MAX5234AEUB [MAXIM]

Single-Supply 3V/5V, Voltage-Output, Dual, Precision 12-Bit DACs; 单电源3V / 5V ,电压输出,双路,高精度12位DAC
MAX5234AEUB
型号: MAX5234AEUB
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Single-Supply 3V/5V, Voltage-Output, Dual, Precision 12-Bit DACs
单电源3V / 5V ,电压输出,双路,高精度12位DAC

转换器 光电二极管 信息通信管理
文件: 总19页 (文件大小:564K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2330; Rev 0; 1/02  
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
General Description  
Features  
The MAX5234/MAX5235 precision, dual-output, 12-bit  
digital-to-analog converters (DACs) consume only 360µA  
from a single 5V (MAX5235) or 325µA from a single 3V  
(MAX5234) supply. These devices feature output buffers  
that swing Rail-to-Rail®. The internal gain amplifiers maxi-  
mize the dynamic range of the DAC output.  
Guaranteed 1/2LSB INL (max)  
Low Supply Current  
325µA (Normal Operation)  
0.4µA (Full Power-Down Mode)  
Single-Supply Operation  
3V (MAX5234)  
The MAX5234/MAX5235 feature a 13.5MHz 3-wire seri-  
al interface compatible with SPI™, QSPI™, and  
MICROWIRE™. Each DAC input is organized as an  
input register followed by a DAC register. A 16-bit shift  
register loads data into the input registers. Input regis-  
ters update the DAC registers independently or simulta-  
neously. In addition, programmable control bits allow  
power-down with 1kor 200kinternal loads.  
5V (MAX5235)  
Space-Saving 10-Pin µMAX Package  
Output Buffers Swing Rail-to-Rail  
Power-On Reset Clears Registers and DACs  
to Zero  
The MAX5234/MAX5235 are fully specified over the  
extended industrial temperature range (-40°C to +85°C)  
and are available in space-saving 10-pin µMAX packages.  
Programmable Shutdown Modes with 1kor  
200kInternal Loads  
Resets to Zero  
13.5MHz SPI/QSPI/MICROWIRE-Compatible,  
Applications  
3-Wire Serial Interface  
Industrial Process Controls  
Automatic Test Equipment  
Digital Offset and Gain Adjustment  
Motion Control  
Buffered Output Drives 5k|| 100pF  
Ordering Information  
INL  
µP-Controlled Systems  
TEMP  
PIN-  
PART  
RANGE  
PACKAGE  
(LSB)  
0.5  
1
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
10 µMAX  
10 µMAX  
10 µMAX  
10 µMAX  
MAX5234AEUB  
MAX5234BEUB  
MAX5235AEUB  
MAX5235BEUB  
0.5  
1
Pin Configuration  
TOP VIEW  
OUTA  
REFA  
GND  
LDAC  
CS  
1
2
3
4
5
10 OUTB  
9
8
7
6
REFB  
MAX5234  
MAX5235  
V
DD  
DIN  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
SPI/QSPI are trademarks of Motorola, Inc.  
SCLK  
µMAX  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND .............................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
Digital Inputs to GND ..............................................-0.3V to +6V  
REF_, OUT_ to GND ................................-0.3V to (V + 0.3V)  
Maximum Current into Any Pin............................................50mA  
10-Pin µMAX (derate 5.60mW/°C above +70°C).........444mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX5235  
(V  
= +4.5V to +5.5V, GND = 0, V  
= V  
= +2.5V, R = 5k, C = 100pF, T = T  
to T  
, unless otherwise noted. Typical  
MAX  
DD  
REFA  
REFB  
L
L
A
MIN  
values are at T = +25°C.)  
A
PARAMETER  
STATIC PERFORMANCE  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
N
12  
Bits  
LSB  
MAX5235A (Note 1)  
MAX5235B (Note 1)  
0.5  
Integral Nonlinearity  
INL  
1
Differential Nonlinearity  
Offset Error  
DNL  
1
5
LSB  
mV  
LSB  
V
V
(Note 2)  
OS  
Gain Error  
3
Full-Scale Voltage  
V
Code = FFFhex, T = +25°C (Note 3)  
4.087  
4.095  
2
4.103  
FS  
A
Full-Scale Temperature  
Coefficient  
TCV  
Normalized to 4.095V  
ppm/°C  
FS  
Offset Temperature Coefficient  
Power-Supply Rejection  
DC Crosstalk  
TCV  
8
µV/°C  
µV  
OS  
PSR  
4.5V V  
5.5V  
15  
200  
100  
DD  
(Note 4)  
µV  
REFERENCE INPUT  
Reference Input Range  
Reference Input Resistance  
Reference Current in Shutdown  
V
R
(Note 5)  
0.25  
28  
2.60  
1
V
REF  
Minimum with code 555 hex and AAA hex  
37  
kΩ  
µA  
REF  
REF  
I
MULTIPLYING MODE PERFORMANCE  
Reference -3dB Bandwidth,  
Slew-Rate Limited  
Input code = FFF hex, V  
_ = 0.5V  
_ = 3.6V  
+
+
REF  
REF  
REF  
P-P  
P-P  
350  
-80  
79  
kHz  
dB  
1.5V  
DC  
Input code = 000 hex, V  
1.8V , f = 1kHz  
DC  
Reference Feedthrough  
Signal-to-Noise plus Distortion  
Ratio  
Input code = FFF hex, V  
1.5V , f = 10kHz  
DC  
_ = 2V  
+
P-P  
SINAD  
dB  
2
_______________________________________________________________________________________  
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
ELECTRICAL CHARACTERISTICSMAX5235 (continued)  
(V  
= +4.5V to +5.5V, GND = 0, V  
= V  
= +2.5V, R = 5k, C = 100pF, T = T  
to T  
, unless otherwise noted. Typical  
MAX  
DD  
REFA  
REFB  
L
L
A
MIN  
values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUT  
0.7 x  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
V
DD  
0.3 x  
V
IL  
V
DD  
Input Hysteresis  
V
200  
8
mV  
µA  
pF  
HYS  
Input Leakage Current  
Input Capacitance  
Digital inputs = 0 or V  
DD  
1
DYNAMIC PERFORMANCE  
Voltage-Output Slew Rate  
SR  
0.6  
10  
V/µs  
µs  
To 0.5LSB, V  
=
4V,  
STEP  
Voltage-Output Settling Time  
0.25V < V  
< (V - 0.25V)  
OUT  
DD  
0 to  
Output-Voltage Swing  
(Note 6)  
V
V
DD  
Time Required for Output to Settle  
(Note 7)  
(Note 7)  
70  
70  
µs  
After Turning on V  
DD  
Time Required for Output to  
Settle After Exiting Full Power-  
Down  
µs  
µs  
Time Required for Output to  
Settle After Exiting DAC Power-  
Down  
(Note 7)  
60  
Digital Feedthrough  
CS = V , f  
= 100kHz, V  
= 5V  
P-P  
5
nV-s  
nV-s  
DD SCLK  
SCLK  
Major-Carry Glitch Energy  
POWER SUPPLIES  
Power-Supply Voltage  
Power-Supply Current  
40  
V
4.5  
5.5  
450  
5
V
DD  
I
(Note 8)  
360  
1
µA  
DD  
Full power-down mode  
Power-Supply Current in Power-  
Down and Shutdown Modes  
I
One DAC shutdown mode  
Both DACs shutdown mode  
190  
26  
215  
42  
µA  
SHDN  
_______________________________________________________________________________________  
3
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
ELECTRICAL CHARACTERISTICSMAX5234  
(V  
= +2.7V to +3.6V, GND = 0, V  
= V  
= +1.25V, R = 5k, C = 100pF, T = T  
to T  
, unless otherwise noted.  
MAX  
DD  
REFA  
REFB  
L
L
A
MIN  
Typical values are at T = +25°C.)  
A
PARAMETER  
STATIC PERFORMANCE  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
N
12  
Bits  
LSB  
MAX5234A (Note 1)  
0.5  
1
Integral Nonlinearity  
INL  
MAX5234B (Note 1)  
Differential Nonlinearity  
Offset Error  
DNL  
1
LSB  
mV  
V
(Note 2)  
5
OS  
Gain Error  
GE  
6
LSB  
V
Full-Scale Voltage  
V
Code = FFFhex, T = +25°C (Note 3)  
2.041 2.0475 2.054  
FS  
A
Temperature Coefficient  
Offset Temperature Coefficient  
Power-Supply Rejection  
DC Crosstalk  
TCV  
Normalized to 2.0475V  
4
8
ppm/°C  
µV/°C  
µV  
FS  
TCV  
OS  
PSR  
2.7V V  
3.6V  
18  
280  
100  
DD  
(Note 4)  
µV  
REFERENCE INPUT  
Reference Input Range  
Reference Input Resistance  
Reference Current in Shutdown  
V
R
(Note 5)  
0.25  
28  
1.50  
1
V
REF  
Minimum with code 555 hex and AAA hex  
37  
kΩ  
µA  
REF  
REF  
I
MULTIPLYING MODE PERFORMANCE  
Reference -3dB Bandwidth, Slew-  
Rate Limited  
Input code = FFF hex, V  
_ = 0.5V  
_ = 1.6V  
_ = 0.6V  
+
+
+
REF  
REF  
REF  
P-P  
P-P  
P-P  
350  
-80  
79  
kHz  
dB  
0.75V  
DC  
Input code = 000 hex, V  
0.8V , f = 1kHz  
DC  
Reference Feedthrough  
Signal-to-Noise plus Distortion  
Ratio  
Input code = FFF hex, V  
0.9V , f = 10kHz  
DC  
SINAD  
dB  
DIGITAL INPUTS  
0.7 x  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
V
DD  
0.3 x  
V
IL  
V
DD  
Input Hysteresis  
V
200  
8
mV  
µA  
pF  
HYS  
Input Leakage Current  
Input Capacitance  
Digital inputs = 0 or V  
1
DD  
DYNAMIC PERFORMANCE  
Voltage-Output Slew Rate  
SR  
0.6  
10  
V/µs  
µs  
To 0.5LSB, V  
=
2V,  
STEP  
Voltage-Output Settling Time  
Output-Voltage Swing  
0.25V < V  
< (V - 0.25V)  
OUT  
DD  
0 to  
(Note 6)  
V
V
DD  
4
_______________________________________________________________________________________  
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
ELECTRICAL CHARACTERISTICSMAX5234 (continued)  
(V  
= +2.7V to +3.6V, GND = 0, V  
= V  
= +1.25V, R = 5k, C = 100pF, T = T  
to T  
, unless otherwise noted.  
MAX  
DD  
REFA  
REFB  
L
L
A
MIN  
Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Time Required for Output to Settle  
(Note 7)  
60  
µs  
After Turning on V  
DD  
Time Required for Output to  
Settle After Exiting Full Power-  
Down  
(Note 7)  
(Note 7)  
60  
50  
µs  
µs  
Time Required for Output to  
Settle After Exiting DAC Power-  
Down  
Digital Feedthrough  
CS = V , f  
= 100kHz, V  
= 3V  
5
nV-s  
nV-s  
DD SCLK  
SCLK  
P-P  
Major Carry Glitch Energy  
POWER SUPPLIES  
Power-Supply Voltage  
Power-Supply Current  
115  
V
2.7  
3.6  
430  
5
V
DD  
I
(Note 8)  
325  
0.4  
175  
25  
µA  
DD  
Full power-down mode  
Power-Supply Current in Power-  
Down and Shutdown Modes  
I
One DAC shutdown mode  
Both DACs shutdown mode  
200  
40  
µA  
SHDN  
TIMING CHARACTERISTICSMAX5235 (FIGURES 1 AND 2)  
(V  
= +4.5V to +5.5V, GND = 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
74  
30  
30  
30  
0
TYP  
MAX  
UNITS  
ns  
SCLK Clock Period  
t
CP  
CH  
SCLK Pulse Width High  
SCLK Pulse Width Low  
CS Fall to SCLK Rise Setup Time  
SCLK Rise to CS Rise Hold Time  
DIN Setup Time  
t
ns  
t
ns  
CL  
t
ns  
CSS  
CSH  
t
ns  
t
30  
0
ns  
DS  
DH  
DIN Hold Time  
t
ns  
SCLK Rise to CS Fall Delay  
CS Rise to SCLK Rise Hold Time  
CS Pulse Width High  
t
t
10  
30  
75  
30  
40  
ns  
CS0  
CS1  
ns  
t
ns  
CSW  
LDAC Pulse Width Low  
CS Rise to LDAC Rise Hold Time  
t
ns  
LDL  
t
(Note 9)  
ns  
CSLD  
_______________________________________________________________________________________  
5
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
TIMING CHARACTERISTICSMAX5234 (FIGURES 1 AND 2)  
(V  
= +2.7V to +3.6V, GND = 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
74  
30  
30  
30  
0
TYP  
MAX  
UNITS  
ns  
SCLK Clock Period  
t
CP  
CH  
SCLK Pulse Width High  
SCLK Pulse Width Low  
CS Fall to SCLK Rise Setup Time  
SCLK Rise to CS Rise Hold Time  
DIN Setup Time  
t
ns  
t
ns  
CL  
t
ns  
CSS  
CSH  
t
ns  
t
30  
0
ns  
DS  
DH  
DIN Hold Time  
t
ns  
SCLK Rise to CS Fall Delay  
CS Rise to SCLK Rise Hold Time  
CS Pulse Width High  
t
t
10  
30  
75  
30  
75  
ns  
CS0  
CS1  
ns  
t
ns  
CSW  
LDAC Pulse Width Low  
CS Rise to LDAC Rise Hold Time  
t
ns  
LDL  
t
(Note 9)  
ns  
CSLD  
Note 1: Accuracy is guaranteed in the following way:  
V
V
_
REF  
ACCURACY GUARANTEED FROM CODE  
TO CODE  
4095  
DD  
3
1.250  
2.500  
20  
10  
5
4095  
Note 2: Offset is measured at the code closest to 10mV.  
Note 3: Gain from V _ to V _ is typically 1.638 x CODE/4096.  
REF  
OUT  
Note 4: DC crosstalk is measured as follows: set DAC A to midscale, and DAC B to zero, and measure DAC A output; then change  
DAC B to full scale and measure V for DAC A. Repeat the same measurement with DAC A and DAC B interchanged.  
OUT  
DC crosstalk is the maximum V  
measured.  
OUT  
Note 5: The DAC output voltage is derived by gaining up V  
by 1.638 x CODE/4096. This gain factor may cause V  
to try to  
REF  
OUT  
exceed the supplies. The maximum value of V  
in the reference input range spec prevents this from happening at full  
REF  
scale. The minimum V  
value of 0.25V is determined by linearity constraints, not DAC functionality.  
REF  
Note 6: Accuracy is better than 1LSB for V  
= 10mV to V  
- 180mV.  
OUT  
DD  
Note 7: Guaranteed by design. Not production tested.  
Note 8: R = and digital inputs are at either V  
or GND. V = full-scale output voltage.  
OUT  
LOAD  
DD  
Note 9: This timing requirement applies only to CS rising edges, which execute commands modifying the DAC input register contents.  
6
_______________________________________________________________________________________  
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
Typical Operating Characteristics  
(V  
= +5V (MAX5235) V  
= +3V (MAX5234), R = 5k, C = 100pF, V  
= +1.25V (MAX5234), V  
= +2.5V (MAX5235), C  
DD  
DD  
L
L
REF  
REF REF  
= 0.1µF ceramic || 2.2µF electrolytic, both DACs on, V  
= full scale, T = +25°C, unless otherwise noted.)  
OUT  
A
INTEGRAL NONLINEARITY  
vs. DIGITAL CODE (MAX5235)  
INTEGRAL NONLINEARITY vs. DIGITAL  
INPUT CODE (MAX5234)  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE (MAX5234)  
0.5  
0.4  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.4  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.1  
-0.2  
-0.3  
-0.4  
0
500 1000 1500 2000 2500 3000 3500 4000  
DIGITAL INPUT CODE  
0
500 1000 1500 2000 2500 3000 3500 4000  
DIGITAL INPUT CODE  
0
500 1000 1500 2000 2500 3000 3500 4000  
DIGITAL INPUT CODE  
MAX5234  
SUPPLY CURRENT vs. TEMPERATURE  
MAX5235  
SUPPLY CURRENT vs. TEMPERATURE  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE (MAX5235)  
0.25  
0.20  
0.15  
0.10  
0.05  
0
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
NO LOAD  
NO LOAD  
0
0
0
500 1000 1500 2000 2500 3000 3500 4000  
DIGITAL INPUT CODE  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX5234  
FULL POWER-DOWN SUPPLY CURRENT  
vs. TEMPERATURE  
MAX5234  
MAX5235  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
0.20  
0.15  
0.10  
0.05  
0
NO LOAD  
NO LOAD  
NO LOAD  
0
0
-40  
-15  
10  
35  
60  
85  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
7
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
Typical Operating Characteristics (continued)  
(V  
= +5V (MAX5235) V  
= +3V (MAX5234), R = 5k, C = 100pF, V  
= +1.25V (MAX5234), V  
= +2.5V (MAX5235), C  
DD  
DD  
L
L
REF  
REF REF  
= 0.1µF ceramic || 2.2µF electrolytic, both DACs on, V  
= full scale, T = +25°C, unless otherwise noted.)  
OUT  
A
MAX5234  
BOTH DACs SHUTDOWN SUPPLY  
CURRENT vs. TEMPERATURE  
MAX5234  
MAX5235  
FULL POWER-DOWN SUPPLY CURRENT  
vs. TEMPERATURE  
ONE DAC SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
30  
29  
28  
27  
26  
25  
180  
179  
178  
177  
176  
175  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
24  
23  
22  
21  
20  
174  
173  
172  
171  
170  
0.4  
0.3  
0.2  
0.1  
0
NO LOAD  
-15  
NO LOAD  
NO LOAD  
-40  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX5235  
BOTH DACs SHUTDOWN SUPPLY  
CURRENT vs. TEMPERATURE  
MAX5235  
ONE DAC SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
MAX5234  
FULL-SCALE OUTPUT vs. TEMPERATURE  
30  
29  
28  
27  
26  
25  
190  
180  
170  
160  
150  
140  
2.0455  
2.0454  
2.0453  
2.0452  
2.0451  
2.0450  
2.0449  
24  
23  
22  
21  
20  
130  
120  
110  
100  
90  
NO LOAD  
NO LOAD  
-15  
NO LOAD  
-40  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
10  
35  
60  
85  
-15  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX5235  
MAX5234  
MAX5235  
FULL-SCALE OUTPUT vs. TEMPERATURE  
FULL-SCALE ERROR vs. RESISTIVE LOAD  
FULL-SCALE ERROR vs. RESISTIVE LOAD  
4.0970  
4.0965  
4.0960  
4.0955  
4.0950  
4.0945  
4.0940  
4.0935  
4.0930  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
NO LOAD  
-40  
-15  
10  
35  
60  
85  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
TEMPERATURE (°C)  
R (k)  
L
R (k)  
L
8
_______________________________________________________________________________________  
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
Typical Operating Characteristics (continued)  
(V  
= +5V (MAX5235) V  
= +3V (MAX5234), R = 5k, C = 100pF, V  
= +1.25V (MAX5234), V  
= +2.5V (MAX5235), C  
DD  
DD  
L
L
REF  
REF REF  
= 0.1µF ceramic || 2.2µF electrolytic, both DACs on, V  
= full scale, T = +25°C, unless otherwise noted.)  
OUT  
A
MAX5234  
DYNAMIC RESPONSE RISE TIME  
MAX5235  
DYNAMIC RESPONSE RISE TIME  
MAX5234  
DYNAMIC RESPONSE FALL TIME  
MAX5234 toc19  
MAX5234 toc20  
MAX5234 toc21  
CS  
1V/div  
CS  
1V/div  
CS  
2V/div  
OUT_  
1V/div  
OUT_  
1V/div  
OUT_  
2V/div  
2µs/div  
4µs/div  
2µs/div  
MAX5235  
DYNAMIC RESPONSE FALL TIME  
MAX5234  
CROSSTALK  
MAX5235  
CROSSTALK  
MAX5234 toc23  
MAX5234 toc22  
MAX5234 toc24  
OUTB  
2V/div  
OUTB  
5V/div  
CS  
2V/div  
OUTA  
1mV/div  
SHUTDOWN  
OUTA  
1mV/div  
SHUTDOWN  
OUT_  
2V/div  
2ms/div  
2µs/div  
40µs/div  
MAX5234  
DIGITAL FEEDTHROUGH  
MAX5235  
DIGITAL FEEDTHROUGH  
MAX5234  
MAJOR-CARRY GLITCH  
MAX5234 toc25  
MAX5234 toc26  
MAX5234 toc27  
SCLK  
2V/div  
SCLK  
5V/div  
CS  
1V/div  
OUT_  
1mV/div  
OUT_  
50mV/div  
AC -COUPLED  
OUT_  
1mV/div  
40µs/div  
40µs/div  
1µs/div  
_______________________________________________________________________________________  
9
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
Typical Operating Characteristics (continued)  
(V  
= +5V (MAX5235) V  
= +3V (MAX5234), R = 5k, C = 100pF, V  
= +1.25V (MAX5234), V  
= +2.5V (MAX5235), C  
DD  
DD  
L
L
REF  
REF REF  
= 0.1µF ceramic || 2.2µF electrolytic, both DACs on, V  
= full scale, T = +25°C, unless otherwise noted.)  
OUT  
A
MAX5235  
FULL-SCALE OUTPUT VOLTAGE  
vs. REFERENCE VOLTAGE  
MAX5234  
FULL-SCALE OUTPUT VOLTAGE  
vs. REFERENCE VOLTAGE  
MAX5235  
MAJOR-CARRY GLITCH  
MAX5234 toc28  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.25  
2.00  
1.75  
CS  
1.50  
2V/div  
1.25  
1.00  
0.75  
OUT_  
50mV/div  
AC-COUPLED  
0.50  
0.25  
0
2µs/div  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
0
0.25  
0.50  
V
0.75  
(V)  
1.00  
1.25  
V
REF  
REF  
output voltage proportional to the digital input code with  
an inverted rail-to-rail ladder network (Figure 3).  
Pin Description  
PIN  
NAME  
FUNCTION  
External Reference  
The reference inputs accept both AC and DC values  
with a voltage range extending from 0.25V to 2.6V for  
the MAX5235 and 0.25V to 1.5V for the MAX5234. For  
proper operation do not exceed the input voltage  
range limits. Determine the output voltage using the fol-  
lowing equation:  
1
OUTA  
DAC A Output  
2
3
4
5
6
7
8
REFA  
GND  
LDAC  
CS  
Reference for DAC A  
Ground  
Load DACs A and B  
Chip Select Input  
Shift Register Serial Clock Input  
Serial Data Input  
SCLK  
DIN  
V
OUT  
_ = (V  
_ x NB / 4096) x 1.6384V/V  
REF  
where NB is the numeric value of the DACs binary input  
code (0 to 4095), V  
_ is the reference voltage, and  
REF  
V
Positive Supply  
DD  
1.6384V/V is the gain of the internal output amplifier.  
9
REFB  
OUTB  
Reference for DAC B  
DAC B Output  
The code-dependent reference input impedance  
ranges from a minimum of 28kto several Gat code  
0. The code-dependent reference input capacitance is  
typically 23pF.  
10  
Detailed Description  
The MAX5234/MAX5235 12-bit, voltage-output DACs  
are easily configured with a 3-wire SPI, QSPI,  
MICROWIRE serial interface. The devices include a 16-  
bit data-in/data-out shift register and have an input con-  
sisting of an input register and a DAC register. In  
addition, these devices employ precision trimmed inter-  
nal resistors to produce a gain of 1.6384V/V, maximizing  
the output voltage swing, and a programmable shut-  
down output impedance of 1kor 200k. The full-scale  
output voltage is 4.095V for the MAX5235 and 2.0475V  
for the MAX5234. These devices produce a weighted  
Output Amplifier  
The output amplifiers have internal resistors that pro-  
vide for a gain of 1.6384V/V. These trimmed resistors  
minimize gain error. The output amplifiers have a typi-  
cal slew rate of 0.6V/µs and settle to 1/2LSB within 10µs  
(typ) with a load of 5kin parallel with 100pF. Use the  
serial interface to set the shutdown output impedance  
of the amplifiers to 1kor 200k.  
10 ______________________________________________________________________________________  
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
COMMAND EXECUTED  
CS  
SCLK  
1
8
9
16  
D5 D4 D3 D2 D1 D0 S0  
(1)  
DIN  
C1 C0  
D10 D9  
D11  
C2  
D8 D7  
D6  
Figure 1. Serial Interface Timing  
t
LDL  
t
CSLD  
LDAC  
t
CSW  
CS  
t
t
CSS  
CSO  
t
CSH  
t
CS1  
SCLK  
t
t
CL  
CH  
t
CP  
DIN  
t
t
DH  
DS  
Figure 2. Detailed Serial Interface Timing  
ously. The control bits and D11D8 allow the DACs to  
Serial Interface  
operate independently.  
The 3-wire serial interface (SPI, QSPI, and MICROWIRE  
compatible) used in the MAX5234/MAX5235 allows for  
complete control of DAC operations (Figures 4 and 5).  
Figures 1 and 2 show the timing for the serial interface.  
The serial word consists of 3 control bits followed by 12  
data bits (MSB first) and 1 sub-bit as described in  
Tables 1, 2, and 3. When the 3 control bits are all zero  
or all 1, D11D8 are used as additional control bits,  
allowing for greater DAC functionality.  
Send the 16-bit data as one 16-bit word (QSPI) or two  
8-bit packets (SPI and MICROWIRE), with CS low dur-  
ing this period. The control bits and D11D8 determine  
which registers update and the state of the registers  
when exiting shutdown. The 3-bit control and D11D8  
determine the following:  
Registers to be updated  
Selection of the power-down modes  
The digital inputs allow any of the following: loading the  
input register(s) without updating the DAC register(s),  
updating the DAC register(s) from the input register(s),  
or updating the input and DAC register(s) simultane-  
The general timing diagram of Figure 1 illustrates data  
acquisition. Driving CS low enables the device to  
receive data. Otherwise, the interface control circuitry is  
disabled. With CS low, data at DIN is clocked into the  
______________________________________________________________________________________ 11  
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
either DAC input register, then LDAC must remain  
Table 1. Serial Data Format  
asserted for at least 30ns following the CS rising edge.  
MSB <----------- 16 bits of serial data -----------> LSB  
This requirement applies only for serial commands that  
modify the value of the DAC input registers.  
3 Control Bits  
C2...C0  
MSB......12 Data Bits.....LSB  
D11................................D0  
Sub Bit  
S0  
Applications Information  
Definitions  
register on the rising edge of SCLK. As CS goes high,  
data is latched into the input and/or DAC registers,  
depending on the control bits and D11D8. The maxi-  
mum clock frequency guaranteed for proper operation  
is 13.5MHz. Figure 2 depicts a more detailed timing  
diagram of the serial interface.  
Integral Nonlinearity (INL)  
Integral nonlinearity (Figure 6a) is the deviation of the  
values on an actual transfer function from a straight  
line. This straight line can be either a best-straight-line  
fit (closest approximation to the actual transfer curve)  
or a line drawn between the endpoints of the transfer  
function, once offset and gain errors have been nulli-  
fied. For a DAC, the deviations are measured at every  
single step.  
Power-Down and Shutdown Modes  
As described in Tables 2 and 3, several serial interface  
commands put one or both of the DACs into shutdown  
mode. Shutdown modes are completely independent  
for each DAC. In shutdown, the amplifier output  
becomes high impedance, and OUT_ terminates to  
GND through the 200k(typ) gain resistors. Optionally  
(see Tables 2 and 3), OUT_ can have a termination of  
1kto GND.  
Differential Nonlinearity (DNL)  
Differential nonlinearity (Figure 6b) is the difference  
between an actual step height and the ideal value of  
1LSB. If the magnitude of the DNL is less than 1LSB, the  
DAC guarantees no missing codes and is monotonic.  
Full power-down mode shuts down the main bias gen-  
erator and both DACs. The shutdown impedance of the  
DAC outputs can still be controlled independently, as  
described in Tables 2 and 3.  
Offset Error  
The offset error (Figure 6c) is the difference between  
the ideal and the actual offset point. For a DAC, the off-  
set point is the step value when the digital input is zero.  
This error affects all codes by the same amount and  
can usually be compensated for by trimming.  
A serial interface command exits shutdown mode and  
updates a DAC register. Each DAC can exit shutdown  
at the same time or independently (see Tables 2 and  
3). For example, if both DACs are shut down, updating  
the DAC A register causes DAC A to power up, while  
DAC B remains shut down. In full power-down mode,  
powering up either DAC also powers up the main bias  
generator. To change from full power-down to both  
DACs shutdown mode requires the waking of at least  
one DAC between states.  
Gain Error  
Gain error (Figure 6d) is the difference between the  
ideal and the actual full-scale output voltage on the  
transfer curve, after nullifying the offset error. This error  
alters the slope of the transfer function and corre-  
sponds to the same percentage error in each step.  
Settling Time  
The settling time is the amount of time required from the  
start of a transition until the DAC output settles to its new  
output value within the converters specified accuracy.  
When powering up the MAX5234/MAX5235 (powering  
V
), allow 60µs (MAX5234) or 70µs (MAX5235) for the  
DD  
output to stabilize. When exiting full power-down mode,  
allow 60µs max (MAX5234) or 70µs max (MAX5235) for  
the output to stabilize. When exiting DAC shutdown  
mode, allow 50µs max (MAX5234) or 60µs max  
(MAX5235) for the output to stablize.  
Digital Feedthrough  
Digital feedthrough is noise generated on the DACs  
output when any digital input transitions. Proper board  
layout and grounding significantly reduces this noise,  
but there is always some feedthrough caused by the  
DAC itself.  
Load DAC Input (LDAC)  
Asserting LDAC asynchronously loads the DAC regis-  
ters from their corresponding input registers (DACs that  
are shut down remain shut down). The LDAC input is  
totally asynchronous and does not require any activity  
on CS, SCLK, or DIN in order to take effect. If LDAC is  
asserted coincident with a rising edge of CS, which  
executes a serial command modifying the value of  
Unipolar Output  
Figure 7 shows the MAX5234/MAX5235 configured for  
unipolar, rail-to-rail operation with a gain of 1.6384V/V.  
The MAX5235 produces a 0 to 4.095V output with 2.5V  
reference while the MAX5234 produces a range of 0 to  
12 ______________________________________________________________________________________  
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
Table 2. Serial Interface Programming Commands  
16-BIT SERIAL WORD  
FUNCTION  
C2  
0
C1  
0
C0  
1
D11..............D0  
12-bit DAC data  
12-bit DAC data  
S0*  
0
Load input register A; DAC registers are unchanged.  
Load input register A; all DAC registers are updated.  
0
1
0
0
Load all DAC registers from the shift register (start up both DACs  
with new data, and load the input registers).  
0
1
1
0
1
0
12-bit DAC data  
0
0
Update both DAC registers from their respective input registers  
(start up both DACs with data previously stored in the input  
registers).  
X X X X X X X X X X X X  
1
1
0
1
1
0
12-bit DAC data  
12-bit DAC data  
0
0
Load input register B; DAC registers are unchanged.  
Load input register B; all DAC registers are updated.  
Power down both DACs respectively according to bits P1A and  
P1B (see Table 3). Internal bias remains active.  
1
0
1
0
1
0
P1A P1B X X X X X X X X X X  
0 0 1 X X X X X X X X X  
0
0
Update DAC register A from input register A (start up DAC A with  
data previously stored in input register A).  
Full power-down. Power down the main bias generator and  
power down both DACs respectively according to bits P1A and  
P1B (see Table 3).  
0
0
0
0
0
0
0 1 1 P1A P1B X X X X X X X  
1 0 1 X X X X X X X X X  
0
0
Update DAC register B from input register B (start up DAC B with  
data previously stored in input register B).  
0
0
0
0
0
0
1 1 0 P1A X X X X X X X X  
1 1 1 P1B X X X X X X X X  
0
0
Power down DAC A according to bit P1A (see Table 3).  
Power down DAC B according to bit P1B (see Table 3).  
X = Don’t care.  
* = S0 must be zero for proper operation.  
2.0475V output with a 1.25V reference. Table 4 lists the  
unipolar output codes.  
Table 3. P1 Shutdown Modes  
P1(A/B)  
SHUTDOWN MODE  
Bipolar Output  
The MAX5234/MAX5235 can be configured for a bipo-  
lar output, as shown in Figure 8. The output voltage is  
given by the equation:  
0
1
Shut down with internal 1kload to GND  
Shut down with internal 200kload to GND  
Digital Calibration and  
Threshold Selection  
V
OUT  
= V  
[((1.6348 x NB) / 4096) - 1]  
REF  
Figure 10 shows the MAX5234/MAX5235 in a digital  
calibration application. With a bright light value applied  
to the photodiode (on), the DAC is digitally ramped until  
it trips the comparator. The microprocessor (µP) stores  
this highcalibration value. Repeat the process with a  
dim light (off) to obtain the dark current calibration. The  
µP then programs the DAC to set an output voltage at  
the midpoint of the two calibrated values. Applications  
include tachometers, motion sensing, automatic read-  
ers, and liquid clarity analysis.  
where NB represents the numeric value of the DACs  
binary input code. Table 5 shows digital codes and the  
corresponding output voltage for Figure 8s circuit.  
Using an AC Reference  
In applications where the reference has an AC signal  
component, the MAX5234/MAX5235 have multiplying  
capabilities within the reference input voltage range  
specifications. Figure 9 shows a technique for applying  
a sinusoidal input to REF_, where the AC signal is offset  
before being applied to the reference input.  
______________________________________________________________________________________ 13  
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
Table 4. Unipolar Code Table  
(Gain = 1.6384)  
121kΩ  
DAC CONTENTS  
ANALOG OUTPUT  
MSB  
LSB  
77.25kΩ  
OUT_  
4095  
4096  
R
R
R
1111 1111 1 111 (0)  
1000 0000 0 001 (0)  
1000 0000 0 000 (0)  
0111 1111 1 111 (0)  
0000 0000 0001 (0)  
+V  
× 1.6384  
× 1.6384  
REF  
2R  
2R  
D0  
2R  
D9  
2R  
D10  
2R  
2049  
4096  
D11  
1kΩ  
+V  
REF  
REF_  
GND  
2048  
4096  
+V  
× 1.6384 = V  
REF  
REF  
SHOWN FOR ALL ONES ON DAC  
2047  
4096  
Figure 3. Simplified DAC Circuit Diagram  
+V  
× 1.6384  
× 1.6384  
REF  
5V  
SS  
1
+V  
REF  
4096  
0000 0000 0 000 (0)  
0V  
Note: () are for the sub-bit.  
MOSI  
DIN  
SCLK  
CS  
Table 5. Bipolar Code Table  
SPI/QSPI  
PORT  
MAX5234  
MAX5235  
SCK  
I/O  
DAC CONTENTS  
ANALOG OUTPUT  
MSB  
LSB  
2047  
2048  
+V  
1111 1111 1 111 (0)  
REF  
Figure 4. SPI/QSPI Interface Connections  
1
+V  
1000 0000 0 001 (0)  
1000 0000 0 000 (0)  
0111 1111 111 (0)  
REF  
2048  
0V  
SK  
SO  
I/O  
SCLK  
DIN  
CS  
1
-V  
REF  
2048  
MICROWIRE  
PORT  
MAX5234  
MAX5235  
2047  
2048  
-V  
0000 0000 001 (0)  
REF  
2048  
2048  
-V  
= -V  
REF  
REF  
0000 0000 000 (0)  
Figure 5. Connections for MICROWIRE  
Note: () are for the sub-bit.  
14 ______________________________________________________________________________________  
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
7
6
6
1LSB  
5
4
5
4
DIFFERENTIAL LINEARITY  
ERROR (-1/4LSB)  
AT STEP  
011 (1/2LSB )  
3
2
3
2
1
0
1LSB  
DIFFERENTIAL  
LINEARITY ERROR (+1/4LSB)  
AT STEP  
001 (1/4LSB )  
1
0
000 001 010 011 100 101 110 111  
DIGITAL INPUT CODE  
000  
001  
010  
011  
100  
101  
DIGITAL INPUT CODE  
Figure 6a. Integral Nonlinearity  
Figure 6b. Differential Nonlinearity  
IDEAL FULL-SCALE OUTPUT  
ACTUAL  
3
7
6
5
DIAGRAM  
GAIN ERROR  
(-1 1/4LSB)  
2
IDEAL DIAGRAM  
IDEAL DIAGRAM  
ACTUAL  
FULL-SCALE  
OUTPUT  
1
0
ACTUAL  
OFFSET  
POINT  
OFFSET ERROR  
(+1 1/4LSB)  
4
0
IDEAL OFFSET  
POINT  
000  
001  
010  
011  
000 100  
101  
110  
111  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
Figure 6c. Offset Error  
Figure 6d. Gain Error  
______________________________________________________________________________________ 15  
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
5V/3V  
REF_  
5V/3V  
REF_  
10k  
10kΩ  
V
DD  
V
DD  
MAX5234  
MAX5235  
121kΩ  
MAX5234  
MAX5235  
121kΩ  
V+  
V-  
77.25kΩ  
77.25kΩ  
V
0.06384R  
R
OUT  
OUT_  
DAC_  
DAC_  
OUT_  
1kΩ  
1kΩ  
GND  
GND  
GAIN = 1.6384V/V  
Figure 7. Unipolar Output Circuit (Rail-to-Rail)  
Figure 8. Bipolar Output Circuit  
5V/3V  
V+  
5V/3V  
26k  
5V/3V  
REF_  
PHOTODIODE  
AC  
REFERENCE  
INPUT  
V
DD  
MAX495  
MAX5234  
MAX5235  
121kΩ  
V
DD  
REF_  
V+  
121kΩ  
10kΩ  
500mV  
P-P  
77.25kΩ  
V
77.25kΩ  
OUT  
OUT_  
OUT_  
DAC_  
µP  
DAC_  
V-  
DIN  
MAX5234  
MAX5235  
1kΩ  
R
PULLDOWN  
1kΩ  
GND  
GND  
Figure 9. External Reference with AC Components  
Figure 10. Digital Calibration  
Digital Control of Gain and Offset  
The two DACs can be used to control the offset and  
gain for curve-fitting nonlinear functions, such as trans-  
ducer linearization or analog compression/expansion  
applications. The input signal is used as the reference  
for the gain-adjust DAC, whose output is summed with  
the output from the offset-adjust DAC. The relative  
weight of each DAC output is adjusted by R1, R2, R3,  
and R4 (Figure 11).  
Sharing a Common DIN Line  
Several MAX5234/MAX5235 may share one common  
DIN signal line (Figure 12). In this configuration, the  
data bus is common to all devices; data is not shifted  
through a daisy-chain. The SCLK and DIN lines are  
shared by all devices, but each IC needs its own dedi-  
cated CS line.  
Power-Supply Considerations  
On power-up, the input and DAC registers clear (set to  
zero code). Bypass the power supply with a 4.7µF  
16 ______________________________________________________________________________________  
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
V
DD  
121kΩ  
MAX5234  
MAX5235  
REFA  
77.25kΩ  
OUTA  
V
IN  
R1  
R3  
CS  
SCLK  
DIN  
INPUT  
DAC  
DAC A  
DAC B  
SHIFT  
REGISTER  
R2  
REG A  
REG A  
INPUT  
REG B  
DAC  
REG B  
V
OUT  
OUTB  
REFB  
R4  
V
REF  
77.25kΩ  
121kΩ  
VOUT = (GAIN) (OFFSET)  
2NA R2  
4096 R1 + R2  
R4  
R3  
2NB R4  
4096 R3  
V
REF  
=
V
1 +  
IN  
NA IS THE NUMERIC VALUE OF THE INPUT CODE FOR DAC A.  
NB IS THE NUMERIC VALUE OF THE INPUT CODE FOR DAC B.  
GND  
Figure 11. Digital Control of Gain and Offset  
DIN  
SCLK  
CS1  
CS2  
TO OTHER  
SERIAL DEVICES  
CS3  
CS  
CS  
CS  
MAX5234  
MAX5235  
MAX5234  
MAX5235  
MAX5234  
MAX5235  
SCLK  
SCLK  
DIN  
SCLK  
DIN  
DIN  
Figure 12. Multiple MAX5234/MAX5235 Sharing a Common DIN Line  
capacitor in parallel with a 0.1µF capacitor to GND.  
Minimize lead lengths to reduce lead inductance.  
back to the MAX5234/MAX5235 GND. Carefully lay out  
the traces between channels to reduce AC cross-cou-  
pling and crosstalk. Wire-wrapped boards and sockets  
are not recommended. If noise becomes an issue,  
shielding may be required.  
Grounding and Layout Considerations  
Digital and AC transient signals on GND can create  
noise at the output. Connect GND to the highest quality  
ground available. Use proper grounding techniques,  
such as a multilayer board with a low-inductance  
ground plane or star connect all ground return paths  
Chip Information  
TRANSISTOR COUNT: 4184  
PROCESS: BiCMOS  
______________________________________________________________________________________ 17  
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
Functional Diagram  
GND  
V
REFA  
DD  
121k  
LDAC  
DECODE CONTROL  
77.25kΩ  
OUTA  
INPUT  
REG A  
DAC  
REG A  
DAC A  
16-BIT  
SHIFT  
1kΩ  
REGISTER  
SR  
CONTROL  
121kΩ  
MAX5234  
MAX5235  
77.25kΩ  
OUTB  
INPUT  
REG B  
DAC  
REG B  
DAC B  
1kΩ  
CS DIN  
SCLK  
REFB  
18 ______________________________________________________________________________________  
Single-Supply 3V/5V, Voltage-Output, Dual,  
Precision 12-Bit DACs  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5234AEUB+

D/A Converter, 1 Func, Serial Input Loading, 10us Settling Time, PDSO10, MICRO MAX PACKAGE-10
MAXIM

MAX5234AEUB+T

D/A Converter, 1 Func, Serial Input Loading, 10us Settling Time, PDSO10, MICRO MAX PACKAGE-10
MAXIM

MAX5234AEUB-T

D/A Converter, 1 Func, Serial Input Loading, 10us Settling Time, PDSO10, MICRO MAX PACKAGE-10
MAXIM

MAX5234BEUB

Single-Supply 3V/5V, Voltage-Output, Dual, Precision 12-Bit DACs
MAXIM

MAX5234BEUB+

D/A Converter, 1 Func, Serial Input Loading, 10us Settling Time, PDSO10, MICRO MAX PACKAGE-10
MAXIM

MAX5234BEUB+T

D/A Converter, 1 Func, Serial Input Loading, 10us Settling Time, PDSO10, MICRO MAX PACKAGE-10
MAXIM

MAX5234BEUB-T

D/A Converter, 1 Func, Serial Input Loading, 10us Settling Time, PDSO10, MICRO MAX PACKAGE-10
MAXIM

MAX5235

Single-Supply 3V/5V, Voltage-Output, Dual, Precision 12-Bit DACs
MAXIM

MAX5235AEUB

Single-Supply 3V/5V, Voltage-Output, Dual, Precision 12-Bit DACs
MAXIM

MAX5235AEUB+T

D/A Converter, 1 Func, Serial Input Loading, 10us Settling Time, PDSO10, MICRO MAX PACKAGE-10
MAXIM

MAX5235AEUB-T

D/A Converter, 1 Func, Serial Input Loading, 10us Settling Time, PDSO10, MICRO MAX PACKAGE-10
MAXIM

MAX5235BEUB

Single-Supply 3V/5V, Voltage-Output, Dual, Precision 12-Bit DACs
MAXIM