MAX525ACPP [MAXIM]

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface; 低功耗,四通道,12位电压输出DAC ,串行接口
MAX525ACPP
型号: MAX525ACPP
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface
低功耗,四通道,12位电压输出DAC ,串行接口

文件: 总16页 (文件大小:143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1098; Rev 1; 12/96  
Lo w -P o w e r, Qu a d , 1 2 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX25  
__________________Ge n e ra l De s c rip t io n  
______________________________Fe a t u re s  
The MAX525 combines four low-power, voltage-output,  
12-bit digital-to-analog converters (DACs) and four pre-  
cision output amplifiers in a space-saving, 20-pin pack-  
a g e . In a d d ition to the four volta g e outp uts , e a c h  
amplifiers negative input is also available to the user.  
This facilitates specific gain configurations, remote  
sensing, and high output drive capacity, making the  
MAX525 ideal for industrial-process-control applica-  
tions. Other features include software shutdown, hard-  
ware shutdown lockout, an active-low reset which clears  
all registers and DACs to zero, a user-programmable  
logic output, and a serial-data output.  
Four 12-Bit DACs with Configurable  
Output Amplifiers  
+5V Single-Supply Operation  
Low Supply Current: 0.85mA Normal Operation  
10µA Shutdown Mode  
Available in 20-Pin SSOP  
Power-On Reset Clears all Registers and  
DACs to Zero  
Capable of Recalling Last State Prior to Shutdown  
SPI/QSPI and Microwire Compatible  
Each DAC has a double-buffered input organized as an  
input register followed by a DAC register. A 16-bit serial  
word loads data into each input/DAC register. The serial  
inte rfa c e is c omp a tib le with SPI™/QSPI™ a nd  
Microwire. It allows the input and DAC registers to be  
updated independently or simultaneously with a single  
software command. The DAC registers can be simulta-  
neously updated via the 3-wire serial interface. All logic  
inputs are TTL/CMOS-logic compatible.  
Simultaneous or Independent Control of DACs  
via 3-Wire Serial Interface  
User-Programmable Digital Output  
_________________Ord e rin g In fo rm a t io n  
INL  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
MAX525ACPP  
MAX525BCPP  
MAX525ACAP  
MAX525BCAP  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
20 Plastic DIP  
20 Plastic DIP  
20 SSOP  
±1/2  
±1  
________________________Ap p lic a t io n s  
Industrial Process Controls  
±1/2  
±1  
Automatic Test Equipment  
20 SSOP  
Digital Offset and Gain Adjustment  
Motion Control  
Ordering Information continued on last page.  
Remote Industrial Controls  
Pin Configuration appears at end of data sheet.  
Microprocessor-Controlled Systems  
_________________________________________________________________________Fu n c t io n a l Dia g ra m  
V
DD  
DOUT  
REFAB  
CL  
PDL  
AGND  
DGND  
FBA  
DECODE  
CONTROL  
MAX525  
OUTA  
INPUT  
REGISTER A  
DAC  
DAC A  
REGISTER A  
FBB  
OUTB  
INPUT  
REGISTER B  
DAC  
REGISTER B  
16-BIT  
SHIFT  
REGISTER  
DAC B  
DAC C  
FBC  
OUTC  
INPUT  
REGISTER C  
DAC  
REGISTER C  
FBD  
OUTD  
SR  
CONTROL  
INPUT  
REGISTER D  
DAC  
REGISTER D  
LOGIC  
OUTPUT  
DAC D  
REFCD  
DIN SCLK  
CS  
UPO  
SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Lo w -P o w e r, Qu a d , 1 2 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
ABSOLUTE MAXIMUM RATINGS  
V
to AGND............................................................-0.3V to +6V  
to DGND ...........................................................-0.3V to +6V  
Operating Temperature Ranges  
DD  
V
MAX525_C_P ........................................................0°C to +70°C  
MAX525_E_P .....................................................-40°C to +85°C  
MAX525_MJP ..................................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
AGND to DGND..................................................................±0.3V  
REFAB, REFCD to AGND...........................-0.3V to (V + 0.3V)  
OUT_, FB_ to AGND...................................-0.3V to (V + 0.3V)  
DD  
DD  
Digital Inputs to DGND.............................................-0.3V to +6V  
DOUT, UPO to DGND ................................-0.3V to (V + 0.3V)  
DD  
MAX25  
Continuous Current into Any Pin.......................................±20mA  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 8.00mW/°C above +70°C) .................640mW  
SSOP (derate 8.00mW/°C above +70°C) ......................640mW  
CERDIP (derate 11.11mW/°C above +70°C).................889mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +5V ±10%, AGND = DGND = 0V, REFAB = REFCD = 2.5V, R = 5k, C = 100pF, T = T  
to T , unless otherwise  
MAX  
DD  
L
L
A
MIN  
noted. Typical values are at T = +25°C. Output buffer connected in unity-gain configuration (Figure 9).)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE—ANALOG SECTION  
Resolution  
N
12  
Bits  
MAX525A  
MAX525B  
±0.25  
±0.5  
±1.0  
±1.0  
±6.0  
Integral Nonlinearity  
(Note 1)  
INL  
DNL  
LSB  
Differential Nonlinearity  
Offset Error  
Guaranteed monotonic  
LSB  
mV  
V
OS  
Offset-Error Tempco  
Gain Error (Note 1)  
Gain-Error Tempco  
Power-Supply Rejection Ratio  
6
ppm/°C  
LSB  
GE  
-0.8  
1
±2.0  
600  
ppm/°C  
µV/V  
PSRR  
4.5V V 5.5V  
100  
DD  
MATCHING PERFORMANCE (T = +25°C)  
A
Gain Error  
GE  
-0.8  
±1.0  
±2.0  
±6.0  
±1.0  
LSB  
mV  
Offset Error  
Integral Nonlinearity  
REFERENCE INPUT  
Reference Input Range  
Reference Input Resistance  
Reference Current in Shutdown  
INL  
±0.35  
LSB  
V
REF  
0
V
- 1.4  
±1  
V
DD  
R
Code-dependent, minimum at code 555 hex  
10  
kΩ  
µA  
REF  
0.01  
2
_______________________________________________________________________________________  
Lo w -P o w e r, Qu a d , 1 2 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX25  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V ±10%, AGND = DGND = 0V, REFAB = REFCD = 2.5V, R = 5k, C = 100pF, T = T  
to T , unless otherwise  
MAX  
DD  
L
L
A
MIN  
noted. Typical values are at T = +25°C. Output buffer connected in unity-gain configuration (Figure 9).)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MULTIPLYING-MODE PERFORMANCE  
Reference -3dB Bandwidth  
V
= 0.67Vp-p  
650  
-84  
kHz  
dB  
REF  
Reference Feedthrough  
Input code = all 0s, V  
= 3.6Vp-p at 1kHz  
REF  
Signal-to-Noise Plus  
SINAD  
V
REF  
= 1Vp-p at 25kHz  
72  
dB  
Distortion Ratio  
DIGITAL INPUTS  
Input High Voltage  
V
2.4  
V
V
IH  
Input Low Voltage  
V
IL  
0.8  
Input Leakage Current  
Input Capacitance  
I
V
IN  
= 0V or V  
DD  
0.01  
8
±1.0  
µA  
pF  
IN  
C
IN  
DIGITAL OUTPUTS  
Output High Voltage  
Output Low Voltage  
DYNAMIC PERFORMANCE  
Voltage Output Slew Rate  
Output Settling Time  
Output Voltage Swing  
Current into FB_  
V
I
= 2mA  
V - 0.5  
DD  
V
V
OH  
SOURCE  
V
OL  
I
= 2mA  
0.13  
0.4  
SINK  
SR  
0.6  
12  
V/µs  
µs  
To ±1/2LSB, V  
= 2.5V  
STEP  
Rail to rail (Note 2)  
0 to V  
V
DD  
0
0.1  
±1  
µA  
OUT_ Leakage Current  
in Shutdown  
R
=  
0.01  
µA  
µs  
L
Start-Up Time Exiting  
Shutdown Mode  
15  
Digital Feedthrough  
5
5
nV-s  
nV-s  
CS = V , DIN = 100kHz  
DD  
Digital Crosstalk  
POWER SUPPLIES  
Supply Voltage  
V
4.5  
5.5  
0.98  
20  
V
DD  
Supply Current  
I
DD  
(Note 3)  
(Note 3)  
0.85  
10  
mA  
µA  
µA  
Supply Current in Shutdown  
Reference Current in Shutdown  
0.01  
±1  
Note 1: Guaranteed from code 11 to code 4095 in unity-gain configuration.  
Note 2: Accuracy is better than 1.0LSB for V = 6mV to V - 60mV, guaranteed by PSR test on end points.  
OUT  
DD  
Note 3: R = , digital inputs at DGND or V  
.
L
DD  
_______________________________________________________________________________________  
3
Lo w -P o w e r, Qu a d , 1 2 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V ±10%, AGND = DGND = 0V, REFAB = REFCD = 2.5V, R = 5k, C = 100pF, T = T  
to T , unless otherwise  
MAX  
DD  
L
L
A
MIN  
noted. Typical values are at T = +25°C. Output buffer connected in unity-gain configuration (Figure 9).)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS (Figure 6)  
SCLK Clock Period  
t
100  
40  
ns  
ns  
ns  
ns  
CP  
MAX25  
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
CH  
t
40  
CL  
t
40  
CS Fall to SCLK Rise Setup Time  
CSS  
CSH  
t
0
40  
0
ns  
ns  
ns  
SCLK Rise to CS Rise Hold Time  
DIN Setup Time  
t
DS  
DIN Hold Time  
t
DH  
SCLK Rise to DOUT Valid  
Propagation Delay  
t
C
C
= 200pF  
= 200pF  
80  
ns  
ns  
D01  
D02  
LOAD  
LOAD  
80  
SCLK Fall to DOUT Valid  
Propagation Delay  
t
t
40  
40  
ns  
ns  
ns  
SCLK Rise to CS Fall Delay  
CS Rise to SCLK Rise Hold Time  
CS Pulse Width High  
CS0  
CS1  
t
t
100  
CSW  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5V, T = +25°C, unless otherwise noted.)  
DD  
A
SUPPLY CURRENT  
vs. TEMPERATURE  
INTEGRAL NONLINEARITY  
vs. REFERENCE VOLTAGE  
REFERENCE VOLTAGE INPUT  
FREQUENCY RESPONSE  
0.3  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
0
-4  
REFAB SWEPT 0.67Vp-p  
0.2  
0.1  
R = 5k  
L
C = 100pF  
L
0
-8  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-12  
-16  
-20  
CODE = FFF hex  
R = 5kΩ  
L
-55 -40 -20  
0
20 40 60 80 100 120  
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4  
REFERENCE VOLTAGE (V)  
0
500k 1M 1.5M 2M 2.5M 3M  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
Lo w -P o w e r, Qu a d , 1 2 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX25  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, T = +25°C, unless otherwise noted.)  
DD  
A
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
OUTPUT FFT PLOT  
0
-20  
0.50  
1000  
DAC CODE = ALL 1s  
REFAB = 1Vp-p  
V
REF  
= 1kHz, 0.006V TO 3.6V  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
950  
900  
850  
800  
750  
700  
650  
600  
R = 5kΩ  
L
R = 5kΩ  
L
C = 100pF  
L
C = 100pF  
L
-40  
-60  
-80  
CODE = FFF hex  
-100  
0.5  
1.6  
2.7  
3.8  
4.9  
6.0  
100  
1
10  
4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6  
SUPPLY VOLTAGE (V)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FULL-SCALE ERROR  
vs. LOAD  
REFERENCE FEEDTHROUGH  
AT 1kHz  
0
0
-20  
-40  
-60  
-80  
REFAB INPUT SIGNAL  
-1  
-2  
-3  
-4  
V
REF  
= 3.6Vp-p @ 1kHz  
R = 5kΩ  
L
C = 100pF  
L
OUTA FEEDTHROUGH  
-5  
-100  
0.5  
0.01  
0.1  
1
10  
100  
1.2  
1.9  
2.6  
3.3  
4.0  
LOAD (k)  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
5
Lo w -P o w e r, Qu a d , 1 2 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, T = +25°C, unless otherwise noted.)  
DD  
A
MAJOR-CARRY TRANSITION  
DIGITAL FEEDTHROUGH (SCLK = 100kHz)  
MAX25  
SCLK,  
2V/div  
CS  
5V/div  
OUTB,  
OUTA,  
AC COUPLED  
100mV/div  
AC COUPLED  
10mV/div  
10µs/div  
2µs/div  
V
REF  
= 2.5V, R = 5k, C = 100pF  
V
REF  
= 2.5V, R = 5k, C = 100pF  
L
L
L
L
CS = PDL = CL = 5V, DIN = 0V  
DAC A CODE SET TO 800 hex  
ANALOG CROSSTALK  
DYNAMIC RESPONSE  
OUTA,  
1V/div  
OUTA,  
1V/div  
GND  
OUTB,  
AC COUPLED  
10mV/div  
10µs/div  
10µs/div  
V
REF  
= 2.5V, R = 5k, C = 100pF  
L L  
V
REF  
= 2.5V, R = 5k, C = 100pF  
L
L
DAC A CODE SWITCHING FROM 00B hex TO FFF hex  
DAC B CODE SET TO 800 hex  
SWITCHING FROM CODE 000 hex TO FB4 hex  
OUTPUT AMPLIFIER GAIN = +2  
6
_______________________________________________________________________________________  
Lo w -P o w e r, Qu a d , 1 2 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX25  
______________________________________________________________P in De s c rip t io n  
PIN  
1
NAME  
AGND  
FBA  
FUNCTION  
Analog Ground  
2
DAC A Output Amplifier Feedback  
DAC A Output Voltage  
3
OUTA  
OUTB  
4
DAC B Output Voltage  
5
6
7
FBB  
REFAB  
CL  
DAC B Output Amplifier Feedback  
Reference Voltage Input for DAC A and DAC B  
Clear All DACs and Registers. Resets all outputs (OUT_, UPO, DOUT) to 0, active low.  
8
Chip-Select Input. Active low.  
CS  
DIN  
9
Serial-Data Input  
Serial Clock Input  
10  
SCLK  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DGND  
DOUT  
UPO  
Digital Ground  
Serial-Data Output  
User-Programmable Logic Output  
Power-Down Lockout. Active low. Locks out software shutdown if low.  
Reference Voltage Input for DAC C and DAC D  
DAC C Output Amplifier Feedback  
DAC C Output Voltage  
PDL  
REFCD  
FBC  
OUTC  
OUTD  
FBD  
DAC D Output Voltage  
DAC D Output Amplifier Feedback  
Positive Power Supply  
V
DD  
_______________________________________________________________________________________  
7
Lo w -P o w e r, Qu a d , 1 2 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
The impedance at each reference input is code-depen-  
dent, ranging from a low value of 10kwhen both  
DACs connected to the reference have an input code  
of 555 hex, to a high value exceeding several gigohms  
FB_  
(le a ka g e c urre nts ) with a n inp ut c od e of 000 he x.  
OUT_  
R
R
R
Because the input impedance at the reference pins is  
c od e -d e p e nd e nt, loa d re g ula tion of the re fe re nc e  
source is important.  
2R  
D0  
2R  
D9  
2R  
D10  
2R  
D11  
2R  
MAX25  
The REFAB and REFCD reference inputs have a 10kΩ  
guaranteed minimum input impedance. When the two  
reference inputs are driven from the same source, the  
effective minimum impedance is 5k. A voltage refer-  
ence with a load regulation of 6ppm/mA, such as the  
MAX873, would typ ic a lly d e via te b y 0.025LSB  
(0.061LSB worst case) when driving both MAX525 ref-  
e re nc e inp uts s imulta ne ous ly a t 2.5V. Driving the  
REFAB and REFCD pins separately improves reference  
accuracy.  
REF_  
AGND  
SHOWN FOR ALL 1s ON DAC  
In shutdown mode, the MAX525s REFAB and REFCD  
inputs enter a high-impedance state with a typical input  
leakage current of 0.01µA.  
Figure 1. Simplified DAC Circuit Diagram  
_______________De t a ile d De s c rip t io n  
The reference input capacitance is also code depen-  
dent and typically ranges from 20pF with an input code  
of all 0s to 100pF with an input code of all 1s.  
The MAX525 contains four 12-bit, voltage-output digi-  
ta l-to-a na log c onve rte rs (DACs ) tha t a re e a s ily  
addressed using a simple 3-wire serial interface. It  
includes a 16-bit data-in/data-out shift register, and  
each DAC has a doubled-buffered input composed of  
an input register and a DAC register (see Functional  
Diagram). In addition to the four voltage outputs, each  
amplifiers negative input is available to the user.  
Ou t p u t Am p lifie rs  
All MAX525 DAC outputs are internally buffered by preci-  
sion amplifiers with a typical slew rate of 0.6V/µs. Access  
to the inverting input of each output amplifier provides  
the us e r g re a te r fle xib ility in outp ut g a in s e tting /  
signal conditioning (see the Applications Information sec-  
tion).  
The DACs are inverted R-2R ladder networks that con-  
vert 12-bit digital inputs into equivalent analog output  
voltages in proportion to the applied reference voltage  
inputs. DACs A and B share the REFAB reference input,  
while DACs C and D share the REFCD reference input.  
The two reference inputs allow different full-scale output  
voltage ranges for each pair of DACs. Figure 1 shows a  
simplified circuit diagram of one of the four DACs.  
With a full-scale transition at the MAX525 output, the  
typical settling time to ±1/2LSB is 12µs when loaded  
with 5kin parallel with 100pF (loads less than 2kΩ  
degrade performance).  
The MAX525 output amplifiers output dynamic respons-  
es and settling performances are shown in the Typical  
Operating Characteristics.  
Re fe re n c e In p u t s  
The two reference inputs accept positive DC and AC  
signals. The voltage at each reference input sets the  
full-s c a le outp ut volta g e for its two c orre s p ond ing  
P o w e r-Do w n Mo d e  
The MAX525 features a software-programmable shut-  
down that reduces supply current to a typical value of  
10µA. The power-down lockout (PDL) pin must be high to  
enable the shutdown mode. Writing 1100XXXXXXXXXXXX  
as the input-control word puts the MAX525 in power-  
down mode (Table 1).  
DACs. The reference input voltage range is 0V to (V  
DD  
- 1.4V). The output voltages (V  
are represented by  
OUT_)  
a digitally programmable voltage source as:  
V
OUT_  
= (V x NB / 4096) x Gain  
REF  
where NB is the numeric value of the DACs binary  
input code (0 to 4095), V is the reference voltage,  
REF  
and Gain is the externally set voltage gain.  
8
_______________________________________________________________________________________  
Lo w -P o w e r, Qu a d , 1 2 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX25  
In power-down mode, the MAX525 output amplifiers  
and the reference inputs enter a high-impedance state.  
SCLK  
SK  
The serial interface remains active. Data in the input  
re g is te rs is re ta ine d in p owe r-d own, a llowing the  
MAX525 to recall the output states prior to entering  
shutdown. Start up from power-down either by recalling  
the previous configuration or by updating the DACs  
with new data. When powering up the device or bring-  
ing it out of shutdown, allow 15µs for the outputs to sta-  
bilize.  
DIN  
SO  
SI*  
MAX525  
MICROWIRE  
PORT  
DOUT*  
CS  
I/O  
S e ria l-In t e rfa c e Co n fig u ra t io n s  
The MAX525s 3-wire serial interface is compatible  
with b oth Mic rowire ™ (Fig ure 2) a nd SPI™/QSPI™  
(Figure 3). The serial input word consists of two address  
b its a nd two c ontrol b its followe d b y 12 d a ta b its  
(MSB first), as shown in Figure 4. The 4-bit address/  
control code determines the MAX525s response out-  
lined in Table 1. The connection between DOUT and  
the serial-interface port is not necessary, but may be  
used for data echo. Data held in the MAX525s shift  
register can be shifted out of DOUT and returned to the  
microprocessor (µP) for data verification.  
*THE DOUT-SI CONNECTION IS NOT REQUIRED FOR WRITING TO THE MAX525,  
BUT MAY BE USED FOR READBACK PURPOSES.  
Figure 2. Connections for Microwire  
+5V  
The MAX525s d ig ita l inp uts a re d oub le b uffe re d .  
Depending on the command issued through the serial  
interface, the input register(s) can be loaded without  
affecting the DAC register(s), the DAC register(s) can  
be loaded directly, or all four DAC registers can be  
up d a te d s imulta ne ous ly from the inp ut re g is te rs  
(Table 1).  
SS  
DOUT*  
MISO*  
DIN  
MOSI  
SCK  
MAX525  
SPI/QSPI  
PORT  
SCLK  
S e ria l-In t e rfa c e De s c rip t io n  
The MAX525 requires 16 bits of serial data. Table 1 lists  
the serial-interface programming commands. For cer-  
tain commands, the 12 data bits are “dont cares.” Data  
is sent MSB first and can be sent in two 8-bit packets or  
one 16-bit word (CS must remain low until 16 bits are  
transferred). The serial data is composed of two DAC  
address bits (A1, A0) and two control bits (C1, C0),  
followed by the 12 data bits D11…D0 (Figure 4). The  
4-bit address/control code determines:  
CS  
I/O  
CPOL = 0, CPHA = 0  
*THE DOUT-MISO CONNECTION IS NOT REQUIRED FOR WRITING TO THE MAX525,  
BUT MAY BE USED FOR READBACK PURPOSES.  
Figure 3. Connections for SPI/QSPI  
The register(s) to be updated  
The clock edge on which data is to be clocked out  
MSB ..................................................................................LSB  
16 Bits of Serial Data  
via the serial-data output (DOUT)  
The state of the user-programmable logic output  
(UPO)  
Address  
Bits  
Control  
Bits  
Data Bits  
MSB.............................................LSB  
If the part is to go into shutdown mode (assuming  
PDL is high)  
A1 A0 C1 C0 D11................................................D0  
How the part is configured when coming out of shut-  
4 Address/  
12 Data Bits  
Control Bits  
down mode.  
Figure 4. Serial-Data Format  
_______________________________________________________________________________________  
9
Lo w -P o w e r, Qu a d , 1 2 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
Table 1. Serial-Interface Programming Commands  
16-BITSERIAL WORD  
FUNCTION  
D11.................D0  
MSB LSB  
A1  
A0  
C1  
C0  
0
0
1
1
0
1
0
1
0
0
0
0
1
1
1
1
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
Load input register A; DAC registers unchanged.  
Load input register B; DAC registers unchanged.  
Load input register C; DAC registers unchanged.  
Load input register D; DAC registers unchanged.  
MAX25  
0
0
1
1
0
1
0
1
1
1
1
1
1
1
1
1
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
Load input register A; all DAC registers updated.  
Load input register B; all DAC registers updated.  
Load input register C; all DAC registers updated.  
Load input register D; all DAC registers updated.  
0
1
1
0
0
0
1
0
1
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
XXXXXXXXXXXX  
12-bit DAC data  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
Update all DAC registers from their respective input registers (start-up).  
Load all DAC registers from shift register (start-up).  
Shutdown (provided PDL = 1)  
UPO goes low (default)  
UPO goes high  
No operation (NOP) to DAC registers  
Mode 1, DOUT clocked out on SCLK’s rising edge. All DAC registers  
updated.  
1
1
1
0
1
1
0
0
XXXXXXXXXXXX  
XXXXXXXXXXXX  
Mode 0, DOUT clocked out on SCLK’s falling edge. All DAC registers  
updated (default).  
“X” = Dont care  
Figure 5 shows the serial-interface timing requirements.  
The chip-select pin (CS) must be low to enable the  
DACs serial interface. When CS is high, the interface  
control circuitry is disabled. CS must go low at least  
change the clock edge on which serial data is shifted  
out of DOUT also loads data from all input registers to  
their respective DAC registers.  
S e ria l-Da t a Ou t p u t (DOUT)  
The serial-data output, DOUT, is the internal shift regis-  
ters output. The MAX525 can be programmed so that  
data is clocked out of DOUT on SCLK’s rising edge  
(Mode 1) or falling edge (Mode 0). In Mode 0, output  
data at DOUT lags input data at DIN by 16.5 clock  
c yc le s , ma inta ining c omp a tib ility with Mic rowire ™,  
SPI™/QSPI™, and other serial interfaces. In Mode 1,  
output data lags input data by 16 clock cycles. On  
power-up, DOUT defaults to Mode 0 timing.  
t
before the rising serial clock (SCLK) edge to prop-  
CSS  
e rly c loc k in the firs t b it. Whe n CS is low, d a ta is  
clocked into the internal shift register via the serial-data  
input pin (DIN) on SCLKs rising edge. The maximum  
guaranteed clock frequency is 10MHz. Data is latched  
into the appropriate MAX525 input/DAC registers on  
CSs rising edge.  
The programming command Load-All-DACs-From-Shift-  
Register allows all input and DAC registers to be simul-  
taneously loaded with the same digital code from the  
input shift register. The no operation (NOP) command  
leaves the register contents unaffected and is useful  
when the MAX525 is configured in a daisy chain (see  
the Daisy Chaining Devices section). The command to  
Us e r-P ro g ra m m a b le Lo g ic Ou t p u t (UP O)  
The user-programmable logic output, UPO, allows an  
external device to be controlled via the MAX525 serial  
interface (Table 1).  
10 ______________________________________________________________________________________  
Lo w -P o w e r, Qu a d , 1 2 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX25  
CS  
COMMAND  
EXECUTED  
SCLK  
1
8
9
16  
A0  
D8  
DATA PACKET (N)  
D8  
D6  
D6  
DIN  
A1  
A1  
C1 C0 D11 D10 D9  
D7  
D5 D4 D3 D2 D1 D0  
DOUT  
(MODE 0)  
A0 C1  
D11 D10 D9  
D5  
D3 D2 D1  
C0  
D7  
D4  
D0 A1  
MSB FROM  
PREVIOUS WRITE  
DATA PACKET (N)  
A1  
DATA PACKET (N-1)  
DOUT  
(MODE 1)  
A0  
D8  
D7  
D6  
C1  
D11 D10 D9  
D5  
D3 D2 D1  
A1  
C0  
D4  
D0  
MSB FROM  
PREVIOUS WRITE  
DATA PACKET (N)  
DATA PACKET (N-1)  
Figure 5. Serial-Interface Timing Diagram  
t
CSW  
CS  
t
CP  
t
CSH  
t
t
CH  
CSS  
t
t
CL  
CSO  
t
CS1  
SCLK  
t
DS  
t
DH  
DIN  
t
DO2  
t
DO1  
DOUT  
Figure 6. Detailed Serial-Interface Timing Diagram  
Since the MAX525s DOUT pin has an internal active  
pull-up, the DOUT sink/source capability determines  
the time required to discharge/charge a capacitive  
P o w e r-Do w n Lo c k o u t (PDL)  
The power-down lockout pin PDL disables software  
shutdown when low. When in shutdown, transitioning  
PDL from high to low wakes up the part with the output  
set to the state prior to shutdown. PDL could also be  
used to asynchronously wake up the device.  
load. Refer to the serial-data-out V  
and V specifi-  
OH  
OL  
cations in the Electrical Characteristics.  
Figure 8 shows an alternate method of connecting sev-  
eral MAX525s. In this configuration, the data bus is  
common to all devices; data is not shifted through a  
daisy chain. More I/O lines are required in this configu-  
ration because a dedicated chip-select input (CS) is  
required for each IC.  
Da is y Ch a in in g De vic e s  
Any number of MAX525s can be daisy chained by con-  
necting the DOUT pin of one device to the DIN pin of  
the following device in the chain (Figure 7).  
______________________________________________________________________________________ 11  
Lo w -P o w e r, Qu a d , 1 2 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX525  
MAX525  
MAX525  
MAX25  
SCLK  
DIN  
CS  
SCLK  
DIN  
CS  
SCLK  
DIN  
CS  
SCLK  
DIN  
DOUT  
DOUT  
DOUT  
CS  
TO OTHER  
SERIAL DEVICES  
Figure 7. Daisy-Chaining MAX525s  
DIN  
SCLK  
CS1  
CS2  
TO OTHER  
SERIAL DEVICES  
CS3  
CS  
CS  
CS  
MAX525  
MAX525  
MAX525  
SCLK  
DIN  
SCLK  
DIN  
SCLK  
DIN  
Figure 8. Multiple MAX525s Sharing a Common DIN Line  
12 ______________________________________________________________________________________  
Lo w -P o w e r, Qu a d , 1 2 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX25  
Bip o la r Ou t p u t  
The MAX525 outputs can be configured for bipolar  
__________Ap p lic a t io n s In fo rm a t io n  
Un ip o la r Ou t p u t  
For a unipolar output, the output voltages and the refer-  
ence inputs have the same polarity. Figure 9 shows the  
MAX525 unipolar output circuit, which is also the typi-  
cal operating circuit. Table 2 lists the unipolar output  
codes.  
operation using Figure 11s circuit.  
V
OUT  
= V [(2NB / 4096) - 1]  
REF  
where NB is the numeric value of the DACs binary  
input code. Table 3 shows digital codes (offset binary)  
a nd c orre s p ond ing outp ut volta g e s for Fig ure 11s  
circuit.  
For rail-to-rail outputs, see Figure 10. This circuit shows  
the MAX525 with the output amplifiers configured with a  
closed-loop gain of +2 to provide 0V to 5V full-scale  
range when a 2.5V reference is used.  
Table 2. Unipolar Code Table  
+5V  
REFERENCE INPUTS  
MAX525  
DAC CONTENTS  
ANALOG OUTPUT  
V
DD  
REFAB  
REFCD  
FBA  
MSB  
LSB  
4095  
+VREF ( ——— )  
4096  
1 1 1 1  
1 1 1 1 1 1 1 1  
DAC A  
DAC B  
OUTA  
FBB  
2049  
+VREF ( ——— )  
4096  
1000  
1 0 0 0  
0 1 1 1  
0000  
0001  
2048  
+VREF  
OUTB  
FBC  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
+VREF ( ——— ) = ———  
4096  
2
2047  
+VREF ( ——— )  
4096  
DAC C  
DAC D  
OUTC  
FBD  
1
+VREF ( ——— )  
4096  
0 0 0 0  
0 0 0 0  
0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  
0V  
OUTD  
AGND  
DGND  
Table 3. Bipolar Code Table  
DAC CONTENTS  
ANALOG OUTPUT  
MSB  
LSB  
Figure 9. Unipolar Output Circuit  
2047  
+VREF ( ——— )  
2048  
1 1 1 1  
1 1 1 1 1 1 1 1  
1
+VREF ( ——— )  
2048  
1000  
1 0 0 0  
0 1 1 1  
0000  
0001  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
0V  
1
-VREF ( ——— )  
2048  
2047  
-VREF ( ——— )  
2048  
0 0 0 0  
0 0 0 0  
0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  
2048  
-VREF ( ——— ) = -V  
REF  
2048  
1
Note: 1LSB = (V ) (  
)
REF  
4096  
______________________________________________________________________________________ 13  
Lo w -P o w e r, Qu a d , 1 2 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
Us in g a n AC Re fe re n c e  
In applications where the reference has AC signal com-  
+5V  
REFERENCE INPUTS  
REFAB  
ponents, the MAX525 has multiplying capability within  
the reference input range specifications. Figure 12  
shows a technique for applying a sine-wave signal to  
the reference input where the AC signal is offset before  
being applied to REFAB/REFCD. The reference voltage  
must never be more negative than DGND.  
MAX525  
10k  
V
REFCD  
FBA  
DD  
10k  
DAC A  
DAC B  
DAC C  
DAC D  
OUTA  
10k  
MAX25  
FBB  
The MAX525s total harmonic distortion plus noise (THD  
+ N) is typically less than -72dB, given a 1Vp-p signal  
swing and input frequencies up to 25kHz. The typical  
-3dB frequency is 650kHz, as shown in the Typical  
Operating Characteristics graphs.  
10k  
OUTB  
FBC  
10k  
10k  
Dig it a lly P ro g ra m m a b le Cu rre n t S o u rc e  
The c irc uit of Fig ure 13 p la c e s a n NPN tra ns is tor  
(2N3904 or similar) within the op-amp feedback loop to  
implement a digitally programmable, unidirectional cur-  
rent source. This circuit can be used to drive 4mA to  
20mA c urre nt loop s , whic h a re c ommonly us e d in  
industrial-control applications. The output current is cal-  
culated with the following equation:  
OUTC  
FBD  
10k  
10k  
OUTD  
AGND  
DGND  
I
= (V  
/ R) x (NB / 4096)  
OUT  
REF  
V
= V  
= 2.5V  
REFAB REFCD  
where NB is the numeric value of the DACs binary  
inp ut c od e a nd R is the s e ns e re s is tor s hown in  
Figure 13.  
Figure 10. Unipolar Rail-to-Rail Output Circuit  
+5V  
AC  
REFERENCE  
INPUT  
26k  
R1  
R2  
1/2 MAX492  
REF_  
REF_  
+5V  
10k  
V
DD  
500mVp-p  
FB_  
V
OUT  
DAC  
OUT_  
DAC_  
OUT_  
-5V  
R1 = R2 = 10k± 0.1%  
MAX525  
MAX525  
AGND  
DGND  
Figure 11. Bipolar Output Circuit  
Figure 12. AC Reference Input Circuit  
14 ______________________________________________________________________________________  
Lo w -P o w e r, Qu a d , 1 2 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
MAX25  
__________________P in Co n fig u ra t io n  
REF_  
V
L
TOP VIEW  
MAX525  
I
OUT  
DAC_  
1
2
3
4
5
6
7
8
9
AGND  
FBA  
V
DD  
20  
19  
18  
17  
16  
15  
OUT_  
FB_  
2N3904  
FBD  
OUTA  
OUTB  
FBB  
OUTD  
OUTC  
FBC  
MAX525  
R
REFAB  
CL  
REFCD  
14 PDL  
13  
CS  
UPO  
Figure 13. Digitally Programmable Current Source  
DIN  
12 DOUT  
11 DGND  
SCLK 10  
P o w e r-S u p p ly Co n s id e ra t io n s  
On power-up, all input and DAC registers are cleared  
(set to zero code) and DOUT is in Mode 0 (serial data  
is shifted out of DOUT on the clocks falling edge).  
DIP/SSOP  
For rated MAX525 performance, limit REFAB/REFCD to  
less than 1.4V below V . Bypass V  
with a 4.7µF  
DD  
DD  
capacitor in parallel with a 0.1µF capacitor to AGND.  
Use short lead lengths and place the bypass capaci-  
tors as close to the supply pins as possible.  
Gro u n d in g a n d La yo u t Co n s id e ra t io n s  
Digital or AC transient signals between AGND and  
DGND c a n c re a te nois e a t the a na log outp uts . Tie  
AGND and DGND together at the DAC, then tie this  
point to the highest-quality ground available.  
Good printed circuit board ground layout minimizes  
crosstalk between DAC outputs, reference inputs, and  
digital inputs. Reduce crosstalk by keeping analog  
lines away from digital lines. Wire-wrapped boards are  
not recommended.  
______________________________________________________________________________________ 15  
Lo w -P o w e r, Qu a d , 1 2 -Bit Vo lt a g e -Ou t p u t DAC  
w it h S e ria l In t e rfa c e  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 4337  
INL  
(LSBs)  
PART  
TEMP. RANGE PIN-PACKAGE  
MAX525BC/D  
0°C to +70°C Dice*  
±1  
MAX525AEPP -40°C to +85°C 20 Plastic DIP  
MAX525BEPP -40°C to +85°C 20 Plastic DIP  
MAX525AEAP -40°C to +85°C 20 SSOP  
MAX525BEAP -40°C to +85°C 20 SSOP  
MAX525AMJP -55°C to +125°C 20 CERDIP**  
MAX525BMJP -55°C to +125°C 20 CERDIP**  
±1/2  
±1  
MAX25  
±1/2  
±1  
±1/2  
±1  
* Dice are specified at T = +25°C, DC parameters only.  
A
**Contact factory for availability and processing to MIL-STD-883.  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.068  
MAX  
0.078  
0.008  
0.015  
0.008  
MIN  
1.73  
0.05  
0.25  
0.09  
MAX  
1.99  
0.21  
0.38  
0.20  
A
A1 0.002  
B
C
D
E
e
0.010  
0.004  
SEE VARIATIONS  
α
0.205  
0.209  
5.20  
5.38  
E
H
0.0256 BSC  
0.65 BSC  
H
L
0.301  
0.311  
0.037  
8˚  
7.65  
0.63  
0˚  
7.90  
0.95  
8˚  
0.025  
0˚  
C
α
L
INCHES  
MILLIMETERS  
DIM PINS  
MIN MAX MIN  
0.239 0.249 6.07  
0.239 0.249 6.07  
0.278 0.289 7.07  
0.317 0.328 8.07  
MAX  
6.33  
6.33  
7.33  
8.33  
e
D
D
D
D
D
14  
16  
20  
24  
28  
SSOP  
SHRINK  
A
SMALL-OUTLINE  
PACKAGE  
0.397 0.407 10.07 10.33  
21-0056A  
B
A1  
D
.
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX525ACPP+

D/A Converter, 1 Func, Serial Input Loading, 12us Settling Time, PDIP20, PLASTIC, DIP-20
MAXIM

MAX525AEAP

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface
MAXIM

MAX525AEAP+

D/A Converter, 1 Func, Serial Input Loading, 12us Settling Time, PDSO20, ROHS COMPLIANT, SSOP-20
MAXIM

MAX525AEAP+T

D/A Converter, 1 Func, Serial Input Loading, 12us Settling Time, PDSO20, SSOP-20
MAXIM

MAX525AEAP-T

D/A Converter, 1 Func, Serial Input Loading, 12us Settling Time, PDSO20, SSOP-20
MAXIM

MAX525AEAP/GH9

D/A Converter
MAXIM

MAX525AEAP/GH9-T

D/A Converter
MAXIM

MAX525AEPP

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface
MAXIM

MAX525AEPP+

D/A Converter, 1 Func, Serial Input Loading, 12us Settling Time, PDIP20, PLASTIC, DIP-20
MAXIM

MAX525AMJP

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface
MAXIM

MAX525BC/D

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface
MAXIM

MAX525BCAP

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface
MAXIM