Fall Time of SDA Transmitting (Note 7)  
Setup Time for STOP Condition  
t
(Note 10)  
(Note 10)  
20 + 0.1Cb  
20 + 0.1Cb  
20 + 0.1Cb  
0.6  
300  
300  
250  
R
t
t
F
F
I
6mA (Note 10)  
SINK  
t
SU, STO  
Cb  
Capacitive Load for Each Bus Line  
Pulse Width of Spike Suppressed  
400  
50  
t
SP  
(Notes 6, 11)  
0
Note 1: For the MAX518 (full-scale = V ) the last three codes are excluded from the TUE and DNL specifications, due to the limited  
DD  
output swing when loaded with 10kto GND.  
Note 2: Input resistance is code dependent. The lowest input resistance occurs at code = 55 hex.  
Note 3: Input capacitance is code dependent. The highest input capacitance occurs at code FF hex.  
Note 4:  
V
= 4Vp-p, 10kHz. Channel-to-channel isolation is measured by setting the code of one DAC to FF hex and setting the  
REF_  
code of all other DACs to 00 hex.  
= 4Vp-p, 10kHz, DAC code = 00 hex.  
Note 5:  
V
REF_  
Note 6: Guaranteed by design.  
Note 7: I2C compatible mode.  
Note 8: Output settling time is measured by taking the code from 00 hex to FF hex, and from FF hex to 00 hex.  
Note 9: A master device must provide a hold time of at least 300ns for the SDA signal (referred to V of the SCL signal) in order to  
IL  
bridge the undefined region of SCL’s falling edge.  
Note 10: Cb = total capacitance of one bus line in pF. t and t measured between 0.3V and 0.7V  
.
R
F
DD DD  
Note 11: Input filters on the SDA and SCL inputs suppress noise spikes less than 50ns.  
4
_______________________________________________________________________________________  
2 -Wire S e ria l 8 -Bit DACs w it h  
Ra il-t o -Ra il Ou t p u t s  
78/MAX519  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
FULL-SCALE ERROR vs. SOURCE CURRENT  
MAX517/MAX519 SUPPLY CURRENT  
vs. TEMPERATURE  
ZERO-CODE ERROR  
vs. SINK CURRENT  
(V = V  
)
REF DD  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10  
V
= V = 5V  
REF  
DD  
V
= 5.5V  
V
= V = 5V  
REF  
DD  
DD  
DAC CODE = FF HEX  
LOAD TO AGND  
REF_ INPUTS = 0.6V  
ALL DIGITAL INPUTS to V  
DAC CODE = 00 HEX  
LOAD to V  
DD  
DD  
8
6
4
2
0
8
6
4
2
0
MAX519, DAC CODE = FF HEX  
MAX517, DAC CODE = FF HEX  
MAX517, MAX519  
DAC CODE = 00 HEX  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT SOURCE CURRENT (mA)  
-55 -35 -15  
5
25 45 65 85 105 125  
0
0.5  
1.0  
1.5  
2.0  
TEMPERATURE (°C)  
OUTPUT SINK CURRENT (mA)  
MAX518 SUPPLY CURRENT  
vs. DAC CODE  
MAX518 SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
3.0  
3.5  
3.0  
6
V
= 5.5V  
V
= 5.5V  
V
= 5.5V  
DD  
BOTH DACS SET  
DD  
ALL DIGITAL INPUTS to V  
DD  
AD0, AD1 = V  
DD  
DD  
2.5  
2.0  
1.5  
1.0  
5
4
3
2
1
0
2.5  
2.0  
1.5  
1.0  
DAC CODE = 1B HEX  
DAC CODE = FF HEX  
DAC CODE = 00 HEX  
0.5  
0
0.5  
0
-55 -35  
5
45 65 85 105 125  
0
32 64 96 128 160 192 224 256  
DAC CODE (DECIMAL)  
-15  
25  
-55 -35 -15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX517/MAX519 SUPPLY CURRENT  
vs. REFERENCE VOLTAGE  
MAX517/MAX519 REFERENCE VOLTAGE INPUT  
FREQUENCY RESPONSE  
POSITIVE FULL-SCALE STEP RESPONSE  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
DD  
DAC CODE(S) FF HEX  
0
-4  
MAX519  
OUT0  
1V/div  
4V SINE  
P-P  
-8  
-12  
-16  
2V SINE  
P-P  
1V SINE  
P-P  
0.5V SINE  
P-P  
MAX517  
V
V
REF  
= 5V  
= SINE WAVE  
CENTERED AT 2.5V  
1k 10k 100k  
FREQUENCY (Hz)  
DD  
1µs/div  
1M  
10M  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5 5  
OUT0 LOADED WITH 10kII 100pF  
REF0 = 4V (MAX517/MAX519)  
DAC CODE = 00 HEX to FF HEX  
REFERENCE VOLTAGE (V)  
_______________________________________________________________________________________  
5
2 -Wire S e ria l 8 -Bit DACs w it h  
Ra il-t o -Ra il Ou t p u t s  
______________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
WORST-CASE 1LSB STEP CHANGE  
NEGATIVE FULL-SCALE STEP RESPONSE  
OUT0  
20mV/div  
AC COUPLED  
OUT0  
1V/div  
1µs/div  
OUT0 LOADED WITH 10kII 100pF  
REF0 = 4V (MAX517/MAX519)  
500ns/div  
REF0 = 5V (MAX517/MAX519)  
DAC CODE = 80 HEX to 7F HEX  
MAX517/MAX519  
REFERENCE FEEDTHROUGH AT 1kHz  
DAC CODE = FF HEX to 00 HEX  
CLOCK FEEDTHROUGH  
A
A
B
78/MAX519  
B
A = SCL, 400kHz, 5V/div  
B = OUT0, 5mV/div  
DAC CODE = 7F HEX  
A = REF0, 1V/div (4V  
)
P-P  
B = OUT0, 50µV/div, UNLOADED  
FILTER PASSBAND = 100Hz to 10kHz  
DAC CODE = 00 HEX  
REF0 = 5V (MAX517/MAX519)  
MAX517/MAX519  
REFERENCE FEEDTHROUGH AT 10kHz  
MAX517/MAX519  
REFERENCE FEEDTHROUGH AT 100kHz  
A
B
A
B
A = REF0, 1V/div (4V  
)
P-P  
A = REF0, 1V/div (4V )  
P-P  
B = OUT0, 50µV/div, UNLOADED  
FILTER PASSBAND = 1kHz to 100kHz  
DAC CODE = 00 HEX  
B = OUT0, 50µV/div, UNLOADED  
FILTER PASSBAND = 10kHz to 1MHz  
DAC CODE = 00 HEX  
6
_______________________________________________________________________________________  
2 -Wire S e ria l 8 -Bit DACs w it h  
Ra il-t o -Ra il Ou t p u t s  
78/MAX519  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
MAX517  
MAX518  
MAX519  
1
2
1
2
1
OUT0  
GND  
AD3  
DAC0 Voltage Output  
Ground  
4
3
3
5
Address Input 3; sets ICs slave address  
Serial Clock Input  
6
SCL  
SDA  
AD2  
4
4
8
Serial Data Input  
5
5
9
Address Input 2; sets ICs slave address  
Address Input 1; sets ICs slave address  
Address Input 0; sets ICs slave address  
Power Supply, +5V; used as reference for MAX518  
Reference Voltage Input for DAC1  
Reference Voltage Input for DAC0  
DAC1 Voltage Output  
10  
AD1  
6
6
11  
AD0  
7
7
12  
13  
VDD  
REF1  
REF0  
OUT1  
N.C.  
8
8
15  
16  
2, 3, 7, 14  
No Connect—not internally connected.  
_______________De t a ile d De s c rip t io n  
V
DD  
REF0  
(REF1)  
S e ria l In t e rfa c e  
The MAX517/MAX518/MAX519 us e a s imp le 2-wire  
serial interface requiring only two I/O lines (2-wire bus)  
of a standard microprocessor (µP) port. Figure 2 shows  
the timing d ia g ra m for s ig na ls on the 2-wire b us .  
Figure 3 shows a typical application. The 2-wire bus can  
ha ve s e ve ra l d e vic e s (in a d d ition to the MAX517/  
MAX518/MAX519) attached. The two bus lines (SDA and  
SCL) must be high when the bus is not in use. When in  
use, the port bits are toggled to generate the appropriate  
signals for SDA and SCL. External pull-up resistors are  
not re q uire d on the s e line s . The MAX517/MAX518/  
MAX519 can be used in applications where pull-up resis-  
INPUT  
OUTPUT  
LATCH 0  
DAC0  
OUT0  
LATCH 0  
INPUT  
LATCH 1  
OUTPUT  
LATCH 1  
DAC1  
(OUT1)  
MAX519 ONLY  
2
tors are required (such as in I C systems) to maintain  
compatibility with existing circuitry.  
8-BIT  
SHIFT  
REGISTER  
ADDRESS  
COMPARATOR  
The MAX517/MAX518/MAX519 are receive-only devices  
and must be controlled by a bus master device. They  
operate at SCL rates up to 400kHz. A master device  
sends information to the devices by transmitting their  
address over the bus and then transmitting the desired  
information. Each transmission consists of a START  
condition, the MAX517/MAX518/MAX519s programm-  
able slave-address, one or more command-byte/out-  
put-byte pairs (or a command byte alone, if it is the last  
byte in the transmission), and finally, a STOP condition  
(Figure 4).  
MAX517/MAX519  
SCL  
SDA  
START/STOP  
DETECTOR  
DECODE  
AD0 (AD2)  
AD1 (AD3)  
GND  
( ) ARE FOR MAX519  
Figure 1. MAX517/MAX519 Functional Diagram  
_______________________________________________________________________________________  
7
2 -Wire S e ria l 8 -Bit DACs w it h  
Ra il-t o -Ra il Ou t p u t s  
SDA  
t
BUF  
t
,
t ,  
SU STA  
SU DAT  
t
,
HD STA  
t
,
SU STO  
t
t ,  
HD DAT  
LOW  
SCL  
t
HIGH  
t
,
HD STA  
t
R
t
F
START CONDITION  
REPEATED START CONDITION  
STOP CONDITION START CONDITION  
Figure 2. Two-Wire Serial Interface Timing Diagram  
The address byte and pairs of command and output  
bytes are transmitted between the START and STOP con-  
ditions. The SDA state is allowed to change only while  
SCL is low, with the exception of START and STOP condi-  
tions. SDA’s state is sampled, and therefore must remain  
stable while SCL is high. Data is transmitted in 8-bit  
bytes. Nine clock cycles are required to transfer the data  
bits to the MAX517/MAX518/MAX519. Set SDA low dur-  
ing the 9th clock cycle as the MAX517/MAX518/MAX519  
+1V  
+4V  
REF0  
REF1  
µC  
DUAL  
DAC  
SDA  
SCL  
78/MAX519  
R
C
1k  
MAX519  
SCL  
SDA  
AD0  
AD1  
AD2  
AD3  
OFFSET ADJUSTMENT  
GAIN ADJUSTMENT  
OUT0  
OUT1  
pull SDA low during this time. R (see Figure 3) limits the  
C
current that flows during this time if SDA stays high for  
short periods of time.  
The START and STOP Conditions  
When the bus is not in use, both SCL and SDA must be  
high. A bus master signals the beginning of a transmis-  
sion with a START condition by transitioning SDA from  
high to low while SCL is high (Figure 5). When the mas-  
ter has finished communicating with the slave, it issues  
a STOP condition by transitioning SDA from low to high  
while SCL is high. The bus is then free for another  
transmission.  
DUAL  
DAC  
MAX518  
SCL  
SDA  
AD0  
AD1  
BRIGHTNESS ADJUSTMENT  
CONTRAST ADJUSTMENT  
OUT0  
OUT1  
The Slave Address  
The MAX517/MAX518/MAX519 each have a 7-bit long  
slave address (Figure 6). The first three bits (MSBs) of  
the slave address have been factory programmed and  
are always 010. In addition, the MAX517 and MAX518  
have the next two bits factory programmed to 1s. The  
logic state of the address inputs (AD0 and AD1 on the  
MAX517/MAX518; AD0, AD1, AD2, and AD3 on the  
MAX519) de te rmine the LSB b its of the 7-bit sla ve  
address. These input pins may be connected to VDD or  
DGND, or they may be actively driven by TTL or CMOS  
logic levels. The MAX517/MAX518 have four possible  
slave addresses and therefore a maximum of four of  
+2.5V  
REF0  
OUT0  
SINGLE  
DAC  
MAX517  
SCL  
SDA  
AD0  
AD1  
THRESHOLD ADJUSTMENT  
+5V  
Figure 3. MAX517/MAX518/MAX519 Application Circuit  
_______________________________________________________________________________________  
8
2 -Wire S e ria l 8 -Bit DACs w it h  
Ra il-t o -Ra il Ou t p u t s  
78/MAX519  
SLAVE ADDRESS BYTE  
COMMAND BYTE  
OUTPUT BYTE  
SDA  
SCL  
MSB  
LSB  
ACK  
MSB  
LSB ACK  
MSB  
LSB  
ACK  
STOP CONDITION  
START CONDITION  
Figure 4. A Complete Serial Transmission  
R2  
R1  
R0 RST  
PD  
A0/0 ACK  
LSB  
X
X
SDA  
SDA  
MSB  
SCL  
SCL  
START CONDITION  
STOP CONDITION  
R2, R1, R0: RESERVED BITS. SET TO 0.  
RST: RESET BIT, SET TO 1 TO RESET ALL DAC REGISTERS.  
Figure 5. All communications begin with a START condition and  
end with a STOP condition, both generated by a bus master.  
PD: POWER-DOWN BIT. SET TO 1 TO PLACE THE DEVICE IN THE 4µA SHUTDOWN  
MODE. SET TO 0 TO RETURN TO THE NORMAL OPERATIONAL STATE.  
A0: ADDRESS BIT. DETERMINES WHICH DAC'S INPUT LATCH RECEIVES THE 8 BITS  
OF DATA IN THE NEXT BYTE. SET TO 0 FOR MAX517.  
SLAVE ADDRESS  
ACK: ACKNOWLEDGE BIT. THE MAX517/MAX518/MAX519 PULLS SDA LOW DURING  
THE 9TH CLOCK PULSE.  
0
1
0
1 or  
AD3 AD2  
1 or AD1  
AD0  
0
ACK  
X: DON’T CARE.  
SDA  
SCL  
LSB  
Figure 7. Command Byte  
SLAVE ADDRESS BITS AD0, AD1, AD2, AND AD3 CORRESPOND TO THE LOGIC  
STATE OF THE ADDRESS INPUT PINS.  
Figure 6. Address Byte  
these devices may share the bus. The MAX519 has 16  
possible slave addresses. The eighth bit (LSB) in the  
slave address byte should be low when writing to the  
MAX517/MAX518/MAX519.  
ignored. If an output byte follows the command byte,  
A0 of the command byte indicates the digital address  
of the DAC whose input data latch receives the digital  
outp ut d a ta . Se t this b it to 0 whe n writing to the  
MAX517. The data is transferred to the DACs output  
latch during the STOP condition following the transmis-  
sion. This allows both DACs of the MAX518/MAX519 to  
be updated simultaneously (Figure 8).  
The MAX517/MAX518/MAX519 monitor the bus continu-  
ously, waiting for a START condition followed by their  
slave address. When a device recognizes its slave  
address, it is ready to accept data.  
Se tting the PD b it hig h p owe rs d own the MAX517/  
MAX518/MAX519 following a STOP condition (Figure  
9a). If a command byte with PD set high is followed by  
an output byte, the addressed DACs input latch will be  
updated and the data will be transferred to the DACs  
output latch following the STOP condition (Figure 9b).  
The Command Byte and Output Byte  
A command byte follows the slave address. Figure 7  
shows the format for the command byte. A command  
byte is usually followed by an output byte unless it is  
the last byte in the transmission. If it is the last byte, all  
b its e xc e p t PD (p owe r-d own) a nd RST (re s e t) a re  
_______________________________________________________________________________________  
9
2 -Wire S e ria l 8 -Bit DACs w it h  
Ra il-t o -Ra il Ou t p u t s  
1
1
or or  
0
1
0
AD0 0  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
AD3 AD2AD1  
1
1
1
1
0
SDA  
ACK  
ADDRESS BYTE  
ACK  
COMMAND BYTE  
(ADDRESSING DAC0)  
OUTPUT BYTE  
(FULL SCALE)  
ACK  
START  
STOP  
CONDITION  
CONDITION  
DAC0 INPUT LATCH  
(
)
SET TO FULL SCALE  
DAC OUTPUT CHANGES HERE:  
(
DAC0 GOES TO FULL SCALE.  
)
Figure 8a. Setting One DAC Output (MAX517/MAX518/MAX519)  
1
1
or or  
0
1
0 AD3 AD2AD1 AD0 0  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0 0  
0
0
SDA  
SDA  
ACK  
ADDRESS BYTE  
ACK  
COMMAND BYTE  
(ADDRESSING DAC0)  
OUTPUT BYTE  
(FULL SCALE)  
COMMAND BYTE  
(ADDRESSING DAC1)  
DAC0 INPUT LATCH  
ACK  
ACK  
START  
CONDITION  
(
)
SET TO FULL SCALE  
78/MAX519  
1
1
1
1
1
1
1
1
0
OUTPUT BYTE  
(FULL SCALE)  
ACK  
STOP  
CONDITION  
DAC1 INPUT LATCH  
(
)
SET TO FULL SCALE  
DAC OUTPUTS CHANGE HERE:  
DAC0 AND DAC1 GO TO FULL SCALE.  
(
)
Figure 8b. Setting Both DAC Outputs (MAX518/MAX519)  
1
1
or or  
0 AD3 AD2AD1AD0 0  
(a)  
SDA  
(PD)  
1
0
1
0
0
0
0
0
0
X
X
X
X
ADDRESS BYTE  
ACK  
COMMAND BYTE  
ACK  
STOP  
START  
CONDITION  
DEVICE ENTERS  
CONDITION POWER-DOWN STATE  
(
)
1
1
or or  
0 AD3 AD2AD1AD0 0  
(b)  
SDA  
(PD)  
1
1
1
1
1
1
1
0
0
1
0
0
0
0
0
0
0
1
1
X
ACK  
ADDRESS BYTE  
ACK  
COMMAND BYTE  
(ADDRESSING DAC0)  
OUTPUT BYTE  
(FULL SCALE)  
ACK  
STOP  
START  
CONDITION  
CONDITION  
DAC0 INPUT LATCH  
SET TO FULL SCALE.  
(
)
DEVICE ENTERS POWER-DOWN STATE.  
DAC0 OUTPUT LATCH SET TO FULL SCALE.  
NOTE: X = DON'T CARE  
(
)
Figure 9. Entering the Power-Down State  
10 ______________________________________________________________________________________  
2 -Wire S e ria l 8 -Bit DACs w it h  
Ra il-t o -Ra il Ou t p u t s  
78/MAX519  
Furthermore if the transmissions last command byte  
following output byte is ignored. Subsequent pairs of  
c omma nd /outp ut b yte s ove rwrite the inp ut la tc he s  
(Figure 11b).  
has PD high, the output latches are updated, but volt-  
age outputs will not reflect the newly entered data  
because the DAC enters power-down mode when the  
STOP condition is detected. When in power-down, the  
DAC outputs float. In this mode, the supply current is a  
maximum of 20µA. A command byte with the PD bit low  
returns the MAX517/MAX518/MAX519 to normal opera-  
tion following a STOP condition, with the voltage out-  
puts reflecting the output-latch contents (Figures 10a  
and 10b). Because each subsequent command byte  
overwrites the previous PD bit, only the last command  
byte of a transmission affects the power-down state.  
All c ha ng e s ma d e d uring a tra nsmission a ffe c t the  
MAX517/MAX518/MAX519s outp uts only whe n the  
transmission ends and a STOP has been recognized.  
The R0, R1, and R2 bits are reserved and must be set  
to zero.  
2
I C Co m p a t ib ilit y  
The MAX517/MAX518/MAX519 are fully compatible  
with e xis ting I2C s ys te ms . SCL a nd SDA a re hig h-  
impedance inputs; SDA has an open drain that pulls  
the data line low during the 9th clock pulse. Figure 12  
shows a typical I2C application.  
Setting the RST bit high clears the DAC input latches.  
The DAC outputs remain unchanged until a STOP con-  
dition is detected (Figure 11a). If a reset is issued, the  
1
or  
1
or  
(PD)  
0
(a)  
SDA  
0
1
0
AD2 AD1AD0 0  
0
0
0
0
0
0
AD3  
X
X
X
0
ADDRESS BYTE  
ACK  
COMMAND BYTE  
ACK  
STOP  
START  
CONDITION  
DEVICE RETURNS TO  
CONDITION NORMAL OPERATION  
(
)
1
1
(b)  
SDA  
or or  
(PD)  
0
0
1
0
AD1AD0 0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AD3 AD2  
X
X
ACK  
ADDRESS BYTE  
ACK  
COMMAND BYTE  
(ADDRESSING DAC0)  
OUTPUT BYTE  
(SET TO 0)  
ACK  
STOP  
CONDITION  
START  
CONDITION  
DAC0 INPUT  
LATCH SET TO 0.  
(
)
NOTE: X = DON'T CARE  
DEVICE RETURNS TO NORMAL OPERATION.  
(
)
DAC0 SET TO 0.  
Figure 10. Returning to Normal Operation from Power-Down  
1
1
or or  
AD3 AD2  
(a)  
SDA  
(RST)  
1
0
1
0
AD1AD0 0  
0
0
0
0
0
0
X
X X  
ADDRESS BYTE  
ACK  
COMMAND BYTE  
ACK  
STOP  
CONDITION  
START  
CONDITION  
ALL INPUT LATCHES  
(
)
SET TO 0.  
ALL OUTPUTS  
SET TO 0.  
1
1
(
)
(b)  
SDA  
or or  
(RST)  
1
0
1
0
AD1AD0 0  
0
0
0
0
0
0
0
AD3 AD2  
X
X
X
X X X X X X X X  
ACK ADDITIONAL  
COMMAND BYTE/  
OUTPUT BYTE PAIRS  
"DUMMY"  
OUTPUT BYTE  
ADDRESS BYTE  
ACK  
COMMAND BYTE  
ACK  
STOP  
CONDITION  
START  
CONDITION  
ALL INPUT LATCHES  
SET TO 0.  
DAC OUTPUTS SET TO 0 UNLESS  
CHANGED BY ADDITIONAL COMMAND  
BYTE/OUTPUT BYTE PAIRS.  
(
)
NOTE: X = DON'T CARE  
(
)
Figure 11. Resetting DAC Outputs  
______________________________________________________________________________________ 11  
2 -Wire S e ria l 8 -Bit DACs w it h  
Ra il-t o -Ra il Ou t p u t s  
latches with data that has not been transferred to the  
output latches (Figure 13). Only the currently addressed  
device will recognize a STOP condition and transfer  
data to its output latches. If the device is left with data in  
its input latches, the data can be transferred to the out-  
put latches the next time the device is addressed, as  
long as it receives at least one command byte and a  
STOP condition.  
2
µC  
E PROM  
XICOR  
X24C04  
SDA SCL  
SCL  
SDA  
Early STOP Conditions  
The addressed device recognizes a STOP condition at  
any point in a transmission. If the STOP occurs during a  
command byte, all previous uninterrupted command  
and output byte pairs are accepted, the interrupted  
command byte is ignored, and the transmission ends  
(Figure 14a). If the STOP occurs during an output byte,  
all previous uninterrupted command and output byte  
DUAL  
DAC  
OUT0  
OUT1  
MAX518  
SCL  
SDA  
AD0  
AD1  
pairs are accepted, the final command bytes PD and  
RST bits are accepted, the interrupted output byte is  
ignored, and the transmission ends (Figure 14b).  
SINGLE  
DAC  
OUT0  
+5V  
An a lo g S e c t io n  
MAX517  
SCL  
SDA  
AD0  
AD1  
DAC Operation  
The MAX518 and MAX519 contain two matched volt-  
age-output DACs. The MAX517 contains a single DAC.  
The DACs are inverted R-2R ladder networks that con-  
vert 8-bit digital words into equivalent analog output  
voltages in proportion to the applied reference volt-  
ages. The MAX518 has both DACs reference inputs  
78/MAX519  
Figure 12. MAX517/MAX518/MAX519 Used in a Typical I2C  
Application Circuit  
connected to V . Figure 15 shows a simplified dia-  
DD  
gram of one DAC.  
Additional START Conditions  
It is possible to interrupt a transmission to a device with  
a ne w START (re p e a te d s ta rt) c ond ition (p e rha p s  
addressing another device), which leaves the input  
MAX517/MAX519 Reference Inputs  
The MAX517 and MAX519 can be used for multiplying  
applications. The reference accepts a 0V to V  
volt-  
DD  
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
0
1
1
0
1
0
0
0
SDA  
START  
ADDRESS BYTE  
(DEVICE 0)  
ACK  
COMMAND BYTE  
ADDRESSING DAC0  
ACK  
OUTPUT BYTE  
(FULL SCALE)  
ACK  
ADDRESS BYTE  
(DEVICE 1)  
ACK  
CONDITION  
DEVICE 0's  
DAC0 INPUT LATCH  
SET TO FULL SCALE.  
REPEATED START  
CONDITION  
(
)
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
SDA  
ACK  
OUTPUT BYTE  
(FULL SCALE)  
ACK  
COMMAND BYTE  
(ADDRESSING DAC0)  
STOP  
CONDITION  
DEVICE 1's DAC0  
INPUT LATCH SET  
TO FULL SCALE.  
ONLY DEVICE 1's DAC0 OUTPUT LATCH SET TO FULL  
SCALE. DEVICE 0's OUTPUT LATCH UNCHANGED.  
(
)
(
)
Figure 13. Repeated START Conditions  
12 ______________________________________________________________________________________  
2 -Wire S e ria l 8 -Bit DACs w it h  
Ra il-t o -Ra il Ou t p u t s  
78/MAX519  
1
1
or or  
0 AD3 AD2 AD1AD0 0  
(RST) (PD)  
0 0 0 1 1 0  
(a)  
SDA  
0
1
0
INTERRUPTED  
COMMAND BYTE  
ADDRESS BYTE  
ACK  
EARLY  
MAX517/MAX518/MAX519's  
START  
STOP CONDITION STATE REMAINS UNCHANGED.  
(
CONDITION  
)
1
1
or or  
0 AD3 AD2AD1AD0 0  
(b)  
SDA  
(PD)  
0 RST 1  
0
1
0
0
0
0
0
0
0
1
1
1
0
0
X
X
INTERRUPTED  
OUTPUT BYTE  
ADDRESS BYTE  
ACK  
COMMAND BYTE  
(POWER DOWN)  
ACK  
MAX517/MAX518/MAX519  
POWER DOWN; INPUT LATCH  
UNCHANGED IF RST = 0,  
START  
CONDITION  
EARLY  
STOP CONDITION  
(
)
DAC OUTPUT(S) RESET IF RST = 1.  
Figure 14. Early STOP Conditions  
Table 1. Unipolar Code Table  
DAC CONTENTS  
ANALOG OUTPUT  
R
R
R
255  
+ VREF (———)  
256  
OUT_  
11111111  
2R  
2R  
D0  
2R  
D5  
2R  
D6  
2R  
D7  
129  
+ VREF (———)  
256  
10000001  
10000000  
01111111  
128  
+ VREF (———) = ——  
256  
V
REF  
2
REF_*  
GND  
127  
+ VREF (———)  
256  
SHOWN FOR ALL 1s ON DAC  
*REF = V FOR THE MAX518  
1
+ VREF (———)  
256  
00000001  
00000000  
DD  
0V  
Figure 15. DAC Simplified Circuit Diagram  
age, both DC and AC signals. The voltage at each REF  
input sets the full-scale output voltage for its respective  
DAC. The re fe re nc e volta g e mus t b e p os itive . The  
DACs input impedance is code dependent, with the  
lowest value occurring when the input code is 55 hex or  
0101 0101, and the maximum value occurring when the  
input code is 00 hex. Since the REF input resistance  
(RIN) is code dependent, it must be driven by a circuit  
with low output impedance (no more than RIN ÷ 2000)  
to maintain output linearity. The REF input capacitance  
is a ls o c od e d e p e nd e nt, with the ma ximum va lue  
occurring at code FF hex (typically 30pF). The output  
voltage for any DAC can be represented by a digitally  
Output Buffer Amplifiers  
The DAC voltage outputs are internally buffered preci-  
sion unity-gain followers that slew up to 1V/µs. The out-  
puts can swing from 0V to V . With a 0V to 4V (or 4V  
DD  
to 0V) output transition, the amplifier outputs typically  
settle to 1/2LSB in 6µs when loaded with 10kin paral-  
lel with 100pF. The buffer amplifiers are stable with any  
combination of resistive loads 2kand capacitive  
loads 300pF.  
The MAX517/MAX518/MAX519 are designed for unipo-  
lar-output, single-quadrant multiplication where the out-  
put voltages and the reference inputs are positive with  
respect to AGND. Table 1 shows the unipolar code.  
programmable voltage source as: V  
= (N x V ) /  
OUT  
REF  
256, where N is the numerical value of the DACs binary  
input code.  
______________________________________________________________________________________ 13  
2 -Wire S e ria l 8 -Bit DACs w it h  
Ra il-t o -Ra il Ou t p u t s  
SYSTEM GND  
+5V  
OUT1  
OUT0  
0.1µF  
REF0  
N.C.  
N.C.  
N.C.  
GND  
V
DD  
REF1  
R
F
REF_  
C
F
MAX517  
MAX519  
Figure 16. PC Board Layout for Minimizing MAX519 Crosstalk  
(bottom view)  
__________Ap p lic a t io n s In fo rm a t io n  
P o w e r-S u p p ly Byp a s s in g a n d  
Gro u n d Ma n a g e m e n t  
Bypass V with a 0.1µF capacitor, located as close to  
Figure 17. Reference Filter When Using V as a Reference  
DD  
DD  
V
DD  
and GND as possible. Careful PC board layout  
minimizes crosstalk among DAC outputs, reference  
inputs, and digital inputs. Figure 16 shows the suggest-  
ed PC board layout to minimize crosstalk.  
78/MAX519  
+5V  
When using the MAX518 (or the MAX517/MAX519 with  
V
DD  
as the reference), you may want to add a noise fil-  
ter to the V  
supply (Figure 17) or to the reference  
DD  
R
F
input(s) (Figure 18), especially in noisy environments.  
The reference inputs bandwidth exceeds 1MHz for AC  
signals, so disturbances on the reference input can  
easily affect the DAC output(s).  
0.1µF  
C
F
V
DD  
The maximum input current for a single reference input  
is V /16k= I  
(max). In Figure 17, choose R so  
REF  
REF  
F
that changes in the reference input current will have lit-  
tle effect on the reference voltage. For example, with R  
MAX518  
F
= 6, the maximum output error due to R is given by:  
F
6x I  
(max) = 1.9mV or 0.1LSB  
REF  
In Figure 18, there is a voltage drop across R that  
F
adds to the TUE. This voltage drop is due to the sum of  
the reference input current (V /16kmaximum), sup-  
REF  
ply current (6mA maximum), and the amplifier output  
current (V  
/R  
). Choose R to limit this voltage  
REF LOAD F  
Figure 18. V Filter When Using V as a Reference  
DD  
DD  
drop to an acceptable value. For example, with a 10kΩ  
loa d , you c a n limit the e rror d ue to R to 0.5LSB  
F
(9.8mV) by selecting R so that:  
F
R
= V / I 9.8mV / (5V / 16k+ 6mA +  
R R  
F F  
5V / 10k)  
1.4Ω  
F
F
R
14 ______________________________________________________________________________________  
2 -Wire S e ria l 8 -Bit DACs w it h  
Ra il-t o -Ra il Ou t p u t s  
78/MAX519  
_____P in Co n fig u ra t io n s (c o n t in u e d )  
____________________Ch ip To p o g ra p h y  
OUT1  
(MAX518/MAX519)  
TOP VIEW  
OUT0  
OUT0  
N.C.  
OUT1  
REF0  
N.C.  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
REF0  
(MAX517/  
MAX519)  
N.C.  
REF1  
(MAX519)  
GND  
REF1  
MAX519  
AD3  
SCL  
N.C.  
SDA  
V
DD  
GND  
AD0  
AD1  
AD2  
0. 135"  
(3. 429mm)  
AD3  
(MAX519)  
DIP/SO  
V
DD  
__Ord e rin g In fo rm a t io n (c o n t in u e d )  
AD0  
SCL  
TUE  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
AD2  
(MAX519)  
SDA  
AD1  
MAX517AEPA  
MAX517BEPA  
MAX517AESA  
MAX517BESA  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
8 Plastic DIP  
8 Plastic DIP  
8 SO  
1
1.5  
1
0. 078"  
(1. 981mm)  
8 SO  
1.5  
1.5  
1
TRANSISTOR COUNT: 1797  
SUBSTRATE CONNECTED TO V  
MAX517BMJA -55°C to +125°C 8 CERDIP**  
DD  
MAX518ACPA  
MAX518BCPA  
MAX518ACSA  
MAX518BCSA  
MAX518BC/D  
MAX518AEPA  
MAX518BEPA  
MAX518AESA  
MAX518BESA  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
8 Plastic DIP  
8 Plastic DIP  
8 SO  
1.5  
1
8 SO  
1.5  
1.5  
1
Dice*  
8 Plastic DIP  
8 Plastic DIP  
8 SO  
1.5  
1
8 SO  
1.5  
1.5  
1
MAX518BMJA -55°C to +125°C 8 CERDIP**  
MAX519ACPE  
MAX519BCPE  
MAX519ACSE  
MAX519BCSE  
MAX519BC/D  
MAX519AEPE  
MAX519BEPE  
MAX519AESE  
MAX519BESE  
MAX519BMJE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
16 Plastic DIP  
16 Plastic DIP  
16 Narrow SO  
16 Narrow SO  
Dice*  
1.5  
1
1.5  
1.5  
1
16 Plastic DIP  
16 Plastic DIP  
16 Narrow SO  
16 Narrow SO  
1.5  
1
1.5  
1.5  
-55°C to +125°C 16 CERDIP**  
*Dice are specified at T = +25°C, DC parameters only.  
A
**Contact factory for availability and processing to MIL-STD-883.  
______________________________________________________________________________________ 15  
2 -Wire S e ria l 8 -Bit DACs w it h  
Ra il-t o -Ra il Ou t p u t s  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
E
MIN  
MAX  
0.200  
MIN  
MAX  
5.08  
A
E1  
D
A1 0.015  
A2 0.125  
A3 0.055  
0.38  
3.18  
1.40  
0.41  
1.14  
0.20  
0.13  
7.62  
6.10  
2.54  
7.62  
0.175  
0.080  
0.022  
0.065  
0.012  
0.080  
0.325  
0.310  
4.45  
2.03  
0.56  
1.65  
0.30  
2.03  
8.26  
7.87  
A3  
A2  
A1  
A
L
B
0.016  
B1 0.045  
0.008  
D1 0.005  
0.300  
E1 0.240  
0.100  
eA 0.300  
C
0° - 15°  
E
C
e
e
B1  
eA  
eB  
B
eB  
L
0.400  
0.150  
10.16  
3.81  
0.115  
2.92  
D1  
INCHES  
MILLIMETERS  
PKG. DIM  
PINS  
Plastic DIP  
PLASTIC  
DUAL-IN-LINE  
PACKAGE  
(0.300 in.)  
MIN  
MAX MIN  
MAX  
8
P
P
P
P
P
N
D
D
D
D
D
D
0.348 0.390 8.84  
9.91  
14  
16  
18  
20  
24  
0.735 0.765 18.67 19.43  
0.745 0.765 18.92 19.43  
0.885 0.915 22.48 23.24  
1.015 1.045 25.78 26.54  
78/MAX519  
1.14 1.265 28.96 32.13  
21-0043A  
INCHES  
MILLIMETERS  
DIM  
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
0.157  
MIN  
1.35  
0.10  
0.35  
0.19  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
4.00  
A
0.053  
D
A1 0.004  
B
C
E
e
0.014  
0.007  
0.150  
0°-8°  
A
0.101mm  
0.004in.  
0.050  
1.27  
e
H
L
0.228  
0.016  
0.244  
0.050  
5.80  
0.40  
6.20  
1.27  
A1  
C
B
L
INCHES  
MILLIMETERS  
DIM PINS  
Narrow SO  
SMALL-OUTLINE  
PACKAGE  
MIN MAX  
MIN  
MAX  
5.00  
8.75  
8
0.189 0.197 4.80  
D
D
D
E
H
14 0.337 0.344 8.55  
16 0.386 0.394 9.80 10.00  
21-0041A  
(0.150 in.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1995 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX519AESE+

暂无描述
MAXIM

MAX519AESE+T

暂无描述
MAXIM

MAX519AESE-T

D/A Converter, 2 Func, Serial Input Loading, 6us Settling Time, PDSO16, 0.150 INCH, SO-8
MAXIM

MAX519BC/D

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX519BCPE

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX519BCPE+

D/A Converter, 2 Func, Serial Input Loading, 6us Settling Time, PDIP16, 0.300 INCH, PLASTIC, DIP-16
MAXIM

MAX519BCSE

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX519BCSE-T

D/A Converter, 2 Func, Serial Input Loading, 6us Settling Time, PDSO16, 0.150 INCH, SO-8
MAXIM

MAX519BEPE

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX519BEPE+

D/A Converter, 2 Func, Serial Input Loading, 6us Settling Time, PDIP16, 0.300 INCH, PLASTIC, DIP-16
MAXIM

MAX519BESE

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX519BESE-T

D/A Converter, 2 Func, Serial Input Loading, 6us Settling Time, PDSO16, 0.150 INCH, SO-8
MAXIM