MAX5295EUE+ [MAXIM]

D/A Converter, 1 Func, Serial Input Loading, 2us Settling Time, PDSO16, 6.50 X 5 MM, MO-153AB, TSSOP-16;
MAX5295EUE+
型号: MAX5295EUE+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 1 Func, Serial Input Loading, 2us Settling Time, PDSO16, 6.50 X 5 MM, MO-153AB, TSSOP-16

文件: 总33页 (文件大小:927K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3005; Rev 0; 11/03  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
General Description  
Features  
The MAX5290–MAX5295 dual, 12-/10-/8-bit, voltage-  
output digital-to-analog converters (DACs) offer  
buffered outputs and a 3µs maximum settling time at  
the 12-bit level. The DACs operate from a 2.7V to 3.6V  
analog supply and a separate 1.8V to 3.6V digital sup-  
ply. The 20MHz 3-wire serial interface is compatible  
with SPI™, QSPI™, MICROWIRE™, and digital signal  
processor (DSP) protocol applications. Multiple devices  
can share a common serial interface in direct access or  
daisy-chained configuration. The MAX5290–MAX5295  
provide two multifunctional, user-programmable, digital  
I/O ports. The externally selectable power-up states of  
the DAC outputs are either zero scale, midscale, or full  
scale. Software-selectable FAST and SLOW settling  
modes decrease settling time in FAST mode, or reduce  
supply current in SLOW mode.  
o Dual, 12-/10-/8-Bit Serial DACs in 4mm x 4mm  
Thin QFN and TSSOP Packages  
o 3µs (max) 12-Bit Settling Time to 1/2 LSB  
o Integral Nonlinearity  
1 LSB (max) MAX5290/MAX5291 A-Grade (12-Bit)  
1 LSB (max) MAX5292/MAX5293 (10-Bit)  
1/2 LSB (max) MAX5294/MAX5295 (8-Bit)  
o Guaranteed Monotonic, 1 LSB (max) DNL  
o Two User-Programmable Digital I/O Ports  
o Single +2.7V to +3.6V Analog Supply  
o +1.8V to AV  
Digital Supply  
DD  
o 20MHz 3-Wire SPI-/QSPI-/MICROWIRE- and  
DSP-Compatible Serial Interface  
The MAX5290/MAX5291 are 12-bit DACs, the MAX5292/  
MAX5293 are 10-bit DACs, and the MAX5294/MAX5295  
are 8-bit DACs. The MAX5290/ MAX5292/MAX5294 pro-  
vide unity-gain-configured output buffers, while the  
MAX5291/MAX5293/MAX5295 provide force-sense-con-  
figured output buffers. The MAX5290– MAX5295 are  
specified over the extended -40°C to +85°C temperature  
range, and are available in space-saving 4mm x 4mm,  
16-pin thin QFN and 6.5mm x 5mm, 14-pin and 16-pin  
TSSOP packages.  
o Glitch-Free Outputs Power Up to Zero Scale,  
Midscale or Full Scale  
o Unity-Gain- or Force-Sense-Configured Output  
Buffers  
Ordering Information  
Applications  
Portable Instrumentation  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
14 TSSOP  
MAX5290AEUD*  
MAX5290BEUD  
MAX5290AETE*  
MAX5290BETE*  
MAX5291AEUE*  
MAX5291BEUE  
MAX5291AETE*  
MAX5291BETE*  
MAX5292EUD  
MAX5292ETE*  
MAX5293EUE  
MAX5293ETE*  
MAX5294EUD  
MAX5294ETE*  
MAX5295EUE  
MAX5295ETE*  
Automatic Test Equipment (ATE)  
Digital Offset and Gain Adjustment  
Automatic Tuning  
14 TSSOP  
16 Thin QFN-EP**  
16 Thin QFN-EP**  
16 TSSOP  
Programmable Voltage and Current Sources  
Programmable Attenuators  
16 TSSOP  
Industrial Process Controls  
16 Thin QFN-EP**  
16 Thin QFN-EP**  
14 TSSOP  
Motion Control  
Microprocessor (µP)-Controlled Systems  
Power Amplifier Control  
16 Thin QFN-EP**  
16 TSSOP  
Fast Parallel-DAC to Serial-DAC Upgrades  
16 Thin QFN-EP**  
14 TSSOP  
16 Thin QFN-EP**  
16 TSSOP  
Selector Guide and Pin Configurations appear at end of data  
sheet.  
16 Thin QFN-EP**  
*Future product—contact factory for availability. Specifications  
are preliminary.  
SPI/QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
**EP = Exposed paddle.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
ABSOLUTE MAXIMUM RATINGS  
AV  
to DV ........................................................................ 6V  
Maximum Current into Any Pin ......................................... 50mA  
DD  
DD  
AGND to DGND.................................................................. 0.3V  
Continuous Power Dissipation (T = +70°C)  
A
AV  
DV  
to AGND, DGND.............................................-0.3V to +6V  
to AGND, DGND ............................................-0.3V to +6V  
14-Pin TSSOP (derate 9.1mW/°C above +70°C) .........727mW  
16-Pin TSSOP (derate 9.4mW/°C above +70°C) .........755mW  
16-Pin Thin QFN (derate 16.9mW/°C above +70°C) .1349mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Maximum Junction Temperature .....................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
DD  
FB_, OUT_,  
REF to AGND........-0.3V to the lower of (AV + 0.3V) or +6V  
DD  
SCLK, DIN, CS, PU,  
DSP to DGND.......-0.3V to the lower of (DV + 0.3V) or +6V  
DD  
UPIO1, UPIO2  
to DGND...............-0.3V to the lower of (DV + 0.3V) or +6V  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= 2.7V to 3.6V, DV  
= 1.8V to AV , AGND = 0, DGND = 0, V  
= 2.5V, R = 10k, C = 100pF, T = T  
to T  
, unless  
MAX  
DD  
DD  
DD  
REF  
L
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC ACCURACY  
MAX5290/MAX5291  
12  
10  
8
Resolution  
N
MAX5292/MAX5293  
MAX5294/MAX5295  
Bits  
MAX5290A/MAX5291A (12-bit)  
MAX5290B/MAX5291B (12-bit)  
MAX5292/MAX5293 (10-bit)  
MAX5294/MAX5295 (8-bit)  
1
4
V
AV  
(Note 2)  
= 2.5V at  
= 2.7V  
REF  
2
Integral Nonlinearity  
INL  
LSB  
DD  
0.5  
1
0.125  
0.5  
Differential Nonlinearity  
Offset Error  
DNL  
Guaranteed monotonic (Note 2)  
1
LSB  
mV  
MAX5290A/MAX5291A (12-bit), decimal code = 40  
MAX5290B/MAX5291B (12-bit), decimal code = 82  
MAX5292/MAX5293 (10-bit), decimal code = 21  
MAX5294/MAX5295 (8-bit), decimal code = 5  
5
5
5
5
25  
25  
25  
V
OS  
ppm of  
FS/°C  
Offset-Error Drift  
Gain Error  
5
MAX5290A/MAX5291A (12-bit)  
4
20  
5
MAX5290B/MAX5291B (12-bit)  
Full-scale output  
10  
3
GE  
LSB  
MAX5292/MAX5293 (10-bit)  
MAX5294/MAX5295 (8-bit)  
0.5  
2
ppm of  
FS/°C  
Gain-Error Drift  
1
2
_______________________________________________________________________________________  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= 2.7V to 3.6V, DV  
= 1.8V to AV , AGND = 0, DGND = 0, V  
= 2.5V, R = 10k, C = 100pF, T = T  
to T  
, unless  
MAX  
DD  
DD  
DD  
REF  
L
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power-Supply Rejection  
Ratio  
PSRR  
Full-scale output, AV  
= 2.7V to 3.6V  
200  
µV/V  
DD  
REFERENCE INPUT  
Reference Input Range  
V
R
0.25  
145  
AV  
V
REF  
DD  
Reference Input  
Resistance  
Normal operation (no code dependence)  
Shutdown mode  
200  
0.5  
kΩ  
REF  
Reference Leakage  
Current  
I
1
µA  
REF  
DAC OUTPUT CHARACTERISTICS  
Unity gain  
85  
67  
SLOW mode,  
full scale  
Force sense  
Unity gain  
Output Voltage Noise  
µV  
RMS  
140  
110  
FAST mode,  
full scale  
Force sense  
Unity-gain output  
0
0
AV  
DD  
Output Voltage Range  
(Note 4)  
V
Force-sense output  
AV / 2  
DD  
DC Output Impedance  
Short-Circuit Current  
Power-Up Time  
38  
45  
30  
40  
AV  
= 3V, OUT_ to AGND, full scale, FAST mode  
mA  
DD  
From DV  
applied, interface is functional  
60  
µs  
µs  
DD  
Wake-Up Time  
Coming out of shutdown, outputs settled  
Output OUT_ and FB_  
Open-Circuit Leakage  
Current  
Programmed in shutdown mode, force-sense  
outputs only  
0.01  
µA  
DIGITAL OUTPUTS (UPIO_)  
DV  
0.5  
-
DD  
Output High Voltage  
V
I
I
= 2mA  
SOURCE  
V
V
OH  
Output Low Voltage  
V
= 2mA  
SINK  
0.4  
OL  
DIGITAL INPUTS (SCLK, CS, DIN, DSP, UPIO_)  
2.7V DV  
3.6V  
3.6V  
2.4  
DD  
Input High Voltage  
V
V
V
IH  
0.7 x  
DV  
< 2.7V  
DD  
DV  
DD  
2.7V DV  
0.6  
0.2  
1
DD  
Input Low Voltage  
V
IL  
DV  
< 2.7V  
DD  
Input Leakage Current  
Input Capacitance  
I
0.1  
10  
µA  
pF  
IN  
C
IN  
_______________________________________________________________________________________  
3
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= 2.7V to 3.6V, DV  
= 1.8V to AV , AGND = 0, DGND = 0, V  
= 2.5V, R = 10k, C = 100pF, T = T  
to T , unless  
MAX  
DD  
DD  
DD  
REF  
L
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
PU INPUT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DV  
200mV  
-
DD  
Input High Voltage  
V
V
IH-PU  
Input Low Voltage  
V
200  
200  
mV  
nA  
IL-PU  
IN-PU  
PU still considered floating when connected to a  
tri-state bus  
Input Leakage Current  
I
DYNAMIC PERFORMANCE  
Fast mode  
Slow mode  
3.6  
1.6  
Voltage-Output Slew  
Rate  
SR  
V/µs  
MAX5290/MAX5291 from code 322 to  
code 4095 to 1/2 LSB  
2
1.5  
1
3
3
2
6
6
4
MAX5292/MAX5293 from code 82 to  
FAST mode  
code 1023 to 1/2 LSB  
MAX5294/MAX5295 from code 21 to  
code 255 to 1/2 LSB  
Voltage-Output Settling  
Time (Note 5)  
µs  
MAX5290/MAX5291 from code 322 to  
code 4095 to 1/2 LSB  
3
MAX5292/MAX5293 from code 82 to  
SLOW mode  
2.5  
2
code 1023 to 1/2 LSB  
MAX5294/MAX5295 from code 21 to  
code 255 to 1/2 LSB  
FB_ Input Voltage  
FB_ Input Current  
0
V
/ 2  
V
REF  
0.1  
µA  
Unity gain  
200  
150  
Reference -3dB  
Bandwidth (Note 6)  
kHz  
Force sense  
CS = DV , code = zero scale, any digital input  
DD  
Digital Feedthrough  
0.1  
nV-s  
from 0 to DV  
and DV  
to 0, f = 100kHz  
DD  
DD  
Digital-to-Analog Glitch  
Impulse  
Major carry transition  
(Note 3)  
2
nV-s  
nV-s  
DAC-to-DAC Crosstalk  
15  
4
_______________________________________________________________________________________  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= 2.7V to 3.6V, DV  
= 1.8V to AV , AGND = 0, DGND = 0, V  
= 2.5V, R = 10k, C = 100pF, T = T  
to T  
, unless  
MAX  
DD  
DD  
DD  
REF  
L
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
Analog Supply Voltage  
Range  
AV  
DV  
2.7  
1.8  
3.6  
V
V
DD  
Digital Supply Voltage  
Range  
AV  
DD  
DD  
Unity gain  
0.55  
0.9  
0.8  
µA  
mA  
SLOW mode, all digital inputs  
at DGND or DV , no load,  
DD  
V
= 2.5V  
REF  
Force sense  
Unity gain  
1.2  
2
Operating Supply  
Current  
I
+
AVDD  
I
DVDD  
0.85  
1.2  
FAST mode, all digital inputs  
at DGND or DV , no load,  
DD  
mA  
µA  
V
= 2.5V  
REF  
Force sense  
2
I
AVDD(SHDN)  
+
Shutdown Supply  
Current  
No clocks, all digital inputs at DGND or DV , all  
DD  
2.5  
DACs in shutdown mode  
I
DVDD(SHDN)  
TIMING CHARACTERISTICS—DSP Mode Disabled (3V, 3.3V Logic) (Figure 1)  
(DV  
= 2.7V to 3.6V, DGND = 0, T = T  
MIN  
to T , unless otherwise noted.)  
MAX  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
ns  
SCLK Frequency  
f
2.7V < DV  
(Note 7)  
(Note 7)  
< 3.6V  
DD  
20  
SCLK  
SCLK Pulse-Width High  
t
20  
20  
10  
5
CH  
SCLK Pulse-Width Low  
t
ns  
CL  
CS Fall to SCLK Rise Setup Time  
SCLK Rise to CS Rise Hold Time  
SCLK Rise to CS Fall Setup Time  
DIN to SCLK Rise Setup Time  
DIN to SCLK Rise Hold Time  
t
ns  
CSS  
CSH  
t
ns  
t
10  
12  
5
ns  
CS0  
t
ns  
DS  
t
ns  
DH  
SCLK Rise to DOUTDC1 Valid  
Propagation Delay  
t
t
C = 20pF, UPIO_ = DOUTDC1 mode  
30  
30  
ns  
ns  
DO1  
DO2  
L
SCLK Fall to DOUT_ Valid  
Propagation Delay  
C = 20pF, UPIO_ = DOUTDC0 or DOUTRB  
L
mode  
CS Rise to SCLK Rise Hold Time  
CS Pulse-Width High  
t
MICROWIRE and SPI modes 0 and 3  
10  
45  
ns  
ns  
CS1  
t
CSW  
_______________________________________________________________________________________  
5
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
TIMING CHARACTERISTICSDSP Mode Disabled (3V, 3.3V Logic) (Figure 1) (continued)  
(DV  
= 2.7V to 3.6V, DGND = 0, T = T  
MIN  
to T , unless otherwise noted.)  
MAX  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
UPIO TIMING CHARACTERISTICS  
DOUT Tri-State Time when Exiting  
DOUTDC0, DOUTDC1, or  
DOUTRB UPIO Modes  
C = 20pF, from end of write cycle to UPIO_  
L
in high impedance  
t
100  
ns  
DOZ  
DOUTRB Tri-State Time from CS  
Rise  
C = 20pF, from rising edge of CS to UPIO_  
in high impedance  
L
t
20  
20  
ns  
ns  
DRBZ  
DOUTRB Tri-State Enable Time  
from 8th SCLK Rise  
C = 20pF, from 8th rising edge of SCLK to  
L
UPIO_ driven out of tri-state  
t
ZEN  
LDAC Pulse-Width Low  
t
t
Figure 5  
20  
100  
20  
ns  
ns  
ns  
ns  
LDL  
LDS  
LDAC Effective Delay  
Figure 6  
CLR, MID, SET Pulse-Width Low  
GPO Output Settling Time  
t
Figure 5  
CMS  
t
Figure 6  
100  
100  
GP  
GPO Output High-Impedance  
Time  
t
ns  
GPZ  
TIMING CHARACTERISTICSDSP Mode Disabled (1.8V Logic) (Figure 1)  
(DV  
= 1.8V to 3.6V, DGND = 0, T = T  
MIN  
to T , unless otherwise noted.)  
MAX  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
ns  
SCLK Frequency  
f
1.8V < DV  
(Note 7)  
(Note 7)  
< 3.6V  
DD  
10  
SCLK  
SCLK Pulse-Width High  
t
40  
40  
20  
0
CH  
SCLK Pulse-Width Low  
t
ns  
CL  
CS Fall to SCLK Rise Setup Time  
SCLK Rise to CS Rise Hold Time  
SCLK Rise to CS Fall Setup Time  
DIN to SCLK Rise Setup Time  
DIN to SCLK Rise Hold Time  
t
ns  
CSS  
CSH  
t
ns  
t
10  
20  
5
ns  
CS0  
t
ns  
DS  
t
ns  
DH  
SCLK Rise to DOUTDC1 Valid  
Propagation Delay  
t
t
C = 20pF, UPIO_ = DOUTDC1 mode  
60  
60  
ns  
ns  
DO1  
DO2  
L
SCLK Fall to DOUT_ Valid  
Propagation Delay  
C = 20pF, UPIO_ = DOUTDC0 or DOUTRB  
L
mode  
CS Rise to SCLK Rise Hold Time  
CS Pulse-Width High  
t
MICROWIRE and SPI modes 0 and 3  
20  
90  
ns  
ns  
CS1  
t
CSW  
6
_______________________________________________________________________________________  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
TIMING CHARACTERISTICSDSP Mode Disabled (1.8V Logic) (Figure 1) (continued)  
(DV  
= 1.8V to 3.6V, DGND = 0, T = T  
MIN  
to T , unless otherwise noted.)  
MAX  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
UPIO_ TIMING CHARACTERISTICS  
DOUT Tri-State Time when  
Exiting DOUTDC0, DOUTDC1, or  
DOUTRB UPIO Modes  
C = 20pF, from end of write cycle to UPIO_  
L
in high impedance  
t
200  
ns  
DOZ  
DOUTRB Tri-State Time from CS  
Rise  
C = 20pF, from rising edge of CS to UPIO_  
in high impedance  
L
t
40  
40  
ns  
ns  
DRBZ  
DOUTRB Tri-State Enable Time  
from 8th SCLK Rise  
C = 20pF, from 8th rising edge of SCLK to  
L
UPIO_ driven out of tri-state  
t
ZEN  
LDAC Pulse-Width Low  
t
t
Figure 5  
40  
200  
40  
ns  
ns  
ns  
ns  
LDL  
LDAC Effective Delay  
Figure 6  
LDS  
CLR, MID, SET Pulse-Width Low  
GPO Output Settling Time  
t
Figure 5  
CMS  
t
Figure 6  
200  
200  
GP  
GPO Output High-Impedance  
Time  
t
ns  
GPZ  
TIMING CHARACTERISTICSDSP Mode Enabled (3V, 3.3V Logic) (Figure 2)  
(DV  
= 2.7V to 3.6V, DGND = 0, T = T  
MIN  
to T , unless otherwise noted.)  
MAX  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
ns  
SCLK Frequency  
f
2.7V < DV  
(Note 7)  
(Note 7)  
< 3.6V  
DD  
20  
SCLK  
SCLK Pulse-Width High  
t
20  
20  
10  
10  
5
CH  
SCLK Pulse-Width Low  
t
ns  
CL  
CS Fall to SCLK Fall Setup Time  
DSP Fall to SCLK Fall Setup Time  
SCLK Fall to CS Rise Hold Time  
SCLK Fall to CS Fall Delay  
SCLK Fall to DSP Fall Delay  
DIN to SCLK Fall Setup Time  
DIN to SCLK Fall Hold Time  
t
t
ns  
CSS  
DSS  
CSH  
ns  
t
ns  
t
t
10  
10  
12  
5
ns  
CS0  
DS0  
ns  
t
ns  
DS  
t
ns  
DH  
SCLK Rise to DOUT_ Valid  
Propagation Delay  
C = 20pF, UPIO_ = DOUTDC1 or DOUTRB  
L
mode  
t
t
30  
30  
ns  
ns  
DO1  
DO2  
SCLK Fall to DOUTDC0 Valid  
Propagation Delay  
C = 20pF, UPIO_ = DOUTDC0 mode  
L
CS Rise to SCLK Fall Hold Time  
CS Pulse-Width High  
t
MICROWIRE and SPI modes 0 and 3  
10  
45  
20  
20  
ns  
ns  
ns  
ns  
CS1  
t
t
CSW  
DSW  
DSP Pulse-Width High  
DSP Pulse-Width Low  
t
(Note 8)  
DSPWL  
_______________________________________________________________________________________  
7
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
TIMING CHARACTERISTICSDSP Mode Enabled (3V, 3.3V Logic) (Figure 2) (continued)  
(DV  
= 2.7V to 3.6V, DGND = 0, T = T  
MIN  
to T , unless otherwise noted.)  
MAX  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
UPIO_ TIMING CHARACTERISTICS  
DOUT Tri-State Time when  
Exiting DOUTDC0, DOUTDC1, or  
DOUTRB UPIO Modes  
C = 20pF, from end of write cycle to UPIO_  
L
in high impedance  
t
100  
ns  
DOZ  
DOUTRB Tri-State Time from CS  
Rise  
C = 20pF, from rising edge of CS to UPIO_  
in high impedance  
L
t
20  
20  
ns  
ns  
DRBZ  
DOUTRB Tri-State Enable Time  
from 8th SCLK Fall  
C = 20pF, from 8th falling edge of SCLK to  
L
UPIO_ driven out of tri-state  
t
ZEN  
LDAC Pulse-Width Low  
t
t
Figure 5  
20  
100  
20  
ns  
ns  
ns  
ns  
LDL  
LDAC Effective Delay  
Figure 6  
LDS  
CLR, MID, SET Pulse-Width Low  
GPO Output Settling Time  
t
Figure 5  
CMS  
t
Figure 6  
100  
100  
GP  
GPO Output High-Impedance  
Time  
t
ns  
GPZ  
TIMING CHARACTERISTICSDSP Mode Enabled (1.8V Logic) (Figure 2)  
(DV  
= 1.8V to 3.6V, DGND = 0, T = T  
MIN  
to T , unless otherwise noted.)  
MAX  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
ns  
SCLK Frequency  
f
1.8V < DV  
(Note 7)  
(Note 7)  
< 3.6V  
DD  
10  
SCLK  
SCLK Pulse-Width High  
t
40  
40  
20  
20  
0
CH  
SCLK Pulse-Width Low  
t
ns  
CL  
CS Fall to SCLK Fall Setup Time  
DSP Fall to SCLK Fall Setup Time  
SCLK Fall to CS Rise Hold Time  
SCLK Fall to CS Fall Delay  
SCLK Fall to DSP Fall Delay  
DIN to SCLK Fall Setup Time  
DIN to SCLK Fall Hold Time  
t
t
ns  
CSS  
DSS  
CSH  
ns  
t
ns  
t
t
10  
15  
20  
5
ns  
CS0  
DS0  
ns  
t
ns  
DS  
t
ns  
DH  
SCLK Rise to DOUT_ Valid  
Propagation Delay  
C = 20pF, UPIO_ = DOUTDC1 or DOUTRB  
L
mode  
t
t
60  
60  
ns  
ns  
DO1  
DO2  
SCLK Fall to DOUTDC0 Valid  
Propagation Delay  
C = 20pF, UPIO_ = DOUTDC0 mode  
L
CS Rise to SCLK Fall Hold Time  
CS Pulse-Width High  
t
MICROWIRE and SPI modes 0 and 3  
20  
90  
40  
40  
ns  
ns  
ns  
ns  
CS1  
t
t
CSW  
DSW  
DSP Pulse-Width High  
DSP Pulse-Width Low  
t
DSPWL  
(Note 8)  
8
_______________________________________________________________________________________  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
TIMING CHARACTERISTICSDSP Mode Enabled (1.8V Logic) (Figure 2) (continued)  
(DV  
= 1.8V to 3.6V, DGND = 0, T = T  
MIN  
to T , unless otherwise noted.)  
MAX  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
UPIO_ TIMING CHARACTERISTICS  
DOUT Tri-State Time when  
Exiting DOUTDC0, DOUTDC1, or  
DOUTRB UPIO_ Modes  
C = 20pF, from end of write cycle to UPIO_  
L
in high impedance  
t
200  
ns  
DOZ  
DOUTRB Tri-State Time from CS  
Rise  
C = 20pF, from rising edge of CS to UPIO_  
in high impedance  
L
t
40  
40  
ns  
ns  
DRBZ  
DOUTRB Tri-State Enable Time  
from 8th SCLK Fall  
C = 20pF, from 8th falling edge of SCLK to  
L
UPIO_ driven out of tri-state  
t
ZEN  
LDAC Pulse-Width Low  
t
t
Figure 5  
40  
200  
40  
ns  
ns  
ns  
ns  
LDL  
LDAC Effective Delay  
Figure 6  
LDS  
CLR, MID, SET Pulse-Width Low  
GPO Output Settling Time  
t
Figure 5  
CMS  
t
Figure 6  
200  
200  
GP  
GPO Output High-Impedance  
Time  
t
ns  
GPZ  
Note 1: For the force-sense versions, FB_ is connected to its respective OUT_. V  
OUT  
(max) = V  
/ 2, unless otherwise noted.  
REF  
Note 2: Linearity guaranteed from decimal code 82 to 4095 for the MAX5290B/MAX5291B (12-bit, B-grade), code 21 to 1023 for the  
MAX5292/MAX5293 (10-bit), and code 5 to 255 for the MAX5294/MAX5295 (8-bit).  
Note 3: DAC-to-DAC crosstalk is measured as follows: outputs of DACA and DACB are set to full scale and the output of DACB is  
measured. While keeping DACB unchanged, the output of DACA is transitioned to zero scale and the V  
of DACB is  
OUT  
measured. The procedure is repeated with DACA and DACB interchanged. DAC-to-DAC crosstalk is the maximum V  
OUT  
measured.  
Note 4: Represents the functional range. The linearity is guaranteed at V  
tion for linearity at other voltages.  
= 2.5V. See the Typical Operating Characteristics sec-  
REF  
Note 5: Guaranteed by design.  
Note 6: The reference -3dB bandwidth is measured with a 0.1V  
sine wave on V and with the input code at full scale.  
REF  
P-P  
Note 7: In some daisy-chain modes, data is required to be clocked in on one clock edge and the shifted data clocked out on the fol-  
lowing edge. In the case of a 1/2 clock-period delay, it is necessary to increase the minimum high/low clock times to 25ns  
(2.7V) or 50ns (1.8V).  
Note 8: The falling edge of DSP starts a DSP-type bus cycle, provided that CS is also active low to select the device. DSP active low  
and CS active low must overlap by a minimum of 10ns (2.7V) or 20ns (1.8V). CS can be permanently low in this mode of  
operation.  
_______________________________________________________________________________________  
9
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
Typical Operating Characteristics  
(AV = DV = 3V, V  
= 2.5V, R = 10k, C = 100pF, speed mode = FAST, PU = floating, T = +25°C, unless otherwise noted.)  
DD  
DD  
REF  
L
L
A
INTEGRAL NONLINEARITY  
vs. DIGITAL INPUT CODE (12-BIT)  
INTEGRAL NONLINEARITY  
vs. DIGITAL INPUT CODE (10-BIT)  
4
3
1.00  
0.75  
0.50  
0.25  
0
UNITY GAIN  
B-GRADE  
UNITY GAIN  
2
1
0
-1  
-2  
-3  
-4  
-0.25  
-0.50  
-0.75  
-1.00  
0
1024  
2048  
3072  
4096  
0
256  
512  
768  
1024  
4096  
256  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
INTEGRAL NONLINEARITY  
vs. DIGITAL INPUT CODE (8-BIT)  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE (12-BIT)  
0.50  
0.25  
0
0.2  
0.1  
0
UNITY GAIN  
UNITY GAIN  
B-GRADE  
-0.25  
-0.50  
-0.1  
-0.2  
0
64  
128  
192  
256  
0
1024  
2048  
3072  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE (8-BIT)  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE (10-BIT)  
0.02  
0.01  
0
0.050  
0.025  
0
UNITY GAIN  
UNITY GAIN  
-0.01  
-0.02  
-0.025  
-0.050  
0
64  
128  
192  
0
256  
512  
768  
1024  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
10 ______________________________________________________________________________________  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
Typical Operating Characteristics (continued)  
(AV = DV = 3V, V  
= 2.5V, R = 10k, C = 100pF, speed mode = FAST, PU = floating, T = +25°C, unless otherwise noted.)  
DD  
DD  
REF  
L
L
A
INTEGRAL NONLINEARITY  
vs. TEMPERATURE (12-BIT)  
DIFFERENTIAL NONLINEARITY  
vs. TEMPERATURE (12-BIT)  
4
2
0
0.2  
0.1  
0
UNITY GAIN  
B-GRADE  
UNITY GAIN  
B-GRADE  
-2  
-0.1  
-0.2  
-4  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OFFSET ERROR vs. TEMPERATURE  
GAIN ERROR vs. TEMPERATURE  
0
-2  
0
-2  
UNITY GAIN: 1 LSB = 0.6mV  
FORCE SENSE: 1 LSB = 0.3mV  
FORCE SENSE  
UNITY GAIN  
-4  
-4  
FORCE SENSE  
-6  
-6  
UNITY GAIN  
-8  
-8  
UNITY GAIN: 1 LSB = 0.6mV  
FORCE SENSE: 1 LSB = 0.3mV  
-10  
-10  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
REFERENCE INPUT BANDWIDTH  
5
0
V
= 0.1V AT 2.5V  
P-P DC  
REF  
-5  
-10  
-15  
-20  
-25  
-30  
0
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
______________________________________________________________________________________ 11  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
Pin Description  
PIN  
MAX5290  
MAX5292  
MAX5294  
MAX5291  
MAX5293  
MAX5295  
NAME  
FUNCTION  
THIN QFN  
TSSOP  
THIN QFN  
TSSOP  
Clock Enable. Connect DSP to DV  
at power-up to transfer  
DD  
data on the rising edge of SCLK. Connect DSP to DGND at  
1
2
1
3
DSP  
power-up to transfer data on the falling edge of SCLK.  
2
3
3
4
2
3
4
5
DIN  
CS  
Serial Data Input  
Active-Low Chip-Select Input  
Serial Clock Input  
4
5
4
6
SCLK  
5
6
5
7
DV  
Digital Supply  
DD  
6
7
6
8
DGND  
AGND  
Digital Ground  
7
8
7
9
Analog Ground  
8
9
8
10  
11  
12  
13  
14  
15  
AV  
Analog Supply  
DD  
9
10  
11  
12  
9
OUTB  
FBB  
DACB Output  
10  
11, 13  
12  
10  
11  
12  
13  
Feedback for DACB Output Buffer  
Reference Input  
REF  
FBA  
Feedback for DACA Output Buffer  
No Connection. Not internally connected.  
DACA Output  
N.C.  
OUTA  
Power-Up State Select Input. Connect PU to DV to set OUTA  
DD  
and OUTB to full scale upon power-up. Connect PU to DGND to  
set OUTA and OUTB to zero upon power-up. Leave PU floating  
to set OUTA and OUTB to midscale upon power-up.  
14  
13  
14  
16  
PU  
15  
16  
14  
1
15  
16  
1
2
UPIO2  
UPIO1  
User-Programmable Input/Output 2  
User-Programmable Input/Output 1  
Exposed Paddle (QFN Only). Not internally connected. Do not  
connect to circuitry.  
EP  
12 ______________________________________________________________________________________  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
Functional Diagrams  
AV  
DV  
AGND  
DGND  
DD  
DD  
CS  
SCLK  
DIN  
SERIAL  
INTERFACE  
CONTROL  
MAX5290  
MAX5292  
MAX5294  
DSP  
16-BIT SHIFT  
REGISTER  
DOUT  
REGISTER  
MUX  
UPIO1  
UPIO2  
UPIO1 AND  
UPIO2  
LOGIC  
POWER-DOWN  
LOGIC AND  
REGISTER  
DECODE  
CONTROL  
PU  
OUTA  
INPUT  
REGISTER  
DAC  
REGISTER  
DAC A  
REF  
OUTB  
INPUT  
REGISTER  
DAC  
REGISTER  
DAC B  
______________________________________________________________________________________ 13  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
Functional Diagrams (continued)  
AV  
DV  
AGND  
DGND  
DD  
DD  
CS  
SCLK  
DIN  
SERIAL  
INTERFACE  
CONTROL  
MAX5291  
MAX5293  
MAX5295  
DSP  
16-BIT SHIFT  
REGISTER  
DOUT  
REGISTER  
MUX  
UPIO1  
UPIO2  
UPIO1 AND  
UPIO2  
LOGIC  
POWER-DOWN  
LOGIC AND  
REGISTER  
FBA  
DECODE  
CONTROL  
PU  
OUTA  
INPUT  
REGISTER  
DAC  
REGISTER  
DAC A  
REF  
FBB  
OUTB  
INPUT  
REGISTER  
DAC  
REGISTER  
DAC B  
14 ______________________________________________________________________________________  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
Use the serial interface to set the shutdown output  
Detailed Description  
impedance of the amplifiers to 1kor 100kfor the  
The MAX5290MAX5295 dual, 12-/10-/8-bit, voltage-  
MAX5290/MAX5292/MAX5294 and 1kor high imped-  
ance for the MAX5291/MAX5293/MAX5295. The DAC  
outputs can drive a 2k(typ) load and are stable with  
up to 500pF (typ) of capacitive load.  
output digital-to-analog converters (DACs) offer  
buffered outputs and a 3µs maximum settling time at  
the 12-bit level. The DACs operate from a single 2.7V to  
3.6V analog supply and a separate 1.8V to AV  
digi-  
DD  
tal supply. The MAX5290MAX5295 include an input  
register and DAC register for each channel and a  
16-bit data-in/data-out shift register. The 3-wire serial  
interface is compatible with SPI, QSPI, MICROWIRE,  
and DSP applications. The MAX5290MAX5295 pro-  
vide two user-programmable digital I/O ports, which  
are programmed through the serial interface. The exter-  
nally selectable power-up states of the DAC outputs  
are either zero scale, midscale, or full scale.  
Power-On Reset  
At power-up, all DAC outputs power up to full scale,  
midscale, or zero scale, depending on the configuration  
of the PU input. Connect PU to DV  
to set OUT_ to full  
DD  
scale upon power-up. Connect PU to DGND to set  
OUT_ to zero scale upon power-up. Leave PU floating  
to set OUT_ to midscale.  
Digital Interface  
The MAX5290MAX5295 use a 3-wire serial interface  
Reference Input  
The reference input, REF, accepts both AC and DC val-  
ues with a voltage range extending from 0.25V to  
that is compatible with SPI, QSPI, MICROWIRE, and  
DSPs (Figures 1 and 2). Connect DSP to DV  
before  
DD  
power-up to clock data in on the rising edge of SCLK.  
Connect DSP to DGND before power-up to clock data in  
on the falling edge of SCLK. After power-up, the device  
enters DSP frame sync mode on the first rising edge of  
DSP. Refer to the Programmer’s Handbook for details.  
AV . The voltage at REF (V  
) sets the full-scale out-  
REF  
DD  
put of the DACs. Determine the output voltage using  
the following equation:  
Unity-gain versions:  
V
OUT_  
= (V  
x CODE) / 2N  
REF  
Each MAX5290MAX5295 includes a 16-bit input shift  
register. The data is loaded into the input shift register  
through the serial interface. The 16 bits can be sent in  
two serial 8-bit packets or one 16-bit word (CS must  
remain low until all 16 bits are transferred). The data is  
loaded MSB first. For the MAX5290/MAX5291, the 16  
bits consist of 4 control bits (C3C0) and 12 data bits  
(D11D0) (see Table 1). For the 10-bit MAX5292/  
MAX5293 devices, D11D2 are the data bits and D1  
and D0 are sub-bits. For the 8-bit MAX5294/  
MAX5295 devices, D11D4 are the data bits and  
D3D0 are sub-bits. Set all sub-bits to zero for optimum  
performance.  
Force-sense versions (FB_ connected to OUT_):  
= 0.5 x (V  
x CODE) / 2N  
V
OUT  
REF  
where CODE is the numeric value of the DACs binary  
input code and N is the bits of resolution. For the  
MAX5290/MAX5291, N = 12 and CODE ranges from 0  
to 4095. For the MAX5292/MAX5293, N = 10 and  
CODE ranges from 0 to 1023. For the MAX5294/  
MAX5295, N = 8 and CODE ranges from 0 to 255.  
Output Buffers  
The DACA and DACB output-buffer amplifiers of the  
MAX5290MAX5295 are unity-gain stable with Rail-to-  
Rail® output voltage swings and a typical slew rate of  
5.7V/µs. The MAX5290/MAX5292/MAX5294 provide  
unity-gain outputs, while the MAX5291/MAX5293/  
MAX5295 provide force-sense outputs. For the  
MAX5291/MAX5293/MAX5295, access to the output  
amplifiers inverting input provides flexibility in output gain  
setting and signal conditioning (see the Applications  
Information section).  
Each DAC channel includes two registers: an input reg-  
ister and the DAC register. At power-up, the DAC out-  
put is set according to the state of PU. The DACs are  
double-buffered, which allows any of the following for  
each channel:  
Loading the input register without updating the DAC  
register  
Loading the DAC register without updating the input  
register  
The MAX5290MAX5295 offer FAST and SLOW-settling  
time modes. In the FAST mode, the settling time is 3µs  
(max), and the supply current is 2mA (max). In the SLOW  
mode, the settling time is 6µs (max), and the supply cur-  
rent drops to 0.8mA (max). See the Digital Interface sec-  
tion for settling-time mode programming details.  
Updating the DAC register from the input register  
Updating the input and DAC registers simultaneously  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
______________________________________________________________________________________ 15  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
Table 1. Serial Write Data Format  
MSB  
16 BITS OF SERIAL DATA  
LSB  
CONTROL BITS  
C2 C1  
DATA BITS  
C3  
C0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
t
CH  
SCLK  
DIN  
t
CL  
t
DS  
C3  
C2  
C1  
D0  
t
t
t
CSH  
CS0  
DH  
t
CSS  
CS  
t
CSW  
t
CS1  
t
DO1  
DOUTDC1*  
DOUT VALID  
t
DO2  
DOUTDC0  
OR  
DOUTRB*  
DOUT VALID  
*UPIO1/UPIO2 CONFIGURED AS DOUTDC_ (DAISY-CHAIN DATA OUTPUT, MODE 0 OR 1) OR DOUTRB (READ-BACK DATA OUTPUT).  
SEE THE DATA OUTPUT SECTION FOR DETAILS.  
Figure 1. Serial-Interface Timing Diagram (DSP Mode Disabled)  
t
CL  
SCLK  
DIN  
t
CH  
t
DS  
C3  
C2  
C1  
D0  
t
t
DH  
CS0  
t
CSH  
t
CSS  
CS  
t
CSW  
t
CS1  
t
DSS  
t
DS0  
DSP  
t
t
t
D02  
DSW  
DSPWL  
DOUTDC0*  
DOUT VALID  
t
D01  
DOUTDC1  
OR  
DOUTRB*  
DOUT VALID  
*UPIO1/UPIO2 CONFIGURED AS DOUTDC_ (DAISY-CHAIN DATA OUTPUT, MODE 0 OR 1) OR DOUTRB (READ-BACK DATA OUTPUT).  
SEE THE DATA OUTPUT SECTION FOR DETAILS.  
Figure 2. Serial-Interface Timing Diagram (DSP Mode Enabled)  
16 ______________________________________________________________________________________  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
Serial-Interface Programming Commands  
Tables 2a, 2b, and 2c provide all of the serial-interface  
programming commands for the MAX5290MAX5295.  
Table 2a shows the basic DAC programming com-  
mands, Table 2b gives the advanced-feature program-  
ming commands, and Table 2c provides the 24-bit  
read commands. Figures 3 and 4 illustrate the serial-  
interface diagrams for read and write operations.  
Loading Input and DAC Registers  
The MAX5290MAX5295 contain a 16-bit shift register  
that is followed by a 12-bit input register and a 12-bit  
DAC register for each channel (see the Functional  
Diagrams). Tables 3, 4, and 5 highlight a few of the com-  
mands for the loading of the input and DAC registers.  
See Table 2a for all DAC programming commands.  
V
V
DD  
DD  
MICROWIRE  
SPI OR QSPI  
MAX5290–  
MAX5295  
MAX5290–  
MAX5295  
V
DV  
V
DV  
DD  
DD  
DD  
DD  
DSP  
DSP  
SK  
SO  
SCK  
MOSI  
SCLK  
SCLK  
DIN  
DIN  
I/O  
CS  
SS OR I/O  
CS  
MICROWIRE OR SPI (CPOL = 0, CPHA = 0) 8-BIT CONTROL DATA OR 12-BIT DAC DATA WRITE:  
COMMAND TAKES EFFECT HERE  
CS MUST REMAIN LOW BETWEEN BYTES ON A 16-BIT WRITE OPERATION  
CS  
ONLY IF SCLK COUNT = N 16  
SCLK  
DIN  
C3  
C2  
C1  
C0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SPI (CPOL = 1, CPHA = 1) 8-BIT CONTROL DATA OR 12-BIT DAC DATA WRITE:  
COMMAND TAKES EFFECT HERE  
CS MUST REMAIN LOW BETWEEN BYTES ON A 16-BIT WRITE OPERATION  
ONLY IF SCLK COUNT = N 16  
CS  
SCLK  
DIN  
C3  
C2  
C1  
C0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 3. MICROWIRE and SPI (CPOL = 0, CPHA = 0 or CPOL = 1, CPHA = 1) DAC Writes  
DSP  
SPI OR QSPI  
MAX5290–  
MAX5295  
MAX5290–  
MAX5295  
V
DGND  
V
DGND  
SS  
SS  
DSP  
DSP  
TCLK, SCLK, OR CLKX  
DT OR DX  
SCK  
MOSI  
SCLK  
SCLK  
DIN  
DIN  
TFS OR FSX  
CS  
SS OR I/O  
CS  
DSP OR SPI (CPOL = 0, CPHA = 0) 8-BIT CONTROL DATA OR 12-BIT DAC DATA WRITE:  
COMMAND TAKES EFFECT HERE  
CS MUST REMAIN LOW BETWEEN BYTES ON A 16-BIT WRITE OPERATION  
CS  
ONLY IF SCLK COUNT = N 16  
SCLK  
DIN  
C3  
C2  
C1  
C0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D4  
D3  
D2  
D1  
D0  
DSP OR SPI (CPOL = 1, CPHA = 0) 8-BIT CONTROL DATA OR 12-BIT DAC DATA WRITE:  
COMMAND TAKES EFFECT HERE  
ONLY IF SCLK COUNT = N 16  
CS MUST REMAIN LOW BETWEEN BYTES ON A 16-BIT WRITE OPERATION  
CS  
SCLK  
DIN  
C3  
C2  
C1  
C0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
Figure 4. DSP and SPI (CPOL = 0, CPHA = 1 or CPOL = 1, CPHA = 0) DAC Writes  
______________________________________________________________________________________ 17  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
18 ______________________________________________________________________________________  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
______________________________________________________________________________________ 19  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
CS  
20 ______________________________________________________________________________________  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
Default register values at power-up correspond to the  
Advanced Feature  
Programming Commands  
Refer to the Programmer’s Handbook for details.  
state of PU, e.g. input and DAC registers are set to  
800hex if PU is floating, FFFhex if PU = DV , and  
DD  
000hex if PU= DGND.  
Select Bits (MA, MB)  
The select bits allow synchronous updating of any com-  
bination of channels. The select bits command the  
loading of the DAC register from the input register of  
each channel. Set the select bit M_ = 1 to load the DAC  
register _with data from the input register _, where  
_is replaced with A or B depending on the selected  
channel. Setting the select bit to M_ = 0 results in no  
action for that channel (Table 6).  
DAC Programming Examples:  
To load input register A from the shift register, leaving  
DAC register A unchanged (DAC output unchanged),  
use the command in Table 3.  
The MAX5290MAX5295 can load DAC register A from  
the shift register, leaving input register A unchanged,  
by using the command in Table 4.  
To load input register A and DAC register A simultane-  
ously from the shift register, use the command in Table 5.  
For the 10-bit and 8-bit versions, set sub-bits = 0 for  
best performance.  
Table 3. Load Input Register A from Shift Register  
DATA  
CONTROL BITS  
DATA BITS  
D6 D5  
DIN  
0
0
0
0
D11  
D10  
D9  
D8  
D7  
D4  
D4  
D3/0  
D3/0  
D2/0  
D2/0  
D1/0  
D1/0  
D0/0  
D0/0  
Table 4. Load DAC Register A from Shift Register  
DATA  
CONTROL BITS  
DATA BITS  
D6 D5  
DIN  
0
0
0
1
D11  
D10  
D9  
D8  
D7  
Table 5. Load Input Register A and DAC Register A from Shift Register  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
0
0
1
0
D11  
D10  
D9  
D8  
D7  
D6 D5  
D4  
D3/0  
D2/0  
D1/0  
MB  
D0/0  
MA  
Table 6. Select Command  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
1
1
0
0
0
X
X
X
X
X
X
X
X
X = Don’t care.  
Table 7. Select Bits Programming Example  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
1
1
0
0
0
X
X
X
X
X
X
X
X
1
0
X = Don’t care.  
______________________________________________________________________________________ 21  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
Select Bits Programming Example:  
Shutdown-Mode Bits (PDA0, PDA1, PDB0, PDB1)  
To load DAC register B from input register B while  
keeping channel A unchanged, set MB = 1 and MA =  
0, as in the command in Table 7.  
Use the shutdown-mode bits to shut down each DAC  
independently. Set PD_0 and PD_1 according to Table  
8 to select the shutdown mode for DAC_, where _is  
replaced with A or B depending on the selected chan-  
nel. The three possible states for unity-gain versions  
are 1) normal operation, 2) shutdown with 1koutput  
impedance, and 3) shutdown with 100koutput imped-  
ance. The three possible states for force-sense ver-  
sions are 1) normal operation, 2) shutdown with 1kΩ  
output impedance, and 3) shutdown with high-imped-  
ance output. Table 9 shows the command for writing to  
the shutdown mode bits.  
Table 8. Shutdown-Mode Bits  
PD_1  
PD_0  
DESCRIPTIONS  
Shutdown with 1ktermination to ground  
on DAC_ output.  
0
0
Shutdown with 100ktermination to  
ground on DAC_ output for unity-gain  
versions. Shutdown with high-impedance  
output for force-sense versions.  
Shutdown-Mode Bits Write Example:  
0
1
To put a unity-gain versions DACA into shutdown  
mode with internal 1ktermination to ground and  
DACB into the shutdown mode with the internal 100kΩ  
termination to ground, use the command in Table 10  
(applicable to unity-gain output only).  
1
1
0
1
Ignored.  
DAC_ is powered up in its normal operating  
mode.  
To read back the shutdown-mode bits, use the com-  
mand in Table 11.  
Table 9. Shutdown-Mode Write Command  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
1
1
0
0
1
0
X
X
X
X
X
PDB1 PDB0 PDA1 PDA0  
X = Don’t care.  
Table 10. Shutdown-Mode Bits Write Example  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
1
1
0
0
1
0
X
X
X
X
X
0
1
0
0
X = Don’t care.  
Table 11. Shutdown-Mode Read Command  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
X
1
X
1
X
0
X
0
X
1
X
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
DOUTRB  
X = Don’t care.  
X
PDB1 PDB0 PDA1 PDA0  
Table 12. Settling-Time-Mode Write Command  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
1
1
0
1
1
0
X
X
X
X
X
X
X
SPDB SPDA  
X = Don’t care.  
22 ______________________________________________________________________________________  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
Settling-Time-Mode Bits (SPDA, SPDB)  
The settling-time-mode bits select the settling time  
(FAST mode or SLOW mode) of the MAX5290–  
MAX5295. Set SPD_ = 1 to select FAST mode or set  
SPD_ = 0 to select SLOW mode, where _is replaced  
by A or B, depending on the selected channel (see  
Table 12). FAST mode provides a 3µs maximum set-  
tling time and SLOW mode provides a 10µs maximum  
settling time. Default settling-time mode bits are [0, 0]  
(SLOW mode for both DACs).  
Settling-Time-Mode Write Example:  
To configure DACA into FAST mode and DACB into  
SLOW mode, use the command in Table 13.  
To read back the settling-time-mode bits, use the com-  
mand in Table 14.  
CPOL and CPHA Control Bits  
The CPOL and CPHA control bits of the  
MAX5290MAX5295 are defined the same as the CPOL  
and CPHA bits in the SPI standard. Set the CPOL = 0  
and CPHA = 0 or set CPOL = 1 and CPHA = 1 for  
MICROWIRE and SPI applications requiring the clocking  
of data in on the rising edge of SCLK. Set the CPOL = 0  
Table 13. Settling-Time-Mode Write Example  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
1
1
0
1
1
0
X
X
X
X
X
X
X
0
1
X = Don’t care.  
Table 14. Settling-Time-Mode Read Command  
DATA  
DIN  
CONTROL BITS  
DATA BITS  
1
X
1
X
1
X
0
X
1
X
1
X
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
DOUTRB  
X = Don’t care.  
X
SPDB SPDA  
Table 15. CPOL and CPHA Bits  
CPOL  
CPHA  
DESCRIPTION  
Default values at power-up when DSP is connected to DV . Data is clocked in on the rising edge  
of SCLK.  
DD  
0
0
Default values at power-up when DSP is connected to DGND. Data is clocked in on the falling edge  
of SCLK.  
0
1
1
1
0
1
Data is clocked in on the falling edge of SCLK.  
Data is clocked in on the rising edge of SCLK.  
Table 16. CPOL and CPHA Write Command  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
1
1
1
0
0
0
0
X
X
X
X
X
X
CPOL CPHA  
X = Don’t care.  
Table 17. CPOL and CPHA Read Command  
DATA  
DIN  
CONTROL BITS  
DATA BITS  
1
X
1
X
1
X
1
X
0
X
0
X
0
X
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
DOUTRB  
X
CPOL CPHA  
X = Don’t care.  
______________________________________________________________________________________ 23  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
and CPHA = 1 or set CPOL = 1 and CPHA = 0 for DSP  
and SPI applications requiring the clocking of data in on  
the falling edge of SCLK (refer to the Programmer’s  
Handbook and see Table 15 for details). At power-up, if  
Table 19 shows how UPIO1 and UPIO2 are selected for  
configuration. The UP0UP3 bits select the desired  
functions for UPIO1 and/or UPIO2 (see Table 22).  
Default states of UP10_ are high impedance. If using  
DSP = DV , the default value of CPHA is zero and if  
DD  
UP10_, connect 10kpullup resistors from each UPIO  
DSP = DGND, the default value of CPHA is one. The  
default value of CPOL is zero at power-up.  
pin to DV  
.
DD  
UPIO Programming Example:  
To set only UPIO1 as LDAC and leave UPIO2  
unchanged, write the command in Table 20.  
To write to the CPOL and CPHA bits, use the command  
in Table 16.  
To read back the devices CPOL and CPHA bits, use  
the command in Table 17.  
The UPIO selection and configuration bits can be read  
back from the MAX5290MAX5295 when UPIO1 or  
UPIO2 is configured as a DOUTRB output. Table 21  
shows the read-back data format for the UPIO bits.  
Writing a 1110 101X XXXX XXXX initiates a read operation  
of the UPIO bits. The data is clocked out starting on the  
9th clock cycle of the sequence. UP3-2 through UP0-2  
provide the UP3UP0 configuration bits for UPIO2 (see  
Table 22), and UP3-1 through UP0-1 provide the  
UP3UP0 configuration bits for UPIO1.  
UPIO Bits (UPSL1, UPSL2, UP0–UP3)  
The MAX5290MAX5295 provide two user-programma-  
ble input/output (UPIO) ports: UPIO1 and UPIO2. These  
ports have 15 possible configurations, as shown in  
Table 22. UPIO1 and UPIO2 can be programmed inde-  
pendently or simultaneously by writing to the UPSL1,  
UPSL2, and UP0UP3 bits (see Table 18).  
Table 18. UPIO Write Command  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
1
1
0
1
0
0
X
UPSL2 UPSL1 UP3  
UP2  
UP1  
UP0  
X
X
X = Don’t care.  
Table 19. UPIO Selection Bits (UPSL1 and UPSL2)  
UPSL2  
UPSL1  
UPIO PORT SELECTED  
None selected  
0
0
1
1
0
1
0
1
UPIO1 selected  
UPIO2 selected  
Both UPIO1 and UPIO2 selected  
Table 20. UPIO Programming Example  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
1
1
0
1
0
0
X
0
1
0
0
0
0
X
X
X
X = Don’t care.  
Table 21. UPIO Read Command  
DATA  
DIN  
CONTROL BITS  
DATA BITS  
1
X
1
X
1
X
0
X
1
X
0
X
1
X
X
X
X
X
X
X
X
DOUTRB  
X
X
UP3-2 UP2-2 UP1-2 UP0-2 UP3-1 UP2-1 UP1-1 UP0-1  
X = Don’t care.  
24 ______________________________________________________________________________________  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
User-Programmable Input/Output (UPIO)  
Configuration  
Drive LDAC low to asynchronously load the DAC regis-  
ters from their corresponding input registers (DACs that  
are in shutdown remain shut down). The LDAC function  
does not require any activity on CS, SCLK, or DIN. If  
LDAC is brought low coincident with a rising edge of  
CS, (which executes a serial command modifying the  
value of either DAC input register), then LDAC must  
remain asserted for at least 120ns following the CS ris-  
ing edge. This requirement applies only to serial com-  
mands that modify the value of the DAC input registers.  
See Figures 5 and 6 for timing details.  
Table 22 lists the possible configurations for UPIO1 and  
UPIO2. UPIO1 and UPIO2 use the selected function  
when configured by the UP3UP0 configuration bits.  
LDAC  
LDAC controls loading of the DAC registers. When  
LDAC is high, the DAC registers are latched, and any  
change in the input registers does not affect the con-  
tents of the DAC registers or the DAC outputs. When  
LDAC is low, the DAC registers are transparent, and the  
values stored in the input registers are fed directly to the  
DAC registers, and the DAC outputs are updated.  
Table 22. UPIO Configuration Register Bits (UP3UP0)  
UPIO CONFIGURATION BITS  
FUNCTION  
DESCRIPTION  
UP3  
UP2  
UP1  
UP0  
Active-Low Load DAC Input. Drive low to asynchronously load all DAC registers  
with data from input registers.  
0
0
0
0
LDAC  
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
SET  
MID  
CLR  
PDL  
Active-Low Input. Drive low to set all input and DAC registers to full scale.  
Active-Low Input. Drive low to set all input and DAC registers to midscale.  
Active-Low Input. Drive low to set all input and DAC registers to zero scale.  
Active-Low Power-Down Lockout Input. Drive low to disable software shutdown.  
Reserved This mode is reserved. Do not use.  
Active-Low 1kShutdown Input. Overrides PD_1 and PD_0 settings. Drive  
SHDN1K low to pull OUTA and OUTB to AGND with 1k.  
0
1
1
0
SHDN1K  
Active-Low 100kShutdown Input. Overrides PD_1 and PD_0 settings. For the  
MAX5290/MAX5292/MAX5294, drive SHDN100K low to pull OUTA and OUTB to  
AGND with 100k. For the MAX5291/MAX5293/MAX5295, drive SHDN100K low to  
leave OUTA and OUTB high impedance.  
0
1
1
1
SHDN100K  
1
1
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
DOUTRB Data Read-Back Output  
DOUTDC0 Mode 0 Daisy-Chain Data Output. Data is clocked out on the falling edge of SCLK.  
DOUTDC1 Mode 1 Daisy-Chain Data Output. Data is clocked out on the rising edge of SCLK.  
GPI  
General-Purpose Logic Input  
GPOL  
GPOH  
General-Purpose Logic-Low Output  
General-Purpose Logic-High Output  
Toggle Input. Toggles DAC outputs between data in input registers and data in  
DAC registers. Drive low to set all DAC outputs to values stored in input registers.  
Drive high to set all DAC outputs to values stored in DAC registers.  
1
1
1
1
1
1
0
1
TOGG  
FAST/SLOW Settling-Time Mode Input. Drive low to select FAST mode (3µs) or  
drive high to select SLOW settling mode (10µs). Overrides the SPDA and SPDB  
settings.  
FAST  
______________________________________________________________________________________ 25  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
SET, MID, CLR  
t
LDL  
The SET, MID, and CLR signals force the DAC outputs  
to full scale, midscale, or zero scale (Figure 5). These  
signals cannot be active at the same time.  
LDAC  
TOGG  
The active-low SET input forces the DAC outputs to full  
scale when SET is low. When SET is high, the DAC out-  
puts follow the data in the DAC registers.  
PDL  
The active-low MID input forces the DAC outputs to mid-  
scale when MID is low. When MID is high, the DAC out-  
puts follow the data in the DAC registers.  
t
CMS  
CLR,  
MID, OR  
SET  
The active-low CLR input forces the DAC outputs to zero  
scale when CLR is low. When CLR is high, the DAC out-  
puts follow the data in the DAC registers.  
t
S
0.5 LSB  
V
OUT_  
If CLR, MID, or SET signals go low in the middle of a write  
command, reload the data to ensure accurate results.  
PDL AFFECTS DAC OUPTUTS (V  
) ONLY IF DACS WERE PREVIOUSLY SHUT DOWN.  
OUT_  
Figure 5. Asynchronous Signal Timing  
Power-Down Lockout (PDL)  
The PDL active-low software-shutdown lockout input  
overrides (not overwrites), the PD_0 and PD_1 shut-  
down mode bits. PDL cannot be active at the same  
time as SHDN1K or SHDN100K (see the Shutdown  
Mode (SHDN1K, SHDN100K) section).  
END OF  
CYCLE*  
t
GP  
GPO_  
LDAC  
If the PD_0 and PD_1 bits command the DAC to shut  
down prior to PDL going low, the DAC returns to shut-  
down mode immediately after PDL goes high, unless  
the PD_0 and PD_1 bits are changed in the meantime.  
t
LDS  
Shutdown Mode (SHDN1K, SHDN100K)  
The SHDN1K and SHDN100K are active-low signals  
that override (not overwrite) the PD_1 and PD_0 bit set-  
tings. For the MAX5290/MAX5292/MAX5294, drive  
SHDN1K low to select shutdown mode with OUTA and  
OUTB internally terminated with 1kto ground, or drive  
SHDN100K low to select shutdown with an internal  
100ktermination. For the MAX5291/MAX5293/  
MAX5295, drive SHDN1K low for shutdown with 1kΩ  
output termination, or drive SHDN100K low for shut-  
down with high-impedance outputs.  
*END-OF-CYCLE REPRESENTS THE RISING EDGE OF CS OR THE 16TH  
ACTIVE CLOCK EDGE, DEPENDING ON THE MODE OF OPERATION.  
Figure 6. GPO_ and LDAC Signal Timing  
The source of read-back data on DOUTRB is the  
DOUT register. Daisy-chain DOUTDC_ data comes  
directly from the shift register.  
Read-back data on DOUTRB is only present after a  
DAC read command. Daisy-chain data is present on  
DOUTDC_ for any DAC write after the first 16 bits  
are written.  
Data Output (DOUTRB, DOUTDC0, DOUTDC1)  
UPIO1 and UPIO2 can be configured as serial data  
outputs, DOUTRB (data out for read back), DOUTDC0  
(data out for daisy-chaining, mode 0), and DOUTDC1  
(data out for daisy-chaining, mode 1). The differences  
between DOUTRB and DOUTDC0 (or DOUTDC1) are  
as follows:  
The DOUTRB idle state (CS = high) for read back is  
high impedance. Daisy-chain DOUTDC_ idles high  
when inactive to avoid floating the data input in the  
next device in the daisy-chain.  
See Figures 1 and 2 for timing details.  
26 ______________________________________________________________________________________  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
GPI, GPOL, GPOH  
UPIO1 and UPIO2 can each be configured as a gener-  
al-purpose logic input (GPI), a general-purpose logic-  
low output (GPOL), or general-purpose logic-high  
output (GPOH).  
LF1 is one, then a falling edge has occurred on the  
UPIO1 or UPIO2 input since the last read or reset. If  
LR2 or LR1 is one, then a rising edge has occurred  
since the last read or reset.  
GPOL outputs a constant logic low, and GPOH outputs  
a constant logic high (see Figure 6).  
The GPI can detect interrupts from µPs or microcon-  
trollers. It provides three functions:  
TOGG  
Use the TOGG input to toggle a DAC output between  
the values in the input register and DAC register. A  
delay of greater than 100ns from the end of the previ-  
ous write command is required before the TOGG signal  
can be correctly switched between the new value and  
the previously stored value. When TOGG = 0, the out-  
put follows the information in the input registers. When  
TOGG = 1, the output follows the information in the  
DAC register (Figure 5).  
1) Sample the signal at GPI at the time of the read  
(RTP1 and RTP2).  
2) Detect whether or not a falling edge has occurred  
since the last read or reset (LF1 and LF2).  
3) Detect whether or not a rising edge has occurred  
since the last read or reset (LR1 and LR2).  
RTP1, LF1, and LR1 represent the data read from  
UPIO1. RTP2, LF2, and LR2 represent the data read  
from UPIO2.  
FAST  
The MAX5290MAX5295 have two settling-time-mode  
options: FAST (3µs max at 12 bits) and SLOW (6µs max  
at 12 bits). To select the FAST mode, drive FAST low,  
and to select SLOW mode, drive FAST high. This over-  
rides (not overwrites) the SPDA and SPDB bit settings.  
To issue a read command for the UPIO configured as  
GPI, use the command in Table 23.  
Once the command is issued, RTP1 and RTP2 provide  
the real-time status (0 or 1) of the inputs at UPIO1 or  
UPIO2, respectively, at the time of the read. If LF2 or  
Table 23. GPI Read Command  
DATA  
DIN  
CONTROL BITS  
DATA BITS  
1
X
1
X
1
X
1
X
0
X
0
X
1
X
X
X
X
X
X
X
X
X
X
X
X
X
DOUTRB  
X = Don’t care.  
RTP2  
LF2  
LR2  
RTP1  
LF1  
LR1  
Table 24. Unipolar Code Table (Gain = +1)  
DAC CONTENTS  
ANALOG OUTPUT  
MSB  
1111  
1000  
1000  
0111  
0000  
0000  
LSB  
1111  
0001  
0000  
1111  
0001  
0000  
DAC_  
REF  
OUT_  
= V x CODE / 4096  
1111  
0000  
0000  
1111  
0000  
0000  
+V  
+V  
(4095 / 4096)  
(2049 / 4096)  
REF  
REF  
V
OUT_  
REF  
CODE IS THE DAC_ INPUT  
CODE (0 TO 4095 DECIMAL).  
+V  
(2048 / 4096) = V  
/ 2  
REF  
REF  
MAX5290  
+V  
(2047 / 4096)  
REF  
+V  
(1 / 4096)  
0
REF  
Figure 7. Unipolar Output Circuit  
______________________________________________________________________________________ 27  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
Configurable Output Gain  
Applications Information  
The MAX5291/MAX5293/MAX5295 have force-sense out-  
puts, which provide a connection directly to the inverting  
terminal of the output op amp, yielding the most flexibility.  
The advantage of the force-sense output is that specific  
gains can be set externally for a given application. The  
gain error for the MAX5291/MAX5293/MAX5295 is speci-  
fied in a unity-gain configuration (op-amp output and  
inverting terminals connected) and additional gain error  
results from external resistor tolerances. The force-sense  
DACs allow many useful circuits to be created with only a  
few simple external components.  
Unipolar Output  
Figure 7 shows the unity gain of the MAX5290 in a  
unipolar output configuration. Table 24 lists the unipolar  
output codes.  
Bipolar Output  
The MAX5290 outputs can be configured for bipolar  
operation, as shown in Figure 8. The output voltage is  
given by the following equation:  
V
OUT_  
= V  
x (CODE - 2048) / 2048  
REF  
where CODE represents the numeric value of the  
DACs binary input code (0 to 4095 decimal). Table 25  
shows digital codes and the corresponding output volt-  
age for the Figure 8 circuit.  
An example of a custom, fixed gain using the  
MAX5291s force-sense output is shown in Figure 9. In  
this example, the external reference is set to 1.25V, and  
the gain is set to +1.1V/V with external discrete resis-  
tors to provide an approximate 0 to 1.375V DAC output  
voltage range.  
Table 25. Bipolar Code Table (Gain = +1)  
V
OUT_  
= [(0.5 x V  
x CODE) / 4096] x [1 + (R2 / R1)]  
REF  
DAC CONTENTS  
ANALOG OUTPUT  
where CODE represents the numeric value of the  
DACs binary input code (0 to 4095 decimal).  
MSB  
1111  
1000  
1000  
0111  
0000  
0000  
LSB  
1111  
0001  
0000  
1111  
0001  
0000  
1111  
0000  
0000  
1111  
0000  
0000  
+V  
(2047 / 2048)  
REF  
In this example, if R2 = 12kand R1 = 10k, set the  
gain = 1.1V/V:  
+V  
(1 / 2048)  
0
REF  
V
OUT_  
= [(0.5 x 1.25V x CODE) / 4096] x 2.2  
+V  
-V  
(1 / 2048)  
REF  
(2047 / 2048)  
REF  
-V  
(2048 / 2048) = -V  
REF  
REF  
10k  
10kΩ  
V+  
DAC_  
REF  
OUT_  
V
R2 = 12k  
OUT_  
REF  
DAC_  
0.1%  
MAX5291  
25ppm  
OUT_  
FB_  
V-  
R1 = 10kΩ  
0.1%  
25ppm  
MAX5290  
Figure 8. Bipolar Output Circuit  
Figure 9. Configurable Output Gain  
28 ______________________________________________________________________________________  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
niques, such as a multilayer board with a low-induc-  
tance ground plane. Wire-wrapped boards and sockets  
are not recommended. For optimum system perfor-  
mance, use printed circuit (PC) boards with separate  
analog and digital ground planes. Connect the two  
ground planes together at the low-impedance power-  
supply source.  
Power-Supply and Layout Considerations  
Bypass the analog and digital power supplies with a  
10µF capacitor in parallel with a 0.1µF capacitor to ana-  
log ground (AGND) and digital ground (DGND) (see  
Figure 10). Minimize lead lengths to reduce lead induc-  
tance. If noise is an issue, use shielding and/or ferrite  
beads to increase isolation.  
Using separate power supplies for AV  
improves noise immunity. Connect AGND and DGND at  
the low-impedance power-supply source (see Figure 11).  
and DV  
DD  
Digital and AC transient signals coupling to AGND cre-  
ate noise at the output. Connect AGND to the highest  
quality ground available. Use proper grounding tech-  
DD  
AV  
DV  
DD  
DD  
0.1µF  
10µF  
DV  
0.1µF  
10µF  
ANALOG SUPPLY  
AV AGND  
DIGITAL SUPPLY  
DV DGND  
V
REF  
DD  
DD  
AV  
DD  
DD  
REF  
0.1µF*  
10µF*  
OUTA  
MAX5290MAX5295  
CS  
SCLK  
DIN  
FBA  
10µF  
10µF  
MAX5291/  
MAX5293/  
MAX5295  
ONLY  
FBB  
PU  
0.1µF  
0.1µF  
OUTB  
DSP  
UPIO1  
UPIO2  
AV  
AGND  
DV  
DGND  
DV  
DD  
DGND  
DIGITAL  
CIRCUITRY  
DD  
DD  
AGND**  
DGND**  
MAX5290MAX5295  
*REMOVE BYPASS CAPACITORS ON REF FOR AC-REFERENCE INPUTS.  
**CONNECT ANALOG AND DIGITAL GROUND PLANES AT THE  
LOW-IMPEDANCE POWER-SUPPLY SOURCE.  
Figure 11. Separate Analog and Digital Power Supplies  
Figure 10. Bypassing Power Supplies and Reference  
______________________________________________________________________________________ 29  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
Pin Configurations  
TOP VIEW  
UPIO2  
1
2
3
4
5
6
7
8
16 PU  
UPIO1  
DSP  
DIN  
1
2
3
4
5
6
7
14 UPIO2  
13 PU  
UPIO1  
DSP  
DIN  
15 OUTA  
14 FBA  
13 REF  
12 FBB  
11 OUTB  
12 OUTA  
11 REF  
MAX5291  
MAX5293  
MAX5295  
CS  
MAX5290  
MAX5292  
MAX5294  
CS  
SCLK  
10 OUTB  
SCLK  
DV  
9
8
AV  
DD  
DD  
DV  
10 AV  
DD  
DD  
DGND  
AGND  
DGND  
9
AGND  
16 TSSOP  
14 TSSOP  
16 15 14 13  
16 15 14 13  
DSP  
1
2
3
4
DSP  
1
2
3
4
12 OUTA  
11 N.C.  
10 REF  
12 FBA  
11 REF  
10 FBB  
DIN  
CS  
DIN  
CS  
MAX5290  
MAX5292  
MAX5294  
MAX5291  
MAX5293  
MAX5295  
SCLK  
9
OUTB  
SCLK  
9
OUTB  
5
6
7
8
5
6
7
8
(4mm x 4mm) THIN QFN  
(4mm x 4mm) THIN QFN  
Chip Information  
Selector Guide  
TRANSISTOR COUNT: 16,758  
OUTPUT  
INL  
RESOLUTION  
(LSBs  
BUFFER  
PART  
PROCESS: BiCMOS  
(BITS)  
CONFIGURATION  
MAX)  
MAX5290AEUD*  
MAX5290BEUD  
MAX5290AETE*  
MAX5290BETE  
MAX5291AEUE*  
MAX5291BEUE  
MAX5291AETE*  
MAX5291BETE  
MAX5292EUD  
MAX5292ETE  
MAX5293EUE  
MAX5293ETE  
MAX5294EUD  
MAX5294ETE  
MAX5295EUE  
MAX5295ETE  
Unity Gain  
Unity Gain  
12  
12  
12  
12  
12  
12  
12  
12  
10  
10  
10  
10  
8
1
4
Unity Gain  
1
Unity Gain  
4
Force Sense  
Force Sense  
Force Sense  
Force Sense  
Unity Gain  
1
4
1
4
1
Unity Gain  
1
Force Sense  
Force Sense  
Unity Gain  
1
1
0.5  
0.5  
0.5  
0.5  
Unity Gain  
8
Force Sense  
Force Sense  
8
8
*Future product—contact factory for availability. Specifications  
are preliminary.  
30 ______________________________________________________________________________________  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 31  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
12,16,20,24L QFN THIN, 4x4x0.8 mm  
21-0139  
A
32 ______________________________________________________________________________________  
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,  
Voltage-Output DACs  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
12,16,20,24L QFN THIN, 4x4x0.8 mm  
21-0139  
A
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 33  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5295EUE-T

D/A Converter, 1 Func, Serial Input Loading, 2us Settling Time, PDSO16, 6.50 X 5 MM, MO-153AB, TSSOP-16
MAXIM

MAX529C/D

Octal, 8-Bit, Serial DACs with Output Buffer
MAXIM

MAX529CAG

Octal, 8-Bit, Serial DACs with Output Buffer
MAXIM

MAX529CAG+

D/A Converter, 8 Func, Serial Input Loading, 1us Settling Time, PDSO24, SSOP-24
MAXIM

MAX529CPP

Octal, 8-Bit, Serial DACs with Output Buffer
MAXIM

MAX529CPP+

D/A Converter, 8 Func, Serial Input Loading, 1us Settling Time, PDIP20, PLASTIC, DIP-20
MAXIM

MAX529CWG

Octal, 8-Bit, Serial DACs with Output Buffer
MAXIM

MAX529CWG+

D/A Converter, 8 Func, Serial Input Loading, 1us Settling Time, PDSO24, SSOP-24
MAXIM

MAX529CWG-T

D/A Converter, 8 Func, Serial Input Loading, 1us Settling Time, PDSO24, SSOP-24
MAXIM

MAX529EAG

Octal, 8-Bit, Serial DACs with Output Buffer
MAXIM

MAX529EAG+

D/A Converter, 8 Func, Serial Input Loading, 1us Settling Time, PDSO24, SSOP-24
MAXIM

MAX529EAG+T

D/A Converter, 8 Func, Serial Input Loading, 1us Settling Time, PDSO24, SSOP-24
MAXIM