MAX5251BCAP+ [MAXIM]

D/A Converter, 4 Func, Serial Input Loading, 12us Settling Time, PDSO20, SSOP-20;
MAX5251BCAP+
型号: MAX5251BCAP+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 4 Func, Serial Input Loading, 12us Settling Time, PDSO20, SSOP-20

文件: 总16页 (文件大小:147K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1172; Rev 0; 12/96  
+3 V, Qu a d , 1 0 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX251  
__________________Ge n e ra l De s c rip t io n  
______________________________Fe a t u re s  
The +3V MAX5251 combines four low-power, voltage-  
output, 10-bit digital-to-analog converters (DACs) and  
four precision output amplifiers in a space-saving, 20-  
pin package. In addition to the four voltage outputs,  
each amplifiers negative input is also available to the  
user. This facilitates specific gain configurations, remote  
sensing, and high output drive capacity, making the  
MAX5251 ideal for industrial-process-control applica-  
tions. Other features include software shutdown, hard-  
ware shutdown lockout, an active-low reset that clears  
all registers and DACs to zero, a user-programmable  
logic output, and a serial-data output.  
Four 10-Bit DACs with Configurable  
Output Amplifiers  
+3.0V to +3.6V Single-Supply Operation  
Low Supply Current: 0.8mA Normal Operation  
3µA Shutdown Mode  
Available in 20-Pin SSOP  
Power-On Reset Clears all Registers and  
DACs to Zero  
SPI/QSPI and Microwire Compatible  
Simultaneous or Independent Control of DACs  
via 3-Wire Serial Interface  
Each DAC has a double-buffered input organized as an  
input register followed by a DAC register. A 16-bit serial  
word loa d s d a ta into e a c h inp ut/DAC re g is te r. The  
3-wire serial interface is compatible with SPI™/QSPI™  
and Microwire. It allows the input and DAC registers to  
be updated independently or simultaneously with a sin-  
gle software command. All logic inputs are TTL/CMOS-  
logic compatible.  
User-Programmable Digital Output  
Schmitt-Trigger Digital Inputs for Direct  
Optocoupler Interface  
12-Bit Upgrade Available: MAX5253  
_________________Ord e rin g In fo rm a t io n  
INL  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
________________________Ap p lic a t io n s  
Digital Offset and Gain Adjustment  
Microprocessor-Controlled Systems  
Industrial Process Controls  
MAX5251ACPP 0°C to +70°C  
MAX5251BCPP 0°C to +70°C  
MAX5251ACAP 0°C to +70°C  
MAX5251BCAP 0°C to +70°C  
20 Plastic DIP  
20 Plastic DIP  
20 SSOP  
±1/2  
±1  
±1/2  
±1  
20 SSOP  
Automatic Test Equipment  
Ordering Information continued on last page.  
Remote Industrial Controls  
Pin Configuration appears at end of data sheet.  
Motion Control  
_________________________________________________________________________Fu n c t io n a l Dia g ra m  
V
DD  
DOUT  
REFAB  
CL  
PDL  
AGND  
DGND  
FBA  
DECODE  
CONTROL  
MAX5251  
OUTA  
INPUT  
REGISTER A  
DAC  
DAC A  
REGISTER A  
FBB  
OUTB  
INPUT  
REGISTER B  
DAC  
REGISTER B  
16-BIT  
SHIFT  
REGISTER  
DAC B  
DAC C  
FBC  
OUTC  
INPUT  
REGISTER C  
DAC  
REGISTER C  
FBD  
OUTD  
SR  
CONTROL  
INPUT  
REGISTER D  
DAC  
REGISTER D  
LOGIC  
OUTPUT  
DAC D  
REFCD  
DIN SCLK  
CS  
UPO  
SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
+3 V, Qu a d , 1 0 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
ABSOLUTE MAXIMUM RATINGS  
V
to AGND............................................................-0.3V to +6V  
to DGND ...........................................................-0.3V to +6V  
Operating Temperature Ranges  
DD  
V
MAX5251_C_P ......................................................0°C to +70°C  
MAX5251_E_P ...................................................-40°C to +85°C  
MAX5251BMJP ................................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
AGND to DGND..................................................................±0.3V  
REFAB, REFCD to AGND...........................-0.3V to (V + 0.3V)  
OUT_, FB_ to AGND...................................-0.3V to (V + 0.3V)  
DD  
DD  
Digital Inputs to DGND.............................................-0.3V to +6V  
DOUT, UPO to DGND ................................-0.3V to (V + 0.3V)  
DD  
Continuous Current into Any Pin.......................................±20mA  
Continuous Power Dissipation (T = +70°C)  
A
MAX251  
Plastic DIP (derate 8.00mW/°C above +70°C) .................640mW  
SSOP (derate 8.00mW/°C above +70°C) ......................640mW  
CERDIP (derate 11.11mW/°C above +70°C).................889mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +3.0V to +3.6V, AGND = DGND = 0V, REFAB = REFCD = 1.25V, R = 5k, C = 100pF, T = T  
DD  
to T , unless otherwise  
MAX  
L
L
A
MIN  
noted. Typical values are at T = +25°C. Output buffer connected in unity-gain configuration (Figure 9).)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
STATIC PERFORMANCE—ANALOG SECTION  
Resolution  
N
10  
MAX5251AC/E  
±0.25  
±0.5  
Integral Nonlinearity  
(Note 1)  
INL  
LSB  
MAX5251BC/E  
MAX5251BMJP  
±1.0  
±2.0  
±1.0  
±6.0  
Differential Nonlinearity  
Offset Error  
DNL  
Guaranteed monotonic  
LSB  
mV  
V
OS  
Offset-Error Tempco  
Gain Error (Note 1)  
Gain-Error Tempco  
Power-Supply Rejection Ratio  
6
ppm/°C  
LSB  
GE  
±2.4  
800  
1
ppm/°C  
µV/V  
PSRR  
V
DD  
= +3.0V to +3.6V  
100  
REFERENCEINPUT
Reference Input Range  
V
REF  
0
V
DD  
- 1.4  
V
Reference Input Resistance  
R
Code dependent, minimum at code 554 hex  
10  
kΩ  
REF  
2
_______________________________________________________________________________________  
+3 V, Qu a d , 1 0 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX251  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +3.0V to +3.6V, AGND = DGND = 0V, REFAB = REFCD = 1.25V, R = 5k, C = 100pF, T = T  
DD  
to T , unless otherwise  
MAX  
L
L
A
MIN  
noted. Typical values are at T = +25°C. Output buffer connected in unity-gain configuration (Figure 9).)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MULTIPLYING-MODE PERFORMANCE  
Reference -3dB Bandwidth  
V
= 0.67Vp-p  
650  
-84  
kHz  
dB  
REF  
Reference Feedthrough  
Input code = all 0s, V  
= 1.6Vp-p at 1kHz  
REF  
Signal-to-Noise Plus  
SINAD  
V
REF  
= 1Vp-p at 25kHz, code = full scale  
72  
dB  
Distortion Ratio  
DIGITAL INPUTS  
Input High Voltage  
V
2.0  
V
V
IH  
Input Low Voltage  
V
IL  
0.6  
Input Leakage Current  
Input Capacitance  
I
V
IN  
= 0V or V  
DD  
0.01  
8
±1.0  
µA  
pF  
IN  
C
IN  
DIGITAL OUTPUTS  
Output High Voltage  
Output Low Voltage  
DYNAMIC PERFORMANCE  
Voltage Output Slew Rate  
Output Settling Time  
Output Voltage Swing  
Current into FB_  
V
I
= 2mA  
V - 0.5  
DD  
V
V
OH  
SOURCE  
V
OL  
I
= 2mA  
0.13  
0.4  
SINK  
SR  
0.6  
12  
V/µs  
µs  
To ±1/2LSB, V  
= 1.25V  
STEP  
Rail-to-rail (Note 2)  
0 to V  
V
DD  
0
0.1  
±1  
µA  
OUT_ Leakage Current  
in Shutdown  
R
=  
0.01  
20  
µA  
µs  
L
Start-Up Time Exiting  
Shutdown Mode  
Digital Feedthrough  
5
5
nV-s  
nV-s  
CS = V , DIN = 100kHz  
DD  
Digital Crosstalk  
POWER SUPPLIES  
Supply Voltage  
V
(Note 3)  
(Note 4)  
(Note 4)  
3.0  
3.6  
0.98  
20  
V
DD  
Supply Current  
I
DD  
0.82  
3
mA  
µA  
µA  
Supply Current in Shutdown  
Reference Current in Shutdown  
0.01  
±1  
Note 1: Guaranteed from code 5 to code 1023 in unity-gain configuration.  
Note 2: Accuracy is better than 1LSB for V = 6mV to V - 80mV, guaranteed by PSR test at the endpoints.  
OUT  
DD  
Note 3: Remains operational with supply voltage as low as +2.7V.  
Note 4: R = , digital inputs at DGND or V  
.
DD  
L
_______________________________________________________________________________________  
3
+3 V, Qu a d , 1 0 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +3.0V to +3.6V, AGND = DGND = 0V, REFAB = REFCD = 1.25V, R = 5k, C = 100pF, T = T  
DD  
to T , unless otherwise  
MAX  
L
L
A
MIN  
noted. Typical values are at T = +25°C. Output buffer connected in unity-gain configuration (Figure 9).)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
100  
40  
TYP  
MAX  
UNITS  
TIMINGCHARACTERISTICS (Figure 6)  
CP  
CH  
SCLK Clock Period  
t
ns  
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
ns  
MAX251  
t
40  
ns  
CL  
t
40  
ns  
CS Fall to SCLK Rise Setup Time  
CSS  
CSH  
t
0
40  
0
ns  
ns  
ns  
SCLK Rise to CS Rise Hold Time  
DIN Setup Time  
t
DS  
DIN Hold Time  
t
DH  
SCLK Rise to DOUT Valid  
Propagation Delay  
t
C
C
= 200pF  
= 200pF  
120  
120  
ns  
ns  
D01  
D02  
L
L
SCLK Fall to DOUT Valid  
Propagation Delay  
t
t
40  
40  
ns  
ns  
ns  
SCLK Rise to CS Fall Delay  
CS Rise to SCLK Rise Hold Time  
CS Pulse Width High  
CS0  
CS1  
t
t
100  
CSW  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +3.3V, T = +25°C, unless otherwise noted.)  
DD  
A
SUPPLY CURRENT  
vs. TEMPERATURE  
REFERENCE VOLTAGE INPUT  
FREQUENCY RESPONSE  
INTEGRAL NONLINEARITY  
vs. REFERENCE VOLTAGE  
0.25  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
0
-4  
REFAB SWEPT 0.67Vp-p  
R = 5k  
0
-0.25  
-0.50  
-0.75  
-1.00  
-1.25  
L
C = 100pF  
L
-8  
-12  
-16  
-20  
R = 5kΩ  
L
CODE = FFC hex  
-55 -40 -20  
0
20 40 60 80 100 120  
0
500k 1.0M 1.5M 2.0M 2.5M 3.0M  
FREQUENCY (Hz)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
+3 V, Qu a d , 1 0 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX251  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +3.3V, T = +25°C, unless otherwise noted.)  
DD  
A
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
OUTPUT FFT PLOT  
1000  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0
-20  
DAC CODE = FULL SCALE  
REFAB = 1Vp-p  
V
REF  
= 1kHz, 0.006V TO 1.6V  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
R = 5kΩ  
L
R = 5kΩ  
L
C = 100pF  
L
C = 100pF  
L
-40  
-60  
-80  
CODE = FFC hex  
-100  
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6  
SUPPLY VOLTAGE (V)  
0.1  
1
10  
100  
0.5  
1.6  
2.7  
3.8  
4.9  
6.0  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
REFERENCE FEEDTHROUGH  
AT 1kHz  
FULL-SCALE ERROR  
vs. LOAD  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
0
REFAB INPUT SIGNAL  
-20  
-40  
V
REF  
= 1.6Vp-p @ 1kHz  
R = 5kΩ  
L
C = 100pF  
L
-60  
OUTA FEEDTHROUGH  
-80  
-100  
0.5  
1.2  
1.9  
2.6  
3.3  
4.0  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
LOAD (k)  
_______________________________________________________________________________________  
5
+3 V, Qu a d , 1 0 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +3.3V, V  
= 1.25V, R = 5k, C = 100pF, T = +25°C, unless otherwise noted.)  
L L  
A
REF  
DD  
MAJOR-CARRY TRANSITION  
DIGITAL FEEDTHROUGH (SCLK = 100kHz)  
MAX5251-07  
MAX5251-08  
MAX251  
SCLK,  
2V/div  
CS  
5V/div  
OUTB,  
OUTA,  
AC COUPLED  
50mV/div  
AC COUPLED  
10mV/div  
10µs/div  
2µs/div  
CS = PDL = CL = 3.3V, DIN = 0V  
DAC A CODE SET TO 800 hex  
ANALOG CROSSTALK  
DYNAMIC RESPONSE  
MAX5251-12  
MAX5251-13  
OUTA,  
OUTA,  
500mV/div  
500mV/div  
GND  
OUTB,  
AC COUPLED  
10mV/div  
10µs/div  
10µs/div  
DAC A CODE SWITCHING FROM 00C hex TO FFC hex  
DAC B CODE SET TO 800 hex  
SWITCHING FROM CODE 000 hex TO FB4 hex  
OUTPUT AMPLIFIER GAIN = +2.6  
6
_______________________________________________________________________________________  
+3 V, Qu a d , 1 0 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX251  
______________________________________________________________P in De s c rip t io n  
PIN  
1
NAME  
AGND  
FBA  
FUNCTION  
Analog Ground  
2
DAC A Output Amplifier Feedback  
DAC A Output Voltage  
3
OUTA  
OUTB  
4
DAC B Output Voltage  
5
6
7
FBB  
REFAB  
CL  
DAC B Output Amplifier Feedback  
Reference Voltage Input for DAC A and DAC B  
Clears All DACs and Registers. Resets all outputs (OUT_, UPO, DOUT) to 0, active low.  
8
Chip-Select Input. Active low.  
CS  
DIN  
9
Serial-Data Input  
Serial-Clock Input  
10  
SCLK  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DGND  
DOUT  
UPO  
Digital Ground  
Serial-Data Output  
User-Programmable Logic Output  
Power-Down Lockout. Active low. Locks out software shutdown if low.  
Reference Voltage Input for DAC C and DAC D  
DAC C Output Amplifier Feedback  
DAC C Output Voltage  
PDL  
REFCD  
FBC  
OUTC  
OUTD  
FBD  
DAC D Output Voltage  
DAC D Output Amplifier Feedback  
Positive Power Supply  
V
DD  
_______________________________________________________________________________________  
7
+3 V, Qu a d , 1 0 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
The impedance at each reference input is code depen-  
dent, ranging from a low value of 10kwhen both  
DACs connected to the reference have an input code  
of 554 hex, to a high value exceeding several giga  
ohms (leakage current) with an input code of 000 hex.  
Because the input impedance at the reference pins is  
c od e d e p e nd e nt, loa d re g ula tion of the re fe re nc e  
source is important.  
FB_  
OUT_  
R
R
R
2R  
S0  
2R  
S1  
2R  
D0  
2R  
D9  
2R  
The REFAB and REFCD reference inputs have a 10kΩ  
guaranteed minimum input impedance. When the two  
reference inputs are driven from the same source, the  
e ffe c tive minimum imp e d a nc e is 5k. Driving the  
REFAB and REFCD pins separately improves reference  
accuracy.  
MAX251  
REF_  
AGND  
In shutdown mode, the MAX5251s REFAB and REFCD  
inputs enter a high-impedance state with a typical input  
leakage current of 0.01µA.  
SHOWN FOR ALL 1s ON DAC  
The reference input capacitance is also code depen-  
dent and typically ranges from 20pF with an input code  
of all 0s to 100pF at full scale.  
Figure 1. Simplified DAC Circuit Diagram  
Ou t p u t Am p lifie rs  
All MAX5251 DAC outputs are internally buffered by pre-  
cision amplifiers with a typical slew rate of 0.6V/µs.  
Access to each output amplifiers inverting input pro-  
vides the user greater flexibility in output gain setting/  
signal conditioning (see the Applications Information  
section).  
_______________De t a ile d De s c rip t io n  
The MAX5251 contains four voltage-output digital-to-  
analog converters (DACs) that are easily addressed  
using a simple 3-wire serial interface. It includes a  
16-bit data-in/data-out shift register, and each DAC has  
a doubled-buffered input composed of an input register  
and a DAC register (see Functional Diagram). In addi-  
tion to the four voltage outputs, each amplifiers nega-  
tive input is available to the user.  
With a full-scale transition at the MAX5251 output, the  
typical settling time to ±1/2LSB is 12µs when loaded  
with 5kin parallel with 100pF (loads less than 2kΩ  
degrade performance).  
The DACs are inverted R-2R ladder networks that con-  
vert a digital input (10 data bits plus 2 sub-bits) into  
equivalent analog output voltages in proportion to the  
applied reference voltage inputs. DACs A and B share  
the REFAB reference input, while DACs C and D share  
the REFCD reference input. The two reference inputs  
allow different full-scale output voltage ranges for each  
pair of DACs. Figure 1 shows a simplified circuit dia-  
gram of one of the four DACs.  
The MAX5251 outp ut a mp lifie r’s outp ut d yna mic  
responses and settling performances are shown in the  
Typical Operating Characteristics.  
P o w e r-Do w n Mo d e  
The MAX5251 features a software-programmable shut-  
down that reduces supply current to a typical value of  
3µA. The power-down lockout pin (PDL) must be high to  
enable shutdown mode. Writing 1100XXXXXXXXXXXX as  
the input-control word puts the MAX5251 in shutdown  
mode (Table 1).  
Re fe re n c e In p u t s  
The two reference inputs accept positive DC and AC  
signals. The voltage at each reference input sets the  
full-s c a le outp ut volta g e for its two c orre s p ond ing  
DACs . The re fe re nc e inp ut volta g e ra ng e is 0V to  
(V  
DD  
- 1.4V). The output voltages (V  
are repre-  
OUT_)  
sented by a digitally programmable voltage source as:  
V
OUT_  
= (V x NB / 1024 ) x Gain  
REF  
where NB is the numeric value of the DACs binary  
input code (0 to 1023), V is the reference voltage,  
REF  
and Gain is the externally set voltage gain.  
8
_______________________________________________________________________________________  
+3 V, Qu a d , 1 0 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX251  
In shutdown mode, the MAX5251 output amplifiers and  
the reference inputs enter a high-impedance state. The  
serial interface remains active. Data in the input regis-  
ters is retained in shutdown, allowing the MAX5251 to  
recall the output states prior to entering shutdown. Exit  
shutdown mode either by recalling the previous config-  
uration or by updating the DACs with new data. When  
powering up the device or bringing it out of shutdown,  
allow 20µs for the outputs to stabilize.  
SCLK  
SK  
DIN  
SO  
SI*  
MAX5251  
MICROWIRE  
PORT  
DOUT*  
S e ria l-In t e rfa c e Co n fig u ra t io n s  
The MAX5251s 3-wire serial interface is compatible  
with b oth Mic rowire ™ (Fig ure 2) a nd SPI™/QSPI™  
(Figure 3). The serial input word consists of two address  
bits and two control bits followed by 10+2 data bits  
(MSB first), as shown in Figure 4. The 4-bit address/  
control code determines the MAX5251s response out-  
lined in Table 1. The connection between DOUT and  
the serial-interface port is not necessary, but may be  
used for data echo. Data held in the MAX5251s shift  
register can be shifted out of DOUT and returned to the  
microprocessor (µP) for data verification.  
CS  
I/O  
*THE DOUT-SI CONNECTION IS NOT REQUIRED FOR WRITING TO THE MAX5251,  
BUT MAY BE USED FOR READBACK PURPOSES.  
Figure 2. Connections for Microwire  
+3.3V  
The MAX5251s d ig ita l inp uts a re d oub le b uffe re d .  
Depending on the command issued through the serial  
interface, the input register(s) can be loaded without  
affecting the DAC register(s), the DAC register(s) can  
be loaded directly, or all four DAC registers can be  
up d a te d s imulta ne ous ly from the inp ut re g is te rs  
(Table 1).  
SS  
DOUT*  
MISO*  
DIN  
MOSI  
SCK  
MAX5251  
SPI/QSPI  
PORT  
SCLK  
S e ria l-In t e rfa c e De s c rip t io n  
The MAX5251 requires 16 bits of serial data. Table 1  
lists the serial-interface programming commands. For  
c e rta in c omma nd s , the 10+ 2 d a ta b its a re “d ont  
cares.” Data is sent MSB first and can be sent in two  
8-bit packets or one 16-bit word (CS must remain low  
until 16 bits are transferred). The serial data is com-  
posed of two DAC address bits (A1, A0) and two con-  
trol b its (C1, C0), followe d b y the 10+ 2 d a ta b its  
D9…D0, S1, S0 (Figure 4). Set both sub-bits (S0, S1) to  
zero. The 4-bit address/control code determines:  
CS  
I/O  
CPOL = 0, CPHA = 0  
*THE DOUT-MISO CONNECTION IS NOT REQUIRED FOR WRITING TO THE MAX5251,  
BUT MAY BE USED FOR READBACK PURPOSES.  
Figure 3. Connections for SPI/QSPI  
The register(s) to be updated  
The clock edge on which data is to be clocked out  
MSB ..................................................................................LSB  
16 Bits of Serial Data  
via the serial-data output (DOUT)  
The state of the user-programmable logic output  
(UPO)  
Address  
Bits  
Control  
Bits  
Data Bits  
MSB.................................LSB  
If the part is to go into shutdown mode (assuming  
PDL is high)  
A1 A0 C1 C0 D9 ...................................D0 S1 S0  
How the part is configured when exiting shutdown  
4 Address/  
10+2 Data Bits  
Control Bits  
mode.  
Figure 4. Serial-Data Format  
_______________________________________________________________________________________  
9
+3 V, Qu a d , 1 0 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
Table 1. Serial-Interface Programming Commands  
16-BIT SERIAL WORD  
FUNCTION  
D9.................D0  
MSB.............LSB  
A1 A0 C1 C0  
S1 S0  
0
0
1
1
0
1
0
1
0
0
0
0
1
1
1
1
10-bit DAC data  
10-bit DAC data  
10-bit DAC data  
10-bit DAC data  
0
0
0
0
0
0
0
0
Load input register A; DAC registers unchanged.  
Load input register B; DAC registers unchanged.  
Load input register C; DAC registers unchanged.  
Load input register D; DAC registers unchanged.  
MAX251  
0
0
1
1
0
1
0
1
1
1
1
1
1
1
1
1
10-bit DAC data  
10-bit DAC data  
10-bit DAC data  
10-bit DAC data  
0
0
0
0
0
0
0
0
Load input register A; all DAC registers updated.  
Load input register B; all DAC registers updated.  
Load input register C; all DAC registers updated.  
Load input register D; all DAC registers updated.  
Update all DAC registers from their respective input registers (also exit  
shutdown mode).  
0
1
0
0
XXXXXXXXXX  
X
X
1
1
0
0
0
0
1
0
1
0
0
0
1
1
0
0
0
0
0
0
10-bit DAC data  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
0
0
Load all DAC registers from shift register (also exit shutdown mode).  
Enter shutdown mode (provided PDL = 1).  
UPO goes low (default).  
X
X
X
X
X
X
X
X
UPO goes high.  
No operation (NOP) to DAC registers  
Mode 1, DOUT clocked out on SCLK’s rising edge. All DAC registers  
updated.  
1
1
1
0
1
1
0
0
XXXXXXXXXX  
XXXXXXXXXX  
X
X
X
X
Mode 0, DOUT clocked out on SCLK’s falling edge. All DAC registers  
updated (default).  
“X” = Dont care  
Figure 5 shows the serial-interface timing requirements.  
The chip-select pin (CS) must be low to enable the  
DACs serial interface. When CS is high, the interface  
control circuitry is disabled. CS must go low at least  
change the clock edge on which serial data is shifted  
out of DOUT also loads data from all input registers to  
their respective DAC registers.  
S e ria l-Da t a Ou t p u t (DOUT)  
The serial-data output, DOUT, is the internal shift regis-  
ters output. The MAX5251 can be programmed so that  
data is clocked out of DOUT on SCLK’s rising edge  
(Mode 1) or falling edge (Mode 0). In Mode 0, output  
data at DOUT lags input data at DIN by 16.5 clock  
c yc le s , ma inta ining c omp a tib ility with Mic rowire ,  
SPI/QSPI, and other serial interfaces. In Mode 1, output  
data lags input data by 16 clock cycles. On power-up,  
DOUT defaults to Mode 0 timing.  
t
before the rising serial clock (SCLK) edge to prop-  
CSS  
e rly c loc k in the firs t b it. Whe n CS is low, d a ta is  
clocked into the internal shift register via the serial-data  
input pin (DIN) on SCLKs rising edge. The maximum  
guaranteed clock frequency is 10MHz. Data is latched  
into the appropriate MAX5251 input/DAC registers on  
CSs rising edge.  
The programming command Load-All-DACs-From-Shift-  
Register allows all input and DAC registers to be simul-  
taneously loaded with the same digital code from the  
input shift register. The no operation (NOP) command  
leaves the register contents unaffected and is useful  
when the MAX5251 is configured in a daisy chain (see  
the Daisy Chaining Devices section). The command to  
Us e r-P ro g ra m m a b le Lo g ic Ou t p u t (UP O)  
The user-programmable logic output, UPO, allows an  
external device to be controlled via the MAX5251 serial  
interface (Table 1).  
10 ______________________________________________________________________________________  
+3 V, Qu a d , 1 0 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX251  
CS  
COMMAND  
EXECUTED  
SCLK  
DIN  
1
8
9
16  
A0  
D6  
DATA PACKET (N)  
D6  
D4  
D4  
C1 C0 D9 D8 D7  
D3 D2 D1 D0 S1 S0  
A1  
A1  
D5  
DOUT  
(MODE 0)  
A0 C1  
D9 D8 D7  
D3  
D1 D0 S1  
C0  
D5  
D2  
S0 A1  
MSB FROM  
PREVIOUS WRITE  
DATA PACKET (N)  
A1  
DATA PACKET (N-1)  
DOUT  
(MODE 1)  
A0  
D6  
D5  
D4  
C1  
D9 D8 D7  
D3  
D1 D0 S1  
A1  
C0  
D2  
S0  
MSB FROM  
PREVIOUS WRITE  
DATA PACKET (N)  
DATA PACKET (N-1)  
Figure 5. Serial-Interface Timing Diagram  
t
CSW  
CS  
t
CP  
t
CSH  
t
t
CH  
CSS  
t
t
CL  
CSO  
t
CS1  
SCLK  
t
DS  
t
DH  
DIN  
t
DO2  
t
DO1  
DOUT  
Figure 6. Detailed Serial-Interface Timing Diagram  
Since the MAX5251s DOUT pin has an internal active  
pull-up, the DOUT sink/source capability determines  
the time required to discharge/charge a capacitive  
P o w e r-Do w n Lo c k o u t (PDL)  
The power-down lockout pin PDL disables software  
shutdown when low. When in shutdown, transitioning  
PDL from high to low wakes up the part with the output  
set to the state prior to shutdown. PDL could also be  
used to wake up the device asynchronously.  
load. Refer to the serial-data-out V  
and V specifi-  
OH  
OL  
cations in the Electrical Characteristics.  
Figure 8 shows an alternate method of connecting sev-  
eral MAX5251s. In this configuration, the data bus is  
common to all devices; data is not shifted through a  
daisy chain. More I/O lines are required in this configu-  
ration because a dedicated chip-select input (CS) is  
required for each IC.  
Da is y Ch a in in g De vic e s  
Any number of MAX5251s can be daisy chained by  
connecting the DOUT pin of one device to the DIN pin  
of the following device in the chain (Figure 7).  
______________________________________________________________________________________ 11  
+3 V, Qu a d , 1 0 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX5251  
MAX5251  
MAX5251  
SCLK  
SCLK  
SCLK  
SCLK  
DIN  
MAX251  
DOUT  
DOUT  
DOUT  
DIN  
CS  
DIN  
CS  
DIN  
CS  
CS  
TO OTHER  
SERIAL DEVICES  
Figure 7. Daisy-Chaining MAX5251s  
DIN  
SCLK  
CS1  
CS2  
TO OTHER  
SERIAL DEVICES  
CS3  
CS  
CS  
CS  
MAX5251  
MAX5251  
MAX5251  
SCLK  
SCLK  
DIN  
SCLK  
DIN  
DIN  
Figure 8. Multiple MAX5251s Sharing a Common DIN Line  
12 ______________________________________________________________________________________  
+3 V, Qu a d , 1 0 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX251  
Bip o la r Ou t p u t  
The MAX5251 outputs can be configured for bipolar  
operation using Figure 11s circuit:  
__________Ap p lic a t io n s In fo rm a t io n  
Un ip o la r Ou t p u t  
For a unipolar output, the output voltages and the refer-  
ence inputs have the same polarity. Figure 9 shows the  
MAX5251 unipolar output circuit, which is also the typi-  
cal operating circuit. Table 2 lists the unipolar output  
codes.  
V
OUT  
= V  
[(2NB / 1024) - 1]  
REF  
where NB is the numeric value of the DACs binary  
input code. Table 3 shows digital codes (offset binary)  
a nd c orre s p ond ing outp ut volta g e s for Fig ure 11s  
circuit.  
For rail-to-rail outputs, see Figure 10. This circuit shows  
the MAX5251 with the output amplifiers configured with  
a closed-loop gain of +2.6 to provide 0V to 3.25V full-  
scale range when a 1.25V reference is used.  
+3.3V  
REFERENCE INPUTS  
MAX5251  
Table 2. Unipolar Code Table  
V
DD  
REFAB  
REFCD  
FBA  
DAC CONTENTS  
ANALOG OUTPUT  
DAC A  
DAC B  
MSB  
LSB  
OUTA  
FBB  
1023  
+VREF ( ——— )  
1024  
1 1 1 1  
1 1 1 1 1 1 (0 0 )  
513  
+VREF ( ——— )  
1024  
1000  
1 0 0 0  
0 1 1 1  
0000 01(00)  
0 0 0 0 0 0 (0 0 )  
1 1 1 1 1 1 (0 0 )  
OUTB  
FBC  
512  
+VREF  
+VREF ( ——— ) = ———  
1024  
2
DAC C  
DAC D  
OUTC  
FBD  
511  
+VREF ( ——— )  
1024  
1
+VREF ( ——— )  
1024  
0 0 0 0  
0 0 0 0  
0 0 0 0 0 1 (0 0 )  
0 0 0 0 0 0 (0 0 )  
OUTD  
0V  
AGND  
DGND  
Table 3. Bipolar Code Table  
Figure 9. Unipolar Output Circuit  
DAC CONTENTS  
ANALOG OUTPUT  
MSB  
LSB  
511  
+VREF ( ——— )  
512  
1 1 1 1  
1 1 1 1 1 1 (0 0 )  
1
+VREF ( ——— )  
512  
1000  
1 0 0 0  
0 1 1 1  
0000 01(00)  
0 0 0 0 0 0 (0 0 )  
1 1 1 1 1 1 (0 0 )  
0V  
1
-VREF ( ——— )  
512  
511  
-VREF ( ——— )  
512  
0 0 0 0  
0 0 0 0  
0 0 0 0 0 1 (0 0 )  
0 0 0 0 0 0 (0 0 )  
512  
-VREF ( ——— ) = -V  
REF  
512  
( ) Sub-bits  
______________________________________________________________________________________ 13  
+3 V, Qu a d , 1 0 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
Us in g a n AC Re fe re n c e  
In applications where the reference has AC signal com-  
ponents, the MAX5251 has multiplying capability within  
the reference input range specifications. Figure 12  
shows a technique for applying a sine-wave signal to  
the reference input where the AC signal is offset before  
being applied to REFAB/REFCD. The reference voltage  
must never be more negative than DGND.  
+3.3V  
REFERENCE INPUTS  
REFAB  
MAX5251  
10k  
V
REFCD  
FBA  
DD  
16k  
DAC A  
DAC B  
DAC C  
DAC D  
OUTA  
10k  
FBB  
The MAX5251s total harmonic distortion plus noise  
(THD + N) is typically less than -72dB (full-scale code),  
given a 1Vp-p signal swing and input frequencies up to  
25kHz. The typ ic a l -3d B fre q ue nc y is 650kHz, a s  
shown in the Typical Operating Characteristics graphs.  
MAX251  
16k  
OUTB  
FBC  
10k  
16k  
Dig it a lly P ro g ra m m a b le Cu rre n t S o u rc e  
The c irc uit of Fig ure 13 p la c e s a n NPN tra ns is tor  
(2N3904 or similar) within the op-amp feedback loop to  
implement a digitally programmable, unidirectional cur-  
rent source. This circuit can be used to drive 4–20mA  
current loops, which are commonly used in industrial-  
control applications. The output current is calculated  
with the following equation:  
OUTC  
FBD  
10k  
16k  
OUTD  
AGND  
DGND  
V
= V  
= 1.25V  
REFAB REFCD  
I
= (V  
/ R) x (NB / 1024)  
OUT  
REF  
16k  
10k  
A = 1 +  
V
= 2.6  
where NB is the numeric value of the DACs binary  
inp ut c od e a nd R is the s e ns e re s is tor s hown in  
Figure 13.  
Figure 10. Unipolar Rail-to-Rail Output Circuit  
+3.3V  
AC  
REFERENCE  
INPUT  
26k  
1/2 MAX492  
REF_  
R1  
R2  
REF_  
10k  
V
DD  
+3.3V  
500mVp-p  
FB_  
V
OUT  
DAC  
DAC_  
OUT_  
OUT_  
-3.3V  
MAX5251  
AGND  
R1 = R2 = 10k± 0.1%  
MAX5251  
DGND  
Figure 11. Bipolar Output Circuit  
Figure 12. AC Reference Input Circuit  
14 ______________________________________________________________________________________  
+3 V, Qu a d , 1 0 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX251  
__________________P in Co n fig u ra t io n  
REF_  
TOP VIEW  
V
L
MAX5251  
I
OUT  
DAC_  
1
2
3
4
5
6
7
8
9
AGND  
FBA  
V
DD  
20  
19  
18  
17  
OUT_  
FB_  
FBD  
2N3904  
OUTA  
OUTB  
FBB  
OUTD  
OUTC  
MAX5251  
16 FBC  
15  
R
REFAB  
CL  
REFCD  
14 PDL  
13  
CS  
UPO  
DIN  
12 DOUT  
11 DGND  
Figure 13. Digitally Programmable Current Source  
SCLK 10  
P o w e r-S u p p ly Co n s id e ra t io n s  
DIP/SSOP  
On power-up, all input and DAC registers are cleared  
(set to zero code) and DOUT is in Mode 0 (serial data  
is shifted out of DOUT on the clocks falling edge).  
For rated MAX5251 performance, limit REFAB/REFCD  
to less than 1.4V below V . Bypass V  
with a 4.7µF  
DD  
DD  
capacitor in parallel with a 0.1µF capacitor to AGND.  
Use short lead lengths and place the bypass capaci-  
tors as close to the supply pins as possible.  
Gro u n d in g a n d La yo u t Co n s id e ra t io n s  
Digital or AC transient signals between AGND and  
DGND c a n c re a te nois e a t the a na log outp uts . Tie  
AGND and DGND together at the DAC, then tie this  
point to the highest-quality ground available.  
Good printed circuit board ground layout minimizes  
crosstalk between DAC outputs, reference inputs, and  
digital inputs. Reduce crosstalk by keeping analog  
lines away from digital lines. Wire-wrapped boards are  
not recommended.  
______________________________________________________________________________________ 15  
+3 V, Qu a d , 1 0 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 4337  
INL  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
MAX5251AEPP -40°C to +85°C 20 Plastic DIP  
MAX5251BEPP -40°C to +85°C 20 Plastic DIP  
MAX5251AEAP -40°C to +85°C 20 SSOP  
MAX5251BEAP -40°C to +85°C 20 SSOP  
MAX5251BMJP -55°C to +125°C 20 CERDIP*  
±1/2  
±1  
±1/2  
±1  
MAX251  
±2  
*Contact factory for availability and processing to MIL-STD-883.  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.068  
MAX  
0.078  
0.008  
0.015  
0.008  
MIN  
1.73  
0.05  
0.25  
0.09  
MAX  
1.99  
0.21  
0.38  
0.20  
A
A1 0.002  
B
C
D
E
e
0.010  
0.004  
SEE VARIATIONS  
α
0.205  
0.209  
5.20  
5.38  
E
H
0.0256 BSC  
0.65 BSC  
H
L
0.301  
0.311  
0.037  
8˚  
7.65  
0.63  
0˚  
7.90  
0.95  
8˚  
0.025  
0˚  
C
α
L
INCHES  
MILLIMETERS  
DIM PINS  
MAX  
6.33  
MIN MAX MIN  
0.239 0.249 6.07  
0.239 0.249 6.07  
0.278 0.289 7.07  
0.317 0.328 8.07  
0.397 0.407 10.07  
e
D
D
D
D
D
14  
16  
20  
24  
28  
6.33  
SSOP  
7.33  
SHRINK  
A
8.33  
SMALL-OUTLINE  
PACKAGE  
10.33  
21-0056A  
B
A1  
D
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5251BCAP+T

D/A Converter, 4 Func, Serial Input Loading, 12us Settling Time, PDSO20, SSOP-20
MAXIM

MAX5251BCPP

+3V, Quad, 10-Bit Voltage-Output DAC with Serial Interface
MAXIM

MAX5251BCPP+

暂无描述
MAXIM

MAX5251BEAP

+3V, Quad, 10-Bit Voltage-Output DAC with Serial Interface
MAXIM

MAX5251BEAP+T

D/A Converter, 4 Func, Serial Input Loading, 12us Settling Time, PDSO20, SSOP-20
MAXIM

MAX5251BEPP

+3V, Quad, 10-Bit Voltage-Output DAC with Serial Interface
MAXIM

MAX5251BEPP+

暂无描述
MAXIM

MAX5251BMJP

+3V, Quad, 10-Bit Voltage-Output DAC with Serial Interface
MAXIM

MAX5253

+3V, Quad, 12-Bit Voltage-Output DAC with Serial Interface
MAXIM

MAX5253ACAP

+3V, Quad, 12-Bit Voltage-Output DAC with Serial Interface
MAXIM

MAX5253ACAP+

暂无描述
MAXIM

MAX5253ACAP+T

D/A Converter, 1 Func, Serial Input Loading, 16us Settling Time, PDSO20, SSOP-20
MAXIM