MAX530ACNG+ [MAXIM]

D/A Converter, 1 Func, Parallel, Word Input Loading, 25us Settling Time, PDIP24, PLASTIC, DIP-24;
MAX530ACNG+
型号: MAX530ACNG+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 1 Func, Parallel, Word Input Loading, 25us Settling Time, PDIP24, PLASTIC, DIP-24

文件: 总16页 (文件大小:141K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0168; Rev 3; 7/95  
+5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
MAX530  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Buffered Voltage Output  
Internal 2.048V Voltage Reference  
The MAX530 is a low-power, 12-bit, voltage-output digi-  
tal-to-analog converter (DAC) that uses single +5V or  
dual ±5V supplies. This device has an on-chip voltage  
reference plus an output buffer amplifier. Operating cur-  
rent is only 250µA from a single +5V supply, making it  
ideal for portable and battery-powered applications. In  
addition, the SSOP (Shrink-Small-Outline-Package) mea-  
sures only 0.1 square inches, using less board area than  
an 8-pin DIP. 12-bit resolution is achieved through laser  
trimming of the DAC, op amp, and reference. No further  
adjustments are necessary.  
Operates from Single +5V or Dual ±5V Supplies  
Low Power Consumption:  
250µA Operating Current  
40µA Shutdown-Mode Current  
SSOP Package Saves Space  
Relative Accuracy: ±1 2 LSB Max Over  
/
Temperature  
Guaranteed Monotonic Over Temperature  
Internal gain-setting resistors can be used to define a  
DAC outp ut volta g e ra ng e of 0V to + 2.048V, 0V to  
+4.096V, or ±2.048V. Four-quadrant multiplication is pos-  
sible without the use of external resistors or op amps. The  
parallel logic inputs are double buffered and are compati-  
ble with 4-bit, 8-bit, and 16-bit microprocessors. For DACs  
with similar features but with a serial data interface, refer  
to the MAX531/MAX538/MAX539 data sheet.  
4-Quadrant Multiplication with No External  
Components  
Power-On Reset  
Double-Buffered Parallel Logic Inputs  
______________Ord e rin g In fo rm a t io n  
ERROR  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
1
/
________________________Ap p lic a t io n s  
Battery-Powered Data-Conversion Products  
Minimum Component-Count Analog Systems  
Digital Offset/Gain Adjustment  
MAX530ACNG  
MAX530BCNG  
0°C to +70°C 24 Narrow Plastic DIP  
0°C to +70°C 24 Narrow Plastic DIP  
±
2
±1  
1
/
±
MAX530ACWG 0°C to +70°C 24 Wide SO  
MAX530BCWG 0°C to +70°C 24 Wide SO  
2
2
±1  
1
/
±
MAX530ACAG  
MAX530BCAG  
MAX530BC/D  
0°C to +70°C 24 SSOP  
0°C to +70°C 24 SSOP  
0°C to +70°C Dice*  
Industrial Process Control  
±1  
±1  
Arbitrary Function Generators  
Automatic Test Equipment  
Ordering Information continued on last page.  
* Dice are tested at T = +25°C, DC parameters only.  
Microprocessor-Controlled Calibration  
A
________________Fu n c t io n a l Dia g ra m  
__________________P in Co n fig u ra t io n  
REFOUT  
18  
REFIN ROFS  
TOP VIEW  
13  
22  
D1/D9  
D2/D10  
D3/D11  
D4  
D0/D8  
1
2
24  
21  
20  
RFB  
2.048V  
REFERENCE  
V
DD  
23  
22  
ROFS  
RFB  
3
17  
14  
VOUT  
REFGND  
AGND  
DAC LATCH  
4
21  
20  
19  
18  
17  
MAX530  
D5  
D6  
D7  
A0  
VOUT  
23  
12  
19  
5
POWER-ON  
RESET  
V
DD  
V
SS  
DGND  
6
MAX530  
V
SS  
REFOUT  
REFGND  
LDAC  
7
15  
8
12-BIT DAC LATCH  
CLR  
A0  
8
9
A1  
A1  
WR  
CONTROL  
LOGIC  
9
16  
15  
14  
13  
NBL  
INPUT  
LATCH  
NBM  
INPUT  
LATCH  
NBH  
INPUT  
LATCH  
11  
10  
16  
CS  
CLR  
10  
11  
12  
WR  
CS  
AGND  
REFIN  
LDAC  
DGND  
24  
D0/D8  
1
2
3
4
D4  
5 6 7  
D6  
D2/D10  
D1/D9  
DIP/SO/SSOP  
D3/D11 D5 D7  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
+5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
ABSOLUTE MAXIMUM RATINGS  
VOUT to AGND (Note 1) .............................................. V  
V
SS, DD  
V
DD  
to DGND and V to AGND ................................-0.3V, +6V  
DD  
Continuous Current, Any Input ........................................±20mA  
V
SS  
to DGND and V to AGND .................................-6V, +0.3V  
SS  
Continuous Power Dissipation (T = +70°C)  
A
V
DD  
to V ............................................................... -0.3V, +12V  
SS  
Narrow Plastic DIP (derate 13.33mW/°C above +70°C)......1067mW  
Wide SO (derate 11.76mW/°C above +70°C) .......... 941mW  
SSOP (derate 8.00mW/°C above +70°C) ..................640mW  
Operating Temperature Ranges:  
MAX530_C_ _ ...................................................0°C to +70°C  
MAX530_E_ _ ................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +165°C  
Lead Temperature (soldering, 10sec ) .......................... +300°C  
AGND to DGND........................................................-0.3V, +0.3V  
REFGND to AGND........................................-0.3V, (V + 0.3V)  
Digital Input Voltage to DGND ................... -0.3V, (V + 0.3V)  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
REFIN.................................................(V - 0.3V), (V + 0.3V)  
SS  
MAX530  
REFOUT .............................................(V - 0.3V), (V + 0.3V)  
SS  
REFOUT to REFGND................................... -0.3V, (V + 0.3V)  
RFB ...................................................(V - 0.3V), (V + 0.3V)  
SS  
ROFS .................................................(V - 0.3V), (V + 0.3V)  
SS  
Note 1: The output may be shorted to V , V , DGND, or AGND if the continuous package power dissipation and current ratings  
DD SS  
are not exceeded. Typical short-circuit currents are 20mA.  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—Single +5V Supply  
(V  
DD  
= 5V ±10%, V = 0V, AGND = DGND = REFGND = 0V, REFIN = 2.048V (external), RFB = ROFS = VOUT, C  
= 33µF,  
REFOUT  
SS  
R
= 10k, C = 100pF, T = T  
to T , unless otherwise noted.)  
MAX  
L
L
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
STATIC PERFORMANCE  
Resolution  
N
12  
Bits  
MAX530AC/AE  
±0.5  
LSB  
±1  
Relative Accuracy  
INL  
DNL  
V
= 5V (Note 2)  
DD  
MAX530BC/BE  
Differential Nonlinearity  
Unipolar Offset Error  
Guaranteed monotonic  
= 5V  
±1  
8
LSB  
LSB  
V
OS  
V
MAX530_C/E  
0
1
3
DD  
Unipolar Offset  
Temperature Coefficient  
TCV  
ppm/°C  
LSB/V  
OS  
Unipolar Offset-Error  
Power-Supply Rejection  
PSRR  
GE  
4.5V V 5.5V (Note 3)  
0.4  
1
DD  
DAC latch = all 1s,  
VOUT < V - 0.4V  
DD  
Gain Error (Note 2)  
MAX530_C/E  
±1  
LSB  
(Note 2)  
Gain-Error Temperature Coefficient  
Gain-Error Power-Supply Rejection  
DAC VOLTAGE OUTPUT (VOUT)  
Output Voltage Range  
1
ppm/°C  
LSB/V  
PSRR  
4.5V V 5.5V (Note 3)  
0.4  
1
DD  
0
2
V
DD  
- 0.4  
V
kΩ  
Resistive Load  
VOUT = 2V, load regulation ±1LSB  
DC Output Impedance  
0.2  
20  
Short-Circuit Current  
I
SC  
mA  
REFERENCE INPUT (REFIN)  
Reference Input Range  
0
V
DD  
- 2  
V
Reference Input Resistance  
Reference Input Capacitance  
AC Feedthrough  
Code dependent, minimum at code 555hex  
Code dependent (Note 4)  
(Note 5)  
40  
10  
kΩ  
pF  
dB  
50  
-80  
2
_______________________________________________________________________________________  
+5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
MAX530  
ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)  
(V  
= 5V ±10%, V = 0V, AGND = DGND = REFGND = 0V, REFIN = 2.048V (external), RFB = ROFS = VOUT, C  
= 33µF,  
DD  
SS  
REFOUT  
R
= 10k, C = 100pF, T = T  
to T  
, unless otherwise noted.)  
CONDITIONS  
L
L
A
MIN  
MAX  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
REFERENCE OUTPUT (REFOUT)  
T
= +25°C  
2.024  
2.017  
2.013  
2.048  
2.072  
2.079  
2.083  
2
A
Reference Tolerance  
V
V
DD  
= 5.0V  
MAX530BC  
MAX530BE  
V
REFOUT  
Reference Output Resistance  
Power-Supply Rejection Ratio  
Noise Voltage  
R
(Note 8)  
4.5V V  
REFOUT  
PSRR  
5.5V  
300  
µV/V  
µVp-p  
DD  
e
0.1Hz to 10kHz  
MAX530AC/AE  
MAX530BC/BE  
400  
30  
n
50  
Temperature Coefficient  
ppm/°C  
µF  
30  
Minimum Required External  
Capacitor  
C
3.3  
MIN  
DYNAMIC PERFORMANCE  
Voltage Output Slew Rate  
Voltage Output Settling Time  
Digital Feedthrough  
T
= +25°C  
0.15  
0.25  
25  
5
V/µs  
µs  
A
To ±0.5LSB, VOUT = 2V  
WR = V , digital inputs all 1s to all 0s  
DD  
nV-s  
Unity gain (Note 5)  
Gain = 2 (Note 5)  
68  
68  
Signal-to-Noise Plus  
Distortion Ratio  
SINAD  
dB  
DIGITAL INPUTS (D0-D7, LDAC, CLR, CS, WR, A0, A1)  
Logic High Input  
V
2.4  
4.5  
V
V
IH  
Logic Low Input  
V
IL  
0.8  
±1  
Digital Leakage Current  
Digital Input Capacitance  
POWER SUPPLIES  
Positive Supply-Voltage Range  
Positive Supply Current  
SWITCHING CHARACTERISTICS  
Address to WR Setup  
Address to WR Hold  
CS to WR Setup  
V
= 0V or V  
µA  
pF  
IN  
DD  
8
V
DD  
(Note 6)  
Outputs unloaded, all digital inputs = 0V or V  
5.5  
V
I
DD  
250  
400  
µA  
DD  
t
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AWS  
t
AWH  
t
0
CWS  
CS to WR Hold  
t
0
CWH  
tDS  
Data to WR Setup  
45  
0
tDH  
Data to WR Hold  
WR Pulse Width  
t
45  
45  
45  
WR  
LDAC Pulse Width  
t
LDAC  
CLR Pulse Width  
t
CLR  
Internal Power-On Reset  
Pulse Width  
t
(Note 4)  
1.3  
10  
µs  
POR  
_______________________________________________________________________________________  
3
+5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
ELECTRICAL CHARACTERISTICS—Dual ±5V Supplies  
(V = 5V ±10%, V = -5V ±10%, AGND = DGND = REFGND = 0V, REFIN = 2.048V (external), RFB = ROFS = VOUT,  
DD  
SS  
C
= 33µF, R = 10k, C = 100pF, T = T  
to T , unless otherwise noted.)  
MAX  
REFOUT  
L
L
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
STATIC PERFORMANCE  
Resolution  
N
12  
Bits  
MAX530  
MAX530AC/AE  
MAX530BC/BE  
±0.5  
LSB  
±1.5  
Relative Accuracy  
INL  
DNL  
V
= 5V, V = -5V  
DD SS  
Differential Nonlinearity  
Bipolar Offset Error  
Guaranteed monotonic  
= 5V, V = -5V  
±1  
±8  
LSB  
LSB  
V
OS  
V
MAX530_C/E  
0
3
DD  
SS  
Bipolar Offset  
Temperature Coefficient  
TCV  
ppm/°C  
LSB/V  
OS  
Bipolar Offset-Error  
Power-Supply Rejection  
4.5V V 5.5V  
DD  
PSRR  
0.4  
1
-5.5V V -4.5V (Note 3)  
SS  
Gain Error  
MAX530_C/E  
±1  
LSB  
Gain-Error Temperature Coefficient  
Gain-Error Power-Supply Rejection  
DAC VOLTAGE OUTPUT (VOUT)  
Output Voltage Range  
TC  
1
ppm/°C  
LSB/V  
PSRR  
4.5V V 5.5V, -5.5V V -4.5V (Note 3)  
0.4  
1
DD  
SS  
V
SS  
+ 0.4  
V
DD  
- 0.4  
V
kΩ  
Resistive Load  
VOUT = 2V, load regulation ±1LSB  
2
DC Output Impedance  
0.2  
20  
Short-Circuit Current  
I
SC  
mA  
REFERENCE INPUT (REFIN)  
Reference Input Range  
V
SS  
+ 2  
V
DD  
- 2  
V
Reference Input Resistance  
Reference Input Capacitance  
AC Feedthrough  
Code dependent, minimum at code 555hex  
Code dependent (Note 4)  
(Note 5)  
40  
10  
kΩ  
pF  
dB  
50  
-80  
REFERENCE OUTPUT (REFOUT)—Specifications are identical to those under Single +5V Supply  
DYNAMIC PERFORMANCE—Specifications are identical to those under Single +5V Supply  
DIGITAL INPUTS (D0-D7, LDAC, CLR, CS, WR, A0, A1)—Specifications are identical to those under Single +5V Supply  
POWER SUPPLIES  
Positive Supply Voltage  
Negative Supply Voltage  
Positive Supply Current  
Negative Supply Current  
V
(Note 6)  
(Note 7)  
4.5  
5.5  
-4.5  
400  
200  
V
V
DD  
V
SS  
-5.5  
I
DD  
Outputs unloaded, all digital inputs = 0V or V  
250  
150  
µA  
µA  
DD  
I
SS  
Outputs unloaded, all digital inputs = 0V or V  
DD  
SWITCHING CHARACTERISTICS—Specifications are identical to those under Single +5V Supply  
4
_______________________________________________________________________________________  
+5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
MAX530  
ELECTRICAL CHARACTERISTICS—Dual ±5V Supplies (continued)  
(V = 5V ±10%, V = -5V ±10%, AGND = DGND = REFGND = 0V, REFIN = 2.048V (external), RFB = ROFS = VOUT,  
DD  
SS  
C
= 33µF, R = 10k, C = 100pF, T = T  
to T , unless otherwise noted.)  
MAX  
REFOUT  
L
L
A
MIN  
Note 2: In single supply, INL and GE are calculated from code 11 to code 4095.  
Note 3: Zero Code, Bipolar and Gain Error PSRR are input referred specifications. In Unity Gain, the specification is 500µV.  
In Gain = 2 and Bipolar modes, the specification is 1mV.  
Note 4: Guaranteed by design.  
Note 5: REFIN = 1kHz, 2.0Vp-p.  
Note 6: For specified performance, V = 5V ±10% is guaranteed by PSRR tests.  
DD  
Note 7: For specified performance, V = -5V ±10% is guaranteed by PSRR tests.  
SS  
Note 8: Tested at I  
= 100µA. The reference can typically source up to 5mA (see Typical Operating Characteristics).  
OUT  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, single supply (+5V), unity gain, code = all 1s, unless otherwise noted).  
A
INTEGRAL NONLINEARITY vs.  
INTEGRAL NONLINEARITY vs.  
DIGITAL INPUT CODE (11–4095)  
DIGITAL INPUT CODE (0–11)  
OUTPUT SINK CAPABILITY vs.  
OUTPUT PULL-DOWN VOLTAGE  
16  
14  
12  
10  
8
0.25  
0
0.25  
DUAL  
SUPPLIES  
0
-0.50  
6
SINGLE  
SUPPLY  
4
-1.00  
-1.25  
2
-0.25  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
2
4
6
8
10  
12  
11 512 1024 1536 2048 2560 3072 3584 4095  
DIGITAL INPUT CODE (DECIMAL)  
OUTPUT PULL-DOWN VOLTAGE (V)  
DIGITAL INPUT CODE (DECIMAL)  
OUTPUT SOURCE CAPABILITY vs.  
OUTPUT PULL-UP VOLTAGE  
REFERENCE VOLTAGE vs.  
TEMPERATURE  
ANALOG FEEDTHROUGH vs.  
FREQUENCY  
-110  
-100  
-90  
8
7
6
5
4
3
2.055  
2.050  
-80  
-70  
REFIN = 2V  
p-p  
-60  
-50  
-40  
-30  
-20  
-10  
2
1
0
CODE = ALL 0s,  
DUAL SUPPLIES (±5V)  
0
2.045  
0
1
2
3
4
5
1
10  
100  
1k  
10k 100k 1M  
-60 -40 -20  
0 20 40 60 80 100 120  
140  
OUTPUT PULL-UP VOLTAGE (V)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
+5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, single supply (+5V), unity gain, code = all 1s, unless otherwise noted).  
A
SUPPLY CURRENT vs. TEMPERATURE  
GAIN vs. FREQUENCY  
AMPLIFIER SIGNAL-TO- NOISE RATIO  
300  
4
80  
70  
60  
50  
40  
30  
20  
10  
REFIN = 4Vp-p  
REFIN = 4Vp-p  
290  
2
0
MAX530  
280  
270  
260  
250  
-2  
-4  
-6  
-8  
DUAL SUPPLIES (±5V)  
DUAL SUPPLIES (±5V)  
-10  
-12  
240  
230  
-14  
0
60  
100  
-60 -40 -20  
0
20 40  
80  
1
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
GAIN AND PHASE vs.  
FREQUENCY  
REFERENCE OUTPUT VOLTAGE  
vs. REFERENCE LOAD CURRENT  
SUPPLY CURRENT vs. REFIN  
-200  
180  
250  
200  
2.0480  
2.0475  
(G = 2)  
(G = 1)  
REFGND = AGND  
-100  
GAIN  
2.0470  
2.0465  
2.0460  
2.0455  
2.0450  
150  
100  
50  
0
-100  
-200  
0
PHASE  
REFGND = V  
DD  
REFIN = EXTERNAL  
-180  
-300  
0
1
10  
100  
800  
0
50 100 150 200 250 300 350 400 450 500  
REFIN (mV)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
REFERENCE LOAD CURRENT (mA)  
FREQUENCY (kHz)  
SETTLING TIME (RISING)  
DIGITAL FEEDTHROUGH  
SETTLING TIME (FALLING)  
A
A
B
A
B
B
5µs/div  
s/div  
2µs/div  
A: DIGITAL INPUTS RISING EDGE,  
B: VOUT NO LOAD, 1V/div  
A: DIGITAL INPUTS FALLING EDGE, 5V/div  
B: VOUT, NO LOAD, 1V/div  
DUAL SUPPLY (±5V)  
A: D0...D7 = 100kHz, 4Vp-p  
B: VOUT, 10mV/div  
,
DUAL SUPPLY (±5V)  
LDAC = LOW  
LDAC = LOW  
LDAC = CS = HIGH  
BIPOLAR CONFIGURATION  
BIPOLAR CONFIGURATION  
V
REFIN  
= 2V  
V
REFIN  
= 2V  
6
_______________________________________________________________________________________  
+5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
MAX530  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1
2
3
4
5
6
7
D1/ D9  
D2/ D10  
D3/ D11  
D4  
D1 Input Dta, when A0 = 0 and A1 = 1, or D9 Input when A0 = A1 = 1*  
D2 Input Dta, when A0 = 0 and A1 = 1, or D10 Input when A0 = A1 = 1*  
D3 Input Dta, when A0 = 0 and A1 = 1, or D11 (MSB) Input when A0 = A1 =1*  
D4 Input Dta, or tie to D0 and multiplex when A0 = 1 and A1 = 0*  
D5 Input Dta, or tie to D1 and multiplex when A0 = 1 and A1 = 0*  
D6 Input Dta, or tie to D2 and multiplex when A0 = 1 and A1 = 0*  
D7 Input Dta, or tie to D3 and multiplex when A0 = 1 and A1 = 0*  
D5  
D6  
D7  
Address Line A0. With A1, used to multiplex 4 of 12 data lines to load low (NBL), middle (NBM),  
and high (NBH) 4-bit nibbles. (12 bits can also be loaded as 8+4.)  
8
9
A0  
A1  
Address Line A1. Set A0 = A1 = 0 for NBL and NBM, A0 = 0 and A1 = 1 for NBL, A0 = 1 and  
A1 = 0 for NBM, or A0 = A1 = 1 for NBH. See Table 2 for complete input latch addressing.  
10  
11  
12  
WR  
CS  
Write Input (active low). Used with CS to load data into the input latch selected by A0 and A1.  
Chip Select (active low). Enables addressing and writing to this chip from common bus lines.  
Digital Ground  
DGND  
Reference Input. Input for the R-2R DAC. Connect an external reference to this pin or a jumper to  
REFOUT (pin 18) to use the internal 2.048V reference.  
13  
REFIN  
14  
15  
AGND  
CLR  
Analog Ground  
Clear (active low). A low on CLR resets the DAC latches to all 0s.  
Load DAC Input (active low). Driving this asynchronous input low transfers the contents of the input  
latch to the DAC latch and updates VOUT.  
16  
17  
LDAC  
Reference Ground must be connected to AGND when using the internal reference. Connect to V  
DD  
REFGND  
REFOUT  
to disable the internal reference and save power.  
18  
19  
20  
21  
22  
23  
24  
Reference Output. Output of the internal 2.048V reference. Tie to REFIN to drive the R-2R DAC.  
Negative Power Supply. Usually ground for single-supply or -5V for dual-supply operation.  
Voltage Output. Op-amp buffered DAC output.  
V
SS  
VOUT  
RFB  
Feedback Pin. Op-amp feedback resistor. Always connect to VOUT.  
Offset Resistor Pin. Connect to VOUT for G = 1, to AGND for G = 2, or to REFIN for bipolar output.  
Positive Power Supply (+5V)  
ROFS  
V
DD  
D0/D8  
D0 (LSB) Input Dta when A0 = 0 and A1 = 1, or D8 Input when A0 = A1= 1*  
* This applies to 4 + 4 + 4 input loading mode. See Table 2 for 8 + 4 input loading mode.  
_______________________________________________________________________________________  
7
+5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
tion, however, the output voltage would be the inverse of  
________________De ta ile d De s c ription  
the reference voltage. The MAX530s topology makes the  
ladder output voltage the same polarity as the reference  
input, which makes the device suitable for single-supply  
operation. The BiCMOS op amp is then used to buffer,  
invert, or amplify the ladder signal.  
The MAX530 consists of a parallel-input logic interface, a  
12-bit R-2R ladder, a reference, and an op amp. The  
Functional Diagram shows the control lines and signal  
flow through the input data latch to the DAC latch, as well  
as the 2.048V reference and output op amp. Total supply  
current is typically 250µA with a single +5V supply. This  
circuit is ideal for battery-powered, microprocessor-con-  
trolled applications where high accuracy, no adjustments,  
and minimum component count are key requirements.  
Ladder resistors are nominally 80kto conserve power  
and are laser trimmed for gain and linearity. The input  
impedance at REFIN is code dependent. When the DAC  
register is all 0s, all rungs of the ladder are grounded  
and REFIN is open or no load. Maximum loading (mini-  
mum REFIN impedance) occurs at code 010101... or  
555hex. Minimum reference input impedance at this  
code is guaranteed to be not less than 40k.  
MAX530  
R-2R La dde r  
The MAX530 uses an inverted” R-2R ladder network with  
a BiCMOS op amp to convert 12-bit digital data to analog  
voltage levels. Figure 1 shows a simplified diagram of the  
R-2R DAC and op amp. Unlike a standard DAC, the  
MAX530 uses an inverted” ladder network. Normally, the  
REFIN pin is the current output of a standard DAC and  
would be connected to the summing junction, or virtual  
ground, of an op amp. In this standard DAC configura-  
The REFIN and REFOUT pins allow the user to choose  
between driving the R-2R ladder with the on-chip refer-  
ence or an external reference. REFIN may be below ana-  
log ground when using dual supplies. See the External  
Reference and Four-Quadrant Multiplication sections for  
more information.  
In t e rn a l Re fe re n c e  
The on-chip reference is laser trimmed to generate  
2.048V at REFOUT. The output stage can source and  
sink current so REFOUT can settle to the correct volt-  
age quickly in response to code-dependent loading  
changes. Typically source current is 5mA and sink cur-  
rent is 100µA.  
2R  
ROFS  
2R  
MAX530  
RFB  
VOUT  
OUTPUT  
R
R
R
REFOUT connects the internal reference to the R-2R  
DAC ladder at REFIN. The R-2R ladder draws 50µA  
maximum load current. If any other connection is made  
to REFOUT, ensure that the total load current is less  
than 100µA to avoid gain errors.  
BUFFER  
2R 2R  
2R  
2R  
2R  
LSB  
MSB  
*
R = 80kΩ  
REFIN  
AGND  
A separate REFGND pin is provided to isolate refer-  
ence currents from other analog and digital ground  
currents. To achieve specified noise performance, con-  
nect a 33µF capacitor from REFOUT to REFGND (see  
Figure 2). Using smaller capacitance values increases  
noise, and values less than 3.3µF may compromise the  
references stability. For applications requiring the low-  
est noise, insert a buffered RC filter between REFOUT  
a nd REFIN. Whe n us ing the inte rna l re fe re nc e ,  
REFGND must be connected to AGND. In applications  
not requiring the internal reference, connect REFGND  
REFOUT  
2.048V  
CLR  
DAC LATCH  
MSB  
LSB  
NBL  
INPUT  
LATCH  
NBM  
INPUT  
LATCH  
NBH  
INPUT  
LATCH  
REFGND  
D0/D8  
D1/D9  
D4  
D2/D10  
D6  
*SHOWN FOR ALL 1s  
to V , which shuts down the reference and saves typ-  
D3/D11  
D5 D7  
DD  
ically 100µA of V supply current.  
DD  
Figure 1. Simplified MAX530 DAC Circuit  
8
_______________________________________________________________________________________  
+5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
MAX530  
Ex t e rn a l Re fe re n c e  
R
S
REFOUT  
An e xte rna l re fe re nc e in the ra ng e (V  
+ 2V) to  
SS  
TOTAL  
REFERERNCE  
NOISE  
C
S
(V  
DD  
- 2V) may be used with the MAX530 in dual-sup-  
ply, unity-gain operation. In single-supply, unity-gain  
operation, the reference must be positive and may not  
C
REFOUT  
TEK 7A22  
exceed (V  
- 2V). The reference voltage determines  
DD  
300  
250  
200  
150  
100  
50  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
the DACs full-s c a le outp ut. Be c a us e of the c od e -  
dependent nature of reference input impedances, a  
high-quality, low-output-impedance amplifier (such as  
the MAX480 low-power, precision op amp) should be  
used to drive REFIN.  
SINGLE POLE ROLLOFF  
C
= 3.3µF  
REFOUT  
If an upgrade to the internal reference is required, the  
2.5V MAX873A is id e a l: ± 15mV initia l a c c ura c y,  
7ppm/°C (max) temperature coefficient.  
0.6  
0.4  
0.2  
0.0  
P o w e r-On Re s e t  
C
= 47µF  
REFOUT  
An internal power-on reset (POR) circuit forces the  
DAC register to reset to all 0s when V is first applied.  
0
DD  
The POR pulse is typically 1.3µs; however, it may take  
2ms for the internal reference to charge its large filter  
capacitor and settle to its trimmed value.  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 2. Reference Noise vs. Frequency  
In addition to POR , a clear (CLR) pin, when held low,  
sets the DAC register to all 0s. CLR operates asynchro-  
nously and independently from chip select (CS). With  
the DAC input at all 0s, the op-amp output is at zero for  
Ou t p u t Bu ffe r  
The output amplifier uses a folded cascode input stage  
and a type AB output stage. Large output devices with  
low s e rie s re s is ta nc e a llow the outp ut to s wing to  
ground in single-supply operation. The output buffer is  
unity-gain stable. Input offset voltage and supply cur-  
rent are laser trimmed. Settling time is 25µs to 0.01% of  
final value. The output is short-circuit protected and  
can drive a 2kload with more than 100pF of load  
capacitance. The op amp may be placed in unity-gain  
(G = 1), in a gain of two (G = 2), or in a bipolar-output  
mode by using the ROFS and RFB pins. These pins are  
used to define a DAC output voltage range of 0V to  
+2.048V, 0V to +4.096V or ±2.048V, by connecting  
ROFS to VOUT, GND, or REFIN. RFB is always con-  
nected to VOUT. Table 1 summarizes ROFS usage.  
unity-gain and G = 2 configurations, but it is at -V  
for the bipolar configuration.  
REF  
S h u t d o w n Mo d e  
The MAX530 is designed for low power consumption.  
Understanding the circuit allows power consumption  
management for maximum efficiency. In single-supply  
mode (V  
= +5V, V = GND) the initial supply cur-  
DD  
SS  
rent is typically only 160µA, including the reference, op  
a mp , a nd DAC. This low c urre nt oc c urs whe n the  
power-on reset circuit clears the DAC to all 0s and  
forces the op-amp output to zero (unipolar mode only).  
See the Supply Current vs. REFIN graph in the Typical  
Operating Characteristics. Under this condition, there  
is no internal load on the reference (DAC = 000hex,  
REFIN is open circuit) and the op amp operates at its  
minimum quiescent current. The CLR signal resets the  
MAX530 to these same conditions and can be used to  
control a power-saving mode when the DAC is not  
being used by the system.  
Table 1. ROFS Usage  
ROFS  
CONNECTED TO:  
DAC OUTPUT  
RANGE  
OP-AMP  
GAIN  
VOUT  
AGND  
REFIN  
0V to 2.048V  
0V to 4.096V  
G = 1  
G = 2  
-2.048V to +2.048V  
Bipolar  
Note: Assumes RFB = VOUT and REFIN = REFOUT = 2.048V  
_______________________________________________________________________________________  
9
+5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
REFOUT  
REFIN  
ROFS  
33µF  
2.048V  
REFERENCE  
RFB  
MAX530  
REFGND  
AGND  
V
OUT  
2N7002  
DAC  
POWER-ON  
RESET  
DGND  
MAX530  
V
DD  
+5V  
12-BIT DAC LATCH  
CLR  
V
SS  
NBL  
INPUT  
LATCH  
NBM  
INPUT  
LATCH  
NBH  
INPUT  
LATCH  
A0  
A1  
CS  
CONTROL  
LOGIC  
WR  
LDAC  
D0/D8  
D1/D9  
D4  
D2/D10  
D6  
D3/D11  
D5 D7  
Figure 3. Low-Current Shutdown Mode  
An additional 110µA of supply current can be saved  
when the internal reference is not used by connecting  
modes. This reduces the total single-supply operating  
current from 250µA (400µA max) to typically 40µA in  
shutdown mode.  
REFGND to V . A low on resistance N-channel FET,  
DD  
such as the 2N7002, can be used to turn off the internal  
reference to create a shutdown mode with minimum  
current drain (Figure 3). When CLR is high, the transis-  
tor pulls REFGND to AGND and the reference and DAC  
operate normally. When CLR goes low, REFGND is  
A small error voltage is added to the reference output  
by the reference current flowing through the N-channel  
pull-down transistor. The switchs on resistance should  
be less than 5. A typical reference current of 100µA  
would add 0.5mV to REFOUT. Since the reference cur-  
rent and on resistance increase with temperature, the  
overall temperature coefficient will degrade slightly.  
pulled up to V and the reference is shut down. At the  
DD  
same time, CLR resets the DAC register to all 0s, and  
the op-amp output goes to 0V for unity-gain and G = 2  
As data is loaded into the DAC and the output moves  
above GND, the op-amp quiescent current increases to  
its nominal value and the total operating current aver-  
ages 250µA. Using dual supplies (±5V), the op amp is  
Table 2. Input Latch Addressing  
CLR CS WR LDAC A0 A1  
DATA UPDATED  
Reset DAC Latches  
No Operation  
L
H
H
H
H
H
H
H
H
X
H
X
L
L
L
H
L
L
X
X
H
L
L
L
H
L
L
X
H
H
H
H
H
L
X
X
X
H
H
L
X
X
X
H
L
fully biased continuously, and the V supply current is  
DD  
more constant at 250µA. The V current is typically  
SS  
150µA.  
No Operation  
The MAX530 logic inputs are compatible with TTL and  
CMOS logic levels. However, to achieve the lowest  
power dissipation, drive the digital inputs with rail-to-rail  
CMOS logic. With TTL logic levels, the power require-  
ment increases by a factor of approximately 2.  
NBH (D8-D11)  
NBM (D4-D7)  
H
X
L
NBL (D0-D3)  
X
L
Update DAC Only  
DAC NOT UPDATED  
NBH and Update DAC  
X
L
H
H
10 ______________________________________________________________________________________  
+5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
MAX530  
ADDRESS BUS VALID  
V
IH  
A0-A1  
CS  
V
IL  
t
AWH  
t
CWS  
t
CWH  
WR  
t
WR  
t
AWS  
t
DS  
t
DH  
V
V
IL  
IH  
DATA BITS  
(8-BIT BYTE OR  
4-BIT NIBBLE)  
DATA BUS  
VALID  
CLR  
t
CLR  
LDAC  
t
LDAC  
V
V
IH + IL  
2
NOTE: TIMING MEASUREMENT REFERENCE LEVEL IS  
Figure 4. MAX530 Write-Cycle Timing Diagram  
for the high, middle, or low data nibbles. The µP sends  
chip select (CS) and write (WR) signals to latch in each of  
three nibbles in three cycles when the data is valid.  
P a ra lle l Lo g ic In t e rfa c e  
Designed to interface with 4-bit, 8-bit, and 16-bit micro-  
processors (µPs), the MAX530 uses 8 data pins and  
double-buffered logic inputs to load data as 4 + 4 + 4  
or 8 + 4. The 12-bit DAC latch is updated simultane-  
ously through the control signal LDAC. Signals A0, A1,  
WR, and CS select which input latches to update. The  
12-bit data is broken down into nibbles (NB); NBL is  
the enable signal for the lowest 4 bits, NBM is the  
enable for the middle 4 bits, and NBH is the enable for  
the highest and most significant 4 bits. Table 2 lists the  
address decoding scheme.  
Figure 7 shows a typical interface to an 8-bit or a 16-bit  
µP. Connect 8 data bits from the data bus to pins D0-D7  
on the MAX530. With LDAC held high, the user can load  
+
NBH or NBL NBM in any order. Figure 8a shows the  
corresponding timing sequence. For fastest throughput,  
use Figure 8bs sequence. Address lines A0 and A1 are  
tied together and the DAC is loaded in 2 cycles as 8 + 4.  
In this scheme, with LDAC  
held low, the DAC latch is  
transparent. Always load NBL and NBM first, followed by  
NBH.  
Refer to Figure 4 for the MAX530 write-cycle timing  
diagram.  
LDAC is asynchronous with respect to WR. If LDAC is  
brought low before or at the same time WR goes high,  
LDAC must remain low for at least 50ns to ensure the cor-  
rect data is latched. Data is latched into DAC registers on  
LDACs rising edge.  
Figure 5 shows the circuit configuration for a 4-bit µP  
application. Figure 6 shows the corresponding timing  
sequence. The 4 low bits (D0-D3) are connected in paral-  
lel to the other 4 bits (D4-D7) and then to the µP bus.  
Address lines A0 and A1 enable the input data latches  
______________________________________________________________________________________ 11  
+5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
DATA BUS  
D0-D7  
D0-D7  
D0-D7  
D0-D3  
DATA BUS  
D0-D3  
D0-D3  
D4-D7  
FROM  
SYSTEM  
RESET  
FROM  
SYSTEM  
RESET  
D0-D3  
CLR  
CLR  
MAX530  
CS LDAC  
A0, A1  
WR  
MAX530  
MAX530  
CS LDAC  
A0-A1  
WR  
MC6800  
MC6809  
02  
E
EN DECODER  
A13-A15  
R/W  
DECODER  
R/W  
EN  
ADDRESS BUS A0, A1  
A0  
A0-A15  
A0-A15 ADDRESS BUS  
A13-A15  
Figure 7. 8-Bit and 16-Bit µP Interface  
Figure 5. 4-Bit µP Interface  
A0 = 1, A1 = 1  
NBH  
NBM  
A0 = 1, A1 = 0  
NBL  
CS  
A0 = 0, A1 = 1  
WR  
LDAC  
DAC UPDATE  
Figure 6. 4-Bit µP Timing Sequence  
A0 = A1 = 1  
NBH  
A0 = A1 = 0  
NBL & NBM  
CS  
WR  
LDAC  
DAC UPDATE  
Figure 8a. 8-Bit and 16-Bit µP Timing Sequence Using LDAC  
12 ______________________________________________________________________________________  
+5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
MAX530  
A0 = A1 = 0  
NBL & NBM  
A0 = A1 = 1  
NBH  
CS  
WR  
LDAC = 0 (DAC LATCH IS TRANSPARENT)  
DAC UPDATE  
Figure 8b. 8-Bit and 16-Bit µP Timing Sequence with LDAC = 0  
A 0V to 4.096V unipolar output range is set up by con-  
necting ROFS to AGND and RFB to VOUT (Figure 10).  
Table 4 shows the DAC-latch contents vs. VOUT. The  
Un ip o la r Co n fig u ra t io n  
The MAX530 is configured for a 0V to +2.048V unipolar  
output range by connecting ROFS and RFB to VOUT  
(Figure 9). The converter operates from either single or  
dual supplies in this configuration. See Table 3 for the  
MAX530 operates from either single or dual supplies in  
-12  
this mode. In this range, 1LSB = (2)(REFIN)(2  
) =  
-11  
(REFIN)(2  
).  
DAC-latch contents (input) vs. the analog VOUT (output).  
-12  
In this range, 1LSB = REFIN (2  
).  
+5V  
+5V  
V
DD  
V
DD  
REFIN  
REFIN  
ROFS  
REFOUT  
REFOUT  
33µF  
33µF  
MAX530  
MAX530  
AGND  
ROFS  
RFB  
RFB  
AGND  
DGND  
V
OUT  
VOUT  
VOUT  
DGND  
V
OUT  
REFGND  
REFGND  
G = 2  
V
SS  
V
SS  
G = 1  
0V TO -5V  
0V TO -5V  
Figure 9. Unipolar Configuration (0V to +2.048V Output)  
Figure 10. Unipolar Configuration (0V to +4.096V Output)  
______________________________________________________________________________________ 13  
+5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
Table 3. Unipolar Binary Code Table  
Table 4. Unipolar Binary Code Table  
(0V to V  
Output), Gain = 1  
(0V to 2V  
Output), Gain = 2  
REFIN  
REFIN  
OUTPUT  
INPUT  
OUTPUT  
INPUT  
4095  
4096  
4095  
4096  
(V  
)
1111 1111  
1000 0000  
1111  
0001  
+2 (V  
)
1111 1111  
1000 0000  
1111  
0001  
REFIN  
REFIN  
MAX530  
2049  
4096  
2049  
4096  
(V  
REFIN  
)
+2 (V  
)
REFIN  
2048  
4096  
2048  
4096  
(V  
)
= +V  
/2  
REFIN  
= +V  
REFIN  
1000 0000  
0111 1111  
+2 (V  
)
0000  
1111  
1000 0000  
0111 1111  
REFIN  
0000  
1111  
REFIN  
2047  
4096  
2047  
4096  
(V  
)
+2 (V  
+2 (V  
)
REFIN  
REFIN  
1
1
4096  
0000 0000  
0000 0000  
(V  
)
0001  
0000  
0000 0000  
0000 0000  
)
0001  
0000  
REFIN  
REFIN  
4096  
OV  
OV  
Bip o la r Co n fig u ra t io n  
bipolar range is set up by con-  
necting ROFS to REFIN and RFB to VOUT, and operat-  
ing from d ua l (± 5V) s up p lie s (Fig ure 11). Ta b le 5  
Table 5. Bipolar (Offset Binary) Code Table  
A -V  
to +V  
REFIN  
REFIN  
(-V  
to +V  
Output)  
REFIN  
REFIN  
OUTPUT  
INPUT  
shows the DAC-latch contents (input) vs. VOUT (out-  
-11  
put). In this range, 1 LSB = REFIN (2  
).  
2047  
)
(+V  
REFIN  
1111 1111  
1111  
2048  
Fo u r-Qu a d ra n t Mu lt ip lic a t io n  
The MAX530 can be used as a four-quadrant multiplier  
by connecting ROFS to REFIN and RFB to VOUT and,  
us ing (1) a n offs e t b ina ry d ig ita l c od e , (2) b ip ola r  
p owe r s up p lie s , a nd (3) a b ip ola r a na log inp ut a t  
1
2048  
1000 0000  
1000 0000  
0111 1111  
(+V  
)
0001  
0000  
1111  
REFIN  
0V  
REFIN within the range V + 2V to V - 2V, as shown  
SS  
DD  
in Figure 12.  
1
2048  
(-V  
REFIN  
)
In general, a 12-bit DACs output is (D)(V  
)(G),  
REFIN  
where G is the gain (1 or 2) and D” is the binary rep-  
12  
resentation of the digital input divided by 2 or 4,096.  
2047  
2048  
0000 0000  
0000 0000  
(-V  
)
0001  
0000  
REFIN  
This formula is precise for unipolar operation. However,  
for bipolar, offset binary operation, the MSB is really a  
polarity bit. No resolution is lost, because there is the  
same number of steps. The output voltage, however,  
has been shifted from a range of, for example, 0V to  
4.096V (G = 2) to a range of -2.048V to +2.048V.  
2048  
2048  
(-V  
REFIN  
)
= -V  
REFIN  
Keep in mind that when using the DAC as a four-quad-  
rant multiplier, the scale is skewed. The negative full  
scale is -V  
- 1LSB.  
, while the positive full scale is +V  
REFIN  
REFIN  
14 ______________________________________________________________________________________  
+5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
MAX530  
+5V  
+5V  
V
DD  
REFIN  
REFIN  
ROFS  
REFIN  
ROFS  
REFOUT  
REFGND  
33µF  
MAX530  
MAX530  
RFB  
AGND  
DGND  
RFB  
AGND  
V
OUT  
V
OUT  
DGND  
VOUT  
VOUT  
REFGND  
V
SS  
-5V  
-5V  
Figure 12. Four-Quadrant Multiplying Circuit  
Figure 11. Bipolar Configuration (-2.048V to +2.048V Output)  
cations, connect V to AGND at the chip. The best  
SS  
__________Ap p lic a t io n s In fo rm a t io n  
ground connection may be achieved by connecting  
the AGND, REFGND, and DGND pins together and  
connecting that point to the system analog ground  
plane. If DGND is connected to the system digital  
ground, digital noise may get through to the DACs ana-  
log portion.  
S in g le -S u p p ly Lin e a rit y  
As with any amplifier, the MAX530s output op amp offset  
can be positive or negative. When the offset is positive, it  
is easily accounted for. However, when the offset is nega-  
tive, the output cannot follow linearly when there is no  
negative supply. In that case, the amplifier output (VOUT)  
remains at ground until the DAC voltage is sufficient to  
overcome the offset and the output becomes positive.  
The resulting transfer function is shown in Figure 13.  
Bypass V  
(and V in dual-supply mode) with a  
SS  
DD  
0.1µF ceramic capacitor connected between V  
and  
DD  
AGND (a nd b e twe e n V  
a nd AGND). Mount the  
SS  
capacitors with short leads close to the device.  
Normally, linearity is measured after allowing for zero  
error and gain error. Since, in single-supply operation,  
the actual value of a negative offset is unknown, it can-  
not be accounted for during test. In the MAX530, linear-  
ity and gain error are measured from code 11 to code  
4095 (see Note 2 under Electrical Characteristics). The  
output amplifier offset does not affect monotonicity, and  
these DACs are guaranteed monotonic starting with  
code zero. In dual-supply operation, linearity and gain  
error are measured from code 0 to 4095.  
AC Co n s id e ra t io n s  
Digital Feedthrough  
High-speed data at any of the digital input pins may  
couple through the DAC package and cause internal  
stray capacitance to appear as noise at the DAC out-  
put, even though LDAC and CS are held high (see  
Typ ic a l Op e ra ting Cha ra c te ris tic s ). This d ig ita l  
feedthrough is tested by holding LDAC and CS high  
and toggling the data inputs from all 1s to all 0s.  
P o w e r-S u p p ly Byp a s s in g  
a n d Gro u n d Ma n a g e m e n t  
Best system performance is obtained with printed cir-  
cuit boards that use separate analog and digital ground  
planes. Wire-wrap boards are not recommended. The  
two ground planes should be connected together at the  
low-impedance power-supply source.  
Analog Feedthrough  
Because of internal stray capacitance, higher-frequen-  
cy analog input signals at REFIN may couple to the  
output, even when the input digital code is all 0s, as  
shown in the Typical Operating Characteristics graph  
Analog Feedthrough vs. Frequency. It is tested by set-  
ting CLR to low (which sets the DAC latches to all 0s)  
and sweeping REFIN.  
AGND and REFGND should be connected together,  
and then to DGND at the chip. For single-supply appli-  
______________________________________________________________________________________ 15  
+5 V, Lo w -P o w e r, P a ra lle l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit DAC  
___________________Ch ip To p o g ra p h y  
D3/D11 D1/D9  
V
DD  
RFB  
POSITIVE OFFSET  
D4 D2/D10 D0/D8  
ROFS  
MAX530  
4
3
2
1
0
NEGATIVE OFFSET  
VOUT  
1
2
3
4
5
6
7
8
D5  
D6  
0. 133"  
(3. 378mm)  
DAC CODE (LSBs)  
V
SS  
D7  
A0  
Figure 13. Single-Supply DAC Transfer Function  
REFOUT  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
REFGND  
LDAC  
A1  
ERROR  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
DGND  
AGND  
WR CS  
CLR  
1
REFIN  
/
MAX530AENG -40°C to +85°C 24 Narrow Plastic DIP  
MAX530BENG -40°C to +85°C 24 Narrow Plastic DIP  
MAX530AEWG -40°C to +85°C 24 Wide SO  
MAX530BEWG -40°C to +85°C 24 Wide SO  
MAX530AEAG -40°C to +85°C 24 SSOP  
MAX530BEAG -40°C to +85°C 24 SSOP  
±
2
0. 087"  
(2. 210mm)  
±1  
1
/
±
2
±1  
1
/
±
2
TRANSISTOR COUNT: 913;  
SUBSTRATE CONNECTED TO V  
±1  
DD.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1995 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX530ACNG-T

D/A Converter, 1 Func, Parallel, Word Input Loading, 25us Settling Time, PDIP24, PLASTIC, DIP-24
MAXIM

MAX530ACWG

+5V, Low-Power, Parallel-Input, Voltage-Output, 12-Bit DAC
MAXIM

MAX530ACWG+T

D/A Converter, 1 Func, Parallel, Word Input Loading, 25us Settling Time, PDSO24, SO-24
MAXIM

MAX530AEAG

+5V, Low-Power, Parallel-Input, Voltage-Output, 12-Bit DAC
MAXIM

MAX530AEAG+

D/A Converter, 1 Func, Parallel, Word Input Loading, 25us Settling Time, PDSO24, SSOP-24
MAXIM

MAX530AEAG+T

D/A Converter, 1 Func, Parallel, Word Input Loading, 25us Settling Time, PDSO24, SSOP-24
MAXIM

MAX530AENG

+5V, Low-Power, Parallel-Input, Voltage-Output, 12-Bit DAC
MAXIM

MAX530AENG+

D/A Converter, 1 Func, Parallel, Word Input Loading, 25us Settling Time, PDIP24, PLASTIC, DIP-24
MAXIM

MAX530AEWG

+5V, Low-Power, Parallel-Input, Voltage-Output, 12-Bit DAC
MAXIM

MAX530AMRG

12-Bit Digital-to-Analog Converter
MAXIM

MAX530BC/D

+5V, Low-Power, Parallel-Input, Voltage-Output, 12-Bit DAC
MAXIM

MAX530BCAG

+5V, Low-Power, Parallel-Input, Voltage-Output, 12-Bit DAC
MAXIM