MAX5331UCB+ [MAXIM]

D/A Converter, 1 Func, Serial Input Loading, PQFP64, TQFP-64;
MAX5331UCB+
型号: MAX5331UCB+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 1 Func, Serial Input Loading, PQFP64, TQFP-64

信息通信管理 转换器
文件: 总16页 (文件大小:893K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3563; Rev 1; 5/05  
12-Bit DACs with 32-Channel  
Sample-and-Hold Outputs  
General Description  
Features  
Integrated 12-Bit DAC and 32-Channel SHA with  
SRAM and Sequencer  
The MAX5331/MAX5332/MAX5333 are 12-bit digital-to-  
analog converters (DACs) with 32 sample-and-hold  
(SHA) outputs for applications where a high number of  
programmable voltages are required. These devices  
include a clock oscillator and a sequencer that updates  
the DAC with codes from an internal SRAM. No external  
components are required to set offset and gain.  
32 Voltage Outputs  
0.03% FSR (typ) Output Linearity  
3.2mV Output Resolution  
Flexible Output Voltage Range  
Remote Ground Sensing  
The MAX5331/MAX5332/MAX5333 feature a -4.5V to  
+9.2V output voltage range. Other features include a  
3.2mV/step resolution, with output linearity error, typi-  
cally 0.03% of full-scale range (FSR). The 100kHz  
refresh rate updates each SHA every 320µs, resulting  
in negligible output droop. Remote ground sensing  
allows the outputs to be referenced to the local ground  
of a separate device.  
Fast Sequential Loading: 1.3µs per Register  
Burst- and Immediate-Mode Addressing  
No External Components Required for Setting  
Gain and Offset  
Integrated Output Clamp Diodes  
Three Output-Impedance Options  
MAX5331 (50), MAX5332 (500), and  
MAX5333 (1k)  
These devices are controlled through a 20MHz  
SPI™/QSPI™/MICROWIRE™-compatible 3-wire serial  
interface. Immediate update mode allows any channel’s  
output to be updated within 20µs. Burst mode allows  
multiple values to be loaded into memory in a single,  
high-speed data burst. All channels are updated within  
330µs of data being loaded.  
Ordering Information  
PART  
TEMP RANGE  
0°C to +85°C  
0°C to +85°C  
0°C to +85°C  
0°C to +85°C  
0°C to +85°C  
PIN-PACKAGE  
64 TQFP  
MAX5331UCB  
MAX5331UTK*  
MAX5332UCB  
MAX5332UTK*  
MAX5333UCB  
68 Thin QFN  
64 TQFP  
Each device features an output clamp and output resis-  
tors for filtering. The MAX5331 features a 50output  
impedance and is capable of driving up to 250pF of  
output capacitance. The MAX5332 features a 500out-  
put impedance and is capable of driving up to 10nF of  
output capacitance. The MAX5333 features a 1kout-  
put impedance and is capable of driving up to 10nF of  
output capacitance.  
68 Thin QFN  
64 TQFP  
MAX5333UTK*  
0°C to +85°C  
68 Thin QFN  
*Future product—contact factory for availability.  
Pin Configurations  
The MAX5331/MAX5332/MAX5333 are available in 12mm  
x 12mm, 64-pin TQFP and 10mm x 10mm, 68-pin thin  
QFN packages.  
TOP VIEW  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
N.C.  
N.C.  
GS  
1
2
3
4
5
6
7
8
9
48  
47 CH  
46  
V
DD  
________________________Applications  
V
SS  
MEMS Mirror Servo Control  
Industrial Process Control  
Automatic Test Equipment  
Instrumentation  
V
45 OUT20  
44 OUT19  
43 OUT18  
42 OUT17  
41 OUT16  
40 AGND  
LDAC  
RST  
CS  
DIN  
SCLK  
MAX5331  
MAX5332  
MAX5333  
V
LOGIC  
IMMED 10  
ECLK 11  
39 V  
DD  
38 OUT15  
37 OUT14  
36 OUT13  
35 OUT12  
34 OUT11  
33 CL  
CLKSEL 12  
DGND 13  
V
14  
AGND 15  
16  
LSHA  
V
SS  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
TQFP  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor, Corp.  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
12-Bit DACs with 32-Channel  
Sample-and-Hold Outputs  
ABSOLUTE MAXIMUM RATINGS  
V
V
V
V
to AGND.......................................................-0.3V to +12.2V  
to AGND .........................................................-6.0V to +0.3V  
Maximum Current Into Logic Inputs ................................. 20mA  
DD  
SS  
DD  
Continuous Power Dissipation (T = +70°C)  
A
to V ...........................................................................+15V  
64-Pin TQFP (derate 13.3mW/°C above +70°C) ............1066mW  
68-Pin Thin QFN (derate 28.6mW/°C above +70°C)......2285mW  
Operating Temperature Range...............................0°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
SS  
, V  
, V  
to AGND or DGND..............-0.3V to +6V  
LDAC LOGIC LSHA  
REF to AGND............................................................-0.3V to +6V  
GS to AGND................................................................V to V  
CL and CH to AGND...................................................V to V  
Logic Inputs to DGND..............................................-0.3V to +6V  
DGND to AGND........................................................-0.3V to +2V  
Maximum Current into OUT_ ............................................ 10mA  
SS  
SS  
DD  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +10V, V = -4V, V  
= V  
= V  
= +5V, V  
= +2.5V, AGND = DGND = V  
= 0, R 10M, C = 50pF,  
DD  
SS  
LOGIC  
LDAC  
LSHA  
REF  
GS L L  
CLKSEL = +5V, f  
= 400kHz, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
ECLK  
A
MIN  
MAX A  
PARAMETER  
DC CHARACTERISTICS  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
N
12  
Bits  
V
V
+
V
-
DD  
SS  
Output Range  
V
(Note 1)  
OUT_  
0.75  
2.4  
Offset Voltage  
Code = 4F3 hex  
(Note 2)  
15  
50  
200  
1
mV  
µV/°C  
%
Offset Voltage Tempco  
Gain Error  
Gain Tempco  
5
ppm/°C  
%FSR  
Integral Linearity Error  
INL  
DNL  
V
V
= -3.25V to +7.6V  
0.03  
0.1  
1
OUT_  
OUT_  
= -3.25V to +7.6V, monotonicity  
Differential Linearity Error  
0.5  
LSB  
mA  
guaranteed to 12 bits  
Sinking and sourcing  
MAX5331  
Maximum Output Drive Current  
I
2
35  
OUT  
50  
500  
1000  
250  
10  
65  
DC Output Impedance  
R
MAX5332  
350  
700  
650  
OUT  
MAX5333  
1300  
MAX5331  
pF  
nF  
Maximum Capacitive Load  
MAX5332  
MAX5333  
10  
DC Crosstalk  
Internal oscillator enabled (Note 3)  
Internal oscillator enabled  
-90  
-80  
dB  
dB  
Power-Supply Rejection Ratio  
PSRR  
2
_______________________________________________________________________________________  
12-Bit DACs with 32-Channel  
Sample-and-Hold Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +10V, V = -4V, V  
= V  
= V  
= +5V, V  
= +2.5V, AGND = DGND = V  
= 0, R 10M, C = 50pF,  
GS L L  
DD  
SS  
LOGIC  
LDAC  
LSHA  
REF  
CLKSEL = +5V, f  
= 400kHz, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
ECLK  
A
MIN  
PARAMETER  
DYNAMIC CHARACTERISTICS  
Sample-and-Hold Settling  
SCLK Feedthrough  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
(Note 4)  
0.08  
%
0.5  
0.5  
0.25  
1
nVs  
nVs  
mV  
f
Feedthrough  
SEQ  
Hold Step  
1
Droop Rate  
V
= 0 (Note 5)  
300  
µV/ms  
OUT_  
µV  
Output Noise  
250  
RMS  
REFERENCE INPUT  
Input Resistance  
Reference Input Voltage  
GROUND-SENSE INPUT  
Input Voltage Range  
Input Bias Current  
GS Gain  
7
kΩ  
V
I
2.5  
1
V
REF  
V
-0.5  
-60  
+0.5  
0
V
GS  
-0.5V V 0.5V  
µA  
V/V  
GS  
GS  
(Note 6)  
0.998  
1.002  
DIGITAL-INTERFACE DC CHARACTERISTICS  
Input High Voltage  
Input Low Voltage  
Input Current  
V
2.0  
80  
V
V
IH  
V
0.8  
1
IL  
µA  
TIMING CHARACTERISTICS (Figure 2)  
Sequencer Clock Frequency  
External Clock Frequency  
SCLK Frequency  
f
Internal oscillator  
(Note 7)  
100  
120  
480  
20  
kHz  
kHz  
MHz  
ns  
SEQ  
f
f
ECLK  
SCLK  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
t
15  
15  
CH  
t
ns  
CL  
CS-Low to SCLK-High Setup  
Time  
t
15  
ns  
CSSO  
CS-High to SCLK-High Setup  
Time  
t
15  
10  
ns  
ns  
CSS1  
SCLK-High to CS-Low Hold Time  
t
CSH0  
_______________________________________________________________________________________  
3
12-Bit DACs with 32-Channel  
Sample-and-Hold Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +10V, V = -4V, V  
= V  
= V  
= +5V, V  
= +2.5V, AGND = DGND = V  
= 0, R 10M, C = 50pF,  
DD  
SS  
LOGIC  
LDAC  
LSHA  
REF  
GS  
L
L
CLKSEL = +5V, f  
= 400kHz, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
ECLK  
A
MIN  
PARAMETER  
SCLK-High to CS-High Hold Time  
DIN to SCLK High Setup Time  
DIN to SCLK High Hold Time  
RST-to-CS Low  
SYMBOL  
CONDITIONS  
MIN  
0
TYP  
MAX UNITS  
t
ns  
ns  
ns  
CSH1  
t
15  
0
DS  
t
DH  
(Note 8)  
500  
µs  
POWER SUPPLIES  
Positive Supply Voltage  
Negative Supply Voltage  
Supply Difference  
V
(Note 9)  
(Note 9)  
8.55  
10  
-4  
11.60  
-2.75  
14.5  
V
V
V
DD  
V
-5.25  
SS  
V
- V (Note 9)  
SS  
DD  
V
,
LOGIC  
V
V
,
Logic Supply Voltage  
4.75  
-40  
5
5.25  
42  
V
LDAC  
LSHA  
Positive Supply Current  
Negative Supply Current  
I
32  
-32  
1
mA  
mA  
DD  
I
SS  
(Note 10)  
= 20MHz (Note 11)  
1.5  
3
Logic Supply Current  
I
mA  
LOGIC  
f
2
SCLK  
Note 1: The nominal zero-scale voltage (code = 0) is -4.0535V. The nominal full-scale voltage (code = FFF hex) is +9.0503V. The  
output voltage is limited by the output range specification, restricting the usable range of DAC codes. The nominal zero-  
scale voltage can be achieved when V < -4.9V, and the nominal full-scale voltage can be achieved when V  
> +11.5V.  
SS  
DD  
Note 2: Gain is calculated from measurements:  
for voltages V  
for voltages V  
for voltages V  
for voltages V  
= 10V and V = -4V at codes C00 hex and 4F3 hex  
DD  
DD  
DD  
DD  
SS  
= 11.6V and V = -2.9V at codes FFF hex and 253 hex  
SS  
= 9.25V and V = -5.25V at codes D4F hex and 0 hex  
SS  
= 8.55V and V = -2.75V at codes C75 hex and 282 hex  
SS  
Note 3: Steady-state change in any output with an 8V change in an adjacent output.  
Note 4: Settling during the first update for an 8V step. The output will settle to within the linearity specification on subsequent  
updates. Tested with an external sequencer clock frequency of 480kHz.  
Note 5: External clock mode with the external clock not toggling.  
Note 6: The output voltage is the sum of the DAC output and the voltage at GS. GS gain is measured at 4F3 hex.  
Note 7: The sequencer runs at f  
= f  
/ 4. Maximum speed is limited by settling of the DAC and SHAs. Minimum speed is  
SEQ  
ECLK  
limited by acceptable droop and update time after a burst-mode update.  
V rise to CS low = 500µs maximum.  
DD  
Note 8:  
Note 9: Guaranteed by gain-error test.  
Note 10: The serial interface is inactive. V = V  
, V = 0.  
LOGIC IL  
IH  
Note 11: The serial interface is active. V = V  
, V = 0.  
LOGIC IL  
IH  
4
_______________________________________________________________________________________  
12-Bit DACs with 32-Channel  
Sample-and-Hold Outputs  
Typical Operating Characteristics  
(V  
DD  
= +10V, V = -4V, V  
= +2.5V, V = 0, T = +25°C, unless otherwise noted.)  
SS  
REF  
GS  
A
INTEGRAL NONLINEARITY  
vs. INPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. INPUT CODE  
INTEGRAL NONLINEARITY  
VS. TEMPERATURE  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.05  
0.04  
0.03  
0.02  
0.01  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
250  
930  
1610  
INPUT CODE  
2290  
2970  
3650  
250  
930  
1610  
INPUT CODE  
2290  
2970  
3650  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
DIFFERENTIAL NONLINEARITY  
VS. TEMPERATURE  
OFFSET VOLTAGE  
VS. TEMPERATURE  
DROOP RATE vs. TEMPERATURE  
100  
10  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
-10  
-12  
-14  
-16  
-18  
-20  
V
V
= +8.55V  
= -4V  
CODE = 4F3 hex  
EXTERNAL CLOCK MODE  
NO CLOCK APPLIED  
DD  
SS  
CODE = 4F3 hex  
1
0.1  
0.01  
0.001  
0.0001  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
NEGATIVE SUPPLY PSRR  
VS. FREQUENCY  
POSITIVE SUPPLY PSRR  
VS. FREQUENCY  
GAIN ERROR VS. TEMPERATURE  
-90  
-80  
-70  
0.05  
0.04  
0.03  
0.02  
0.01  
0
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-60  
-50  
-40  
-30  
-20  
-20  
-10  
CODE = C17 hex  
OFFSET CODE = 4F3 hex  
-10  
0
0
0.001  
0.01  
0.1  
1
10  
100  
-40  
-15  
10  
35  
60  
85  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
5
12-Bit DACs with 32-Channel  
Sample-and-Hold Outputs  
Typical Operating Characteristics (continued)  
(V  
DD  
= +10V, V = -4V, V  
= +2.5V, V = 0, T = +25°C, unless otherwise noted.)  
SS  
REF  
GS  
A
LOGIC SUPPLY CURRENT  
VS. LOGIC INPUT HIGH VOLTAGE  
LOGIC SUPPLY CURRENT  
vs. LOGIC SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
1200  
1000  
800  
600  
400  
200  
0
36  
34  
32  
30  
28  
26  
24  
22  
20  
900  
I
DD  
800  
700  
600  
500  
400  
I
SS  
f
= 20MHz  
SCLK  
INTERFACE INACTIVE  
INTERFACE INACTIVE  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
4.75  
5.00  
5.25  
5.50  
-40  
-15  
10  
35  
60  
85  
LOGIC INPUT HIGH VOLTAGE (V)  
LOGIC SUPLY VOLTAGE (V)  
TEMPERATURE (°C)  
NEGATIVE SETTLING TIME  
(8V STEP)  
POSITIVE SETTLING TIME  
(100mV STEP)  
POSITIVE SETTLING TIME  
(8V STEP)  
MAX5331 toc14  
MAX5331 toc13  
MAX5331 toc15  
3.5V  
0
3.5V  
3.5V  
0
ECLK  
ECLK  
ECLK  
0
V
OUT_  
50mV/div  
AC-COUPLED  
V
OUT_  
V
OUT_  
5V/div  
5V/div  
1µs/div  
1µs/div  
1µs/div  
NEGATIVE SETTLING TIME  
(100mV STEP)  
OUTPUT NOISE  
MAX5331 toc17  
MAX5331 toc16  
3.5V  
0
ECLK  
OUT_  
1mV/div  
50mV/div  
AC-COUPLED  
V
OUT_  
250µs/div  
1µs/div  
6
_______________________________________________________________________________________  
12-Bit DACs with 32-Channel  
Sample-and-Hold Outputs  
Pin Description  
PIN  
NAME  
FUNCTION  
TQFP  
THIN QFN  
1, 2  
1, 2, 17, 34, 51, 68  
N.C.  
GS  
No Connection. Not internally connected.  
Ground-Sensing Input  
+5V DAC Power Supply  
Reset Input  
3
3
4
4
V
LDAC  
5
5
RST  
CS  
6
6
Chip-Select Input  
Serial-Data Input  
Serial-Clock Input  
+5V Logic Power Supply  
Immediate-Update Mode  
External Sequencer Clock Input  
Clock-Select Input  
Digital Ground  
7
7
DIN  
8
8
SCLK  
9
9
V
LOGIC  
IMMED  
ECLK  
10  
10  
11  
11  
12  
12  
CLKSEL  
DGND  
13  
13  
14  
14  
V
+5V Sample-and-Hold Power Supply  
Analog Ground  
Negative Power Supply  
Positive Power Supply  
Output Clamp Low Voltage  
Output 0  
LSHA  
15, 25, 40, 55, 62  
15, 26, 42, 58, 65  
AGND  
16, 32, 46  
16, 33, 48  
V
SS  
17, 39, 48  
18, 41, 50  
V
DD  
18, 33, 49  
19, 35, 52  
CL  
19  
20  
20  
21  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
CH  
Output 1  
21  
22  
Output 2  
22  
23  
Output 3  
23  
24  
Output 4  
24  
25  
Output 5  
26  
27  
Output 6  
27  
28  
Output 7  
28  
29  
Output 8  
29  
30  
Output 9  
30  
31  
Output 10  
31, 47, 64  
34  
32, 49, 67  
36  
Output Clamp High Voltage  
Output 11  
OUT11  
OUT12  
OUT13  
OUT14  
OUT15  
OUT16  
OUT17  
35  
37  
Output 12  
36  
38  
Output 13  
37  
39  
Output 14  
38  
40  
Output 15  
41  
43  
Output 16  
42  
44  
Output 17  
_______________________________________________________________________________________  
7
12-Bit DACs with 32-Channel  
Sample-and-Hold Outputs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
TQFP  
43  
44  
45  
50  
51  
52  
53  
54  
56  
57  
58  
59  
60  
61  
63  
THIN QFN  
45  
46  
47  
53  
54  
55  
56  
57  
59  
60  
61  
62  
63  
64  
66  
OUT18  
OUT19  
OUT20  
OUT21  
OUT22  
OUT23  
OUT24  
OUT25  
OUT26  
OUT27  
OUT28  
OUT29  
OUT30  
OUT31  
Output 18  
Output 19  
Output 20  
Output 21  
Output 22  
Output 23  
Output 24  
Output 25  
Output 26  
Output 27  
Output 28  
Output 29  
Output 30  
Output 31  
Reference Voltage Input  
V
REF  
CH  
OUT0  
ECLK  
CLOCK  
CLKSEL  
SAMPLE-  
AND-HOLD  
ARRAY  
R
E
G
I
SAMPLE  
S
T
E
R
DATA READY  
SEQUENCER  
OUT31  
CL  
R
E
G
I
S
T
E
R
GAIN AND  
OFFSET  
CORRECTION  
GS  
READ ENABLE  
12-BIT  
DAC  
SEQUENTIAL  
ADDRESS  
12 x 32  
SRAM  
REF  
2: 1  
M
LAST  
U
ADDRESS  
X
CS  
SCLK  
DIN  
ADDR SELECT  
WRITE ENABLE  
D[11:0]  
MAX5331  
MAX5332  
MAX5333  
SERIAL  
INTERFACE  
IMMED  
RST  
Figure 1. Functional Diagram  
_______________________________________________________________________________________  
8
12-Bit DACs with 32-Channel  
Sample-and-Hold Outputs  
t
CSH1  
CS  
t
CSHO  
t
CSS1  
t
t
t
CL  
CSSO  
CH  
SCLK  
DIN  
t
DH  
t
DS  
B23  
B22  
B0  
Figure 2. Serial-Interface Timing Diagram  
The maximum output voltage range depends on the  
analog supply voltages available and the output clamp  
voltages (see the Output Clamp section):  
Detailed Description  
Sample-and-Hold Amplifiers  
The MAX5331/MAX5332/MAX5333 contain 32 buffered  
SHA circuits with internal hold capacitors. Internal hold  
capacitors minimize leakage current, dielectric absorp-  
tion, feedthrough, and required board space. The  
MAX5331/MAX5332/MAX5333 provide a very low  
1µV/ms droop rate.  
V
+ 0.75V V  
V - 2.4V  
(
SS  
)
OUT_  
(
DD  
)
The devices have a fixed theoretical output range  
determined by the reference voltage, gain, and mid-  
scale offset. The output voltage for a given input code  
is calculated as follows:  
Output  
The MAX5331/MAX5332/MAX5333 include output buffers  
on each channel. The devices contain output resistors in  
series with the buffer output (Figure 3) for ease of output  
filtering and capacitive load driving stability.  
code  
4096  
V
=
× V  
× 5.2428 -  
OUT_  
REF  
Output loads increase the analog supply current (I  
DD  
1.6214 × V  
+ V  
GS  
(
)
REF  
and I ). Excessively loading the outputs drastically  
SS  
increases power dissipation. Do not exceed the maxi-  
mum power dissipation specified in the Absolute  
Maximum Ratings.  
where code is the decimal value of the DAC input  
code, V is the reference voltage, and V is the  
REF  
GS  
voltage at the ground-sense input. With a 2.5V refer-  
ence, the nominal end points are -4.0535V and  
+9.0503V (Table 1). Note that these are “virtual” internal  
end-point voltages and cannot be reached with all  
Table 1. Code Table  
DAC INPUT CODE  
MSB LSB  
1111 1111 1111  
NOMINAL OUTPUT  
VOLTAGE (V)  
V
= +2.5V  
REF  
9.0503  
6.15  
2.5  
Full-scale output.  
1100 0111 0101  
1000 0000 0000  
0100 1111 0011  
0010 1000 0010  
0000 0000 0000  
Maximum output with V  
Midscale output.  
= 8.55V.  
DD  
0
V
= 0. All outputs default to this code after power-up.  
OUT_  
-2.0  
Minimum output with V = -2.75V.  
SS  
-4.0535  
Zero-scale output.  
_______________________________________________________________________________________  
9
12-Bit DACs with 32-Channel  
Sample-and-Hold Outputs  
combinations of negative and positive power-supply  
voltages. The nominal, usable DAC end-point codes for  
the selected power supplies can be calculated as:  
Output Clamp  
The MAX5331/MAX5332/MAX5333 clamp the output  
between two externally applied voltages. Internal  
diodes at each channel restrict the output voltage to:  
Lower end-point code = 2048 - ((2.5V - (V + 0.75) /  
SS  
3.2mV) (result 0)  
Upper end-point code = 2048 + ((V  
V
+ 0.7V V  
V  
0.7V  
(
CH  
)
OUT_  
(
CL  
)
- 2.4 - 2.5V) /  
DD  
3.2mV) (result 4095)  
The clamping diodes allow the MAX5331/MAX5332/  
MAX5333 to drive devices with restricted input ranges.  
The diodes also allow the outputs to be clamped during  
power-up or fault conditions. To disable output clamping,  
connect CH to V  
voltages beyond the maximum output voltage range.  
The resistive voltage-divider formed by the output resis-  
tor (R ) and the load impedance (R ), scales the out-  
O
L
and CL to V , setting the clamping  
SS  
put voltage. Determine V  
as follows:  
DD  
OUT_  
R
L
Scaling factor =  
Serial Interface  
The MAX5331/MAX5332/MAX5333 are controlled by an  
SPI-/QSPI-/MICROWIRE-compatible 3-wire interface.  
Serial data is clocked into the 24-bit shift register in an  
MSB-first format, with the 12-bit DAC data and S3–S0  
(all zeros) preceding the 5-bit SRAM address, 2-bit  
control, and a fill zero (Figure 4). The input word is  
framed by CS. The first rising edge of SCLK after CS  
goes low clocks in the MSB of the input word.  
R + R  
L
O
V
= V  
× scaling factor  
OUT_  
CHOLD  
Ground Sense  
The MAX5331/MAX5332/MAX5333 include a ground-  
sense input (GS), which allows the output voltages to  
be referenced to a remote ground. The voltage at GS is  
added to the output voltage with unity gain. Note that  
the resulting output voltage must be within the valid  
output voltage range set by the power supplies.  
V
REF  
CH  
GAIN  
AND  
OFFSET  
R
O
OUT_  
12-BIT  
DAC  
DAC  
DATA  
A = 1  
V
C
HOLD  
R
L
CL  
ONE OF 32 SHA CHANNELS  
GS  
Figure 3. Analog Block Diagram  
DATA  
ADDRESS  
CONTROL  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 S3 S2 S1 S0 A4 A3 A2 A1 A0 C1 C0  
0
0
0
0
0
0
MSB  
LSB  
Figure 4. Input-Word Sequence  
10 ______________________________________________________________________________________  
12-Bit DACs with 32-Channel  
Sample-and-Hold Outputs  
Table 2. Channel/Output Selection  
A4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
A2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
A1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
OUTPUT  
OUT0 selected  
OUT1 selected  
OUT2 selected  
OUT3 selected  
OUT4 selected  
OUT5 selected  
OUT6 selected  
OUT7 selected  
OUT8 selected  
OUT9 selected  
OUT10 selected  
OUT11 selected  
OUT12 selected  
OUT13 selected  
OUT14 selected  
OUT15 selected  
OUT16 selected  
OUT17 selected  
OUT18 selected  
OUT19 selected  
OUT20 selected  
OUT21 selected  
OUT22 selected  
OUT23 selected  
OUT24 selected  
OUT25 selected  
OUT26 selected  
OUT27 selected  
OUT28 selected  
OUT29 selected  
OUT30 selected  
1
1
1
1
1
OUT31 selected  
When each serial word is complete, the value is stored  
in the SRAM at the address indicated and the control  
bits are saved. Note that data may be corrupted if CS is  
not held low for an integer multiple of 24 bits.  
Serial-Input Data Format and  
Control Codes  
The 24-bit serial-input format, shown in Figure 4, com-  
prises 16 bits (D12–D0 and S3–S0 = 0), 5 address bits  
(A4–A0), 2 control bits (C1, C0), and a fill zero. The  
address code selects the output channel as shown in  
Table 2. The control code configures the device as fol-  
lows:  
All the digital inputs include Schmitt-trigger buffers to  
accept slow-transition interfaces. Their switching thresh-  
old is compatible with TTL and most CMOS logic levels.  
1) If C1 = 1, immediate-update mode is selected.  
If C1 = 0, burst mode is selected.  
2) If C0 = 0, the internal sequencer clock is selected. If  
C0 = 1, the external sequencer clock is selected.  
This must be repeated with each data word to main-  
tain external input.  
______________________________________________________________________________________ 11  
12-Bit DACs with 32-Channel  
Sample-and-Hold Outputs  
The operating modes can also be selected externally  
through CLKSEL and IMMED. If the control bit in the  
serial word and the external signal conflict, the signal  
that is a logic 1 is dominant.  
selected output is updated before the sequencer  
resumes operation. Select immediate-update mode by  
driving either IMMED or C1 high.  
The sequencer is interrupted when CS is taken low. The  
input word is then stored in the proper SRAM address.  
The DAC conversion and SHA sample in progress are  
completely transparent to the serial bus activity. The  
SRAM location of the addressed channel is then modi-  
fied with the new data. The DAC and SHA are updated  
with the new voltage. The sequencer then resumes  
scrolling at the interrupted SRAM address.  
Modes of Operation  
The MAX5331/MAX5332/MAX5333 feature three modes  
of operation:  
• Sequence mode  
• Immediate-update mode  
• Burst mode  
This operation can take up to two cycles of the 10µs  
sequencer clock. Up to one cycle is needed to allow the  
sequencer to complete the operation in progress before  
it is freed to update the new channel. An additional  
cycle is required to read the new data from memory,  
update the DAC, and strobe the sample-and-hold. The  
sequencer resumes scrolling from the location at which  
it was interrupted. Normal sequencing is suppressed  
while loading data, thus preventing other channels from  
being refreshed. Under conditions of extremely frequent  
immediate updates (i.e., 1000 successive updates), this  
can result in unacceptable droop.  
Table 3. Update Mode  
UPDATE MODE  
Immediate-Update Mode  
Burst Mode  
UPDATE TIME  
2/f  
SEQ  
33/f  
SEQ  
Sequence Mode  
Sequence mode is the default operating mode. The  
internal sequencer continuously scrolls through the  
SRAM, updating each of the 32 SHAs. At each SRAM  
address location, the stored 12-bit DAC code is loaded  
to the DAC. Once settled, the DAC output is acquired  
by the corresponding SHA. Using the internal  
sequencer clock, the process typically takes 320µs to  
update all 32 SHAs (10µs per channel). Using an exter-  
nal sequencer clock, the update process takes 128  
clock cycles (four clock cycles per channel).  
Figure 5 shows an example of an immediate-update  
operation. In this example, data for channel 20 is  
loaded, while channel 7 is being refreshed. The  
sequencer operation is interrupted, and no other chan-  
nels are refreshed as long as CS is held low. Once CS  
returns high, and the remainder of an f  
period (if  
SEQ  
Immediate-Update Mode  
Immediate-update mode is used to change the con-  
tents of a single SRAM location, and update the corre-  
sponding SHA output. In immediate-update mode, the  
any) has expired, channel 20 is updated to the new  
data. Once channel 20 has been updated, the  
sequencer resumes normal operation at the interrupted  
channel 7.  
1/f  
SEQ  
7
1/f  
SHA ARRAY  
UPDATE  
SEQUENCE  
SEQ  
1
2
3
SKIP 20  
7
8
9
SHA ARRAY  
UPDATE  
SEQUENCE  
6
7
SKIP  
SKIP SKIP  
7
8
5
6
7
CHANNEL 20  
UPDATED  
33 CYCLES TO UPDATE  
ALL CHANNELS  
CS  
CS  
INTERRUPTED  
CHANNEL REFRESHED  
LOAD MULTIPLE  
ADDRESSES  
LOAD ADDRESS 20  
DIN  
DIN  
24-BIT  
WORD  
Figure 5. Immediate-Update-Mode Timing Example  
Figure 6. Burst-Mode Timing Example  
12 ______________________________________________________________________________________  
12-Bit DACs with 32-Channel  
Sample-and-Hold Outputs  
Burst Mode  
Power-On Reset  
A power-on reset (POR) circuit sets all channels to 0V  
(code 4F3 hex) in sequence, requiring 320µs. This pre-  
vents damage to downstream ICs due to arbitrary refer-  
ence levels being presented following system power-up.  
This same function is available by driving RST low.  
During the reset operation, the sequencer is run by the  
internal clock, regardless of the state of CLKSEL. The  
reset process cannot be interrupted, serial inputs are  
ignored until the entire reset process is complete.  
Burst mode allows multiple SRAM locations to be  
loaded at high speed. During burst mode, the output  
voltages are not updated until the data burst is com-  
plete and control returns to the sequencer. Select burst  
mode by driving both IMMED and C1 low.  
The sequencer is interrupted when CS is taken low. All  
or part of the memory can be loaded while CS is low.  
Each data word is loaded into its specified SRAM  
address. The DAC conversion and SHA sample in  
progress are completely transparent to the serial bus  
activity. When CS is taken high, the sequencer resumes  
scrolling at the interrupted SRAM address. New values  
are updated when their turn comes up in the sequence.  
Applications Information  
Power Supplies and Bypassing  
Grounding and power-supply decoupling strongly influ-  
ence device performance. Digital signals can couple  
through the reference input, power supplies, and  
ground connection. Proper grounding and layout can  
reduce digital feedthrough and crosstalk. At the device  
After burst mode is used, it is recommended that at  
least one full sequencer loop (320µs) is allowed to  
occur before the serial port is accessed again. This  
ensures that all outputs are updated before the  
sequencer is interrupted.  
level, a 0.1µF capacitor is required for the V , V  
,
SS  
DD  
and V inputs. They should be placed as close to the  
L_  
Figure 6 shows an example of a burst-mode operation.  
As with the immediate-update example, CS falls while  
channel 7 is being refreshed. Data for multiple chan-  
nels is loaded, and no channels are refreshed as long  
as CS remains low. Once CS returns high, sequencing  
resumes with channel 7 and continues normal refresh  
pins as possible. More substantial decoupling at the  
board level is recommended and is dependent on the  
number of devices on the board (Figure 7).  
The MAX5331/MAX5332/MAX5333 have three separate  
+5V logic power supplies, V  
LDAC  
trol logic of the SHA array. V  
, V  
LSHA  
LOGIC  
, and V  
.
LDAC LOGIC  
LSHA  
V
powers the 12-bit DAC. V  
powers the con-  
operation. Thirty-three f  
cycles are required before  
SEQ  
powers the serial  
all channels have been updated.  
interface, sequencer, internal clock, and SRAM.  
Additional filtering of V and V improves the  
External Sequencer Clock  
LDAC  
LSHA  
An external clock may be used to control the sequencer,  
altering the output update rate. The sequencer runs at  
1/4 the frequency of the supplied clock (ECLK). The  
external clock option is selected by driving either C0 or  
CLKSEL high.  
overall performance of the device.  
Chip Information  
TRANSISTOR COUNT: 16,229  
PROCESS: BiCMOS  
When CLKSEL is asserted, the internal clock oscillator  
is disabled. This feature allows synchronizing the  
sequencer to other system operations, or shutting down  
of the sequencer altogether during high-accuracy sys-  
tem measurements. The low 1µV/ms droop of these  
devices ensures that no appreciable degradation of the  
output voltages occurs, even during extended periods  
of time when the sequencer is disabled.  
______________________________________________________________________________________ 13  
12-Bit DACs with 32-Channel  
Sample-and-Hold Outputs  
+5V  
+10V  
0.1µF  
0.1µF  
V
V
V
V
LDAC  
LSHA  
DD  
LOGIC  
REF  
GS  
+2.5V  
OUT0  
OUT1  
CS  
DIN  
MAX5331  
MAX5332  
MAX5333  
SCLK  
IMMED  
CLKSEL  
ECLK  
RST  
OUT31  
AGND  
V
CL  
DGND  
SS  
0.1µF  
-4V  
Figure 7. Typical Operating Circuit  
Pin Configurations (continued)  
TOP VIEW  
52  
53  
54  
34  
33  
32  
CL  
N.C.  
V
OUT21  
OUT22  
SS  
CH  
OUT23 55  
31 OUT10  
56  
57  
58  
59  
60  
61  
62  
63  
30  
29  
28  
27  
26  
25  
24  
23  
OUT24  
OUT25  
AGND  
OUT9  
OUT8  
OUT7  
OUT6  
AGND  
OUT5  
OUT4  
OUT3  
OUT26  
OUT27  
OUT28  
OUT29  
OUT30  
MAX5331  
MAX5332  
MAX5333  
OUT31 64  
AGND 65  
22 OUT2  
21  
20  
19  
18  
OUT1  
OUT0  
CL  
V
REF 66  
CH 67  
N.C. 68  
V
DD  
THIN QFN  
14 ______________________________________________________________________________________  
12-Bit DACs with 32-Channel  
Sample-and-Hold Outputs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE,  
64L TQFP, 10x10x1.4mm  
1
21-0083  
B
2
PACKAGE OUTLINE,  
64L TQFP, 10x10x1.4mm  
2
21-0083  
B
2
______________________________________________________________________________________ 15  
12-Bit DACs with 32-Channel  
Sample-and-Hold Outputs  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
68L THIN QFN, 10x10x0.8mm  
1
C
21-0142  
2
PACKAGE OUTLINE  
68L THIN QFN, 10x10x0.8mm  
2
C
21-0142  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX5331UCB+T

D/A Converter, 1 Func, Serial Input Loading, PQFP64, TQFP-64
MAXIM

MAX5331UTK

D/A Converter, 1 Func, Serial Input Loading, 10 X 10 MM, 0.80 MM HEIGHT, MO-220WNND-2, TQFN-68
MAXIM

MAX5331UTK+

D/A Converter, 1 Func, Serial Input Loading, 10 X 10 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WNND-2, TQFN-68
MAXIM

MAX5331UTK+T

D/A Converter, 1 Func, Serial Input Loading, 10 X 10 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WNND-2, TQFN-68
MAXIM

MAX5332UTK

D/A Converter, 1 Func, Serial Input Loading, 10 X 10 MM, 0.80 MM HEIGHT, MO-220WNND-2, TQFN-68
MAXIM

MAX5332UTK+

D/A Converter, 1 Func, Serial Input Loading, 10 X 10 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WNND-2, TQFN-68
MAXIM

MAX5332UTK+T

D/A Converter, 1 Func, Serial Input Loading, 10 X 10 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WNND-2, TQFN-68
MAXIM

MAX533ACEE

2.7V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers
MAXIM

MAX533ACEE+

暂无描述
MAXIM

MAX533ACEE-T

暂无描述
MAXIM

MAX533ACPE

2.7V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers
MAXIM

MAX533ACPE+

D/A Converter, 4 Func, Serial Input Loading, 6us Settling Time, PDIP16, PLASTIC, DIP-16
MAXIM