MAX537BCPE+ [MAXIM]

D/A Converter, 4 Func, Serial Input Loading, 3us Settling Time, PDIP16, 0.300 INCH, PLASTIC, MS-001AA, DIP-16;
MAX537BCPE+
型号: MAX537BCPE+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 4 Func, Serial Input Loading, 3us Settling Time, PDIP16, 0.300 INCH, PLASTIC, MS-001AA, DIP-16

光电二极管 转换器
文件: 总24页 (文件大小:2432K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0230; Rev 3; 3/11  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
_______________General Description  
____________________________Features  
Four 12-Bit DACs with Output Buffers  
The MAX536/MAX537 combine four 12-bit, voltage-output  
digital-to-analog converters (DACs) and four precision  
output amplifiers in a space-saving 16-pin package.  
Offset, gain, and linearity are factory calibrated to provide  
the MAX536’s 1 ꢀLS total unadꢁusted error. The  
MAX537 operates with 5ꢂ supplies, while the MAX536  
uses -5ꢂ and +10.8ꢂ to +13.2ꢂ supplies.  
Simultaneous or Independent Control of Four  
DACs via a 3-Wire Serial Interface  
Power-On Reset  
SPI/QSPI and MICROWIRE Compatible  
1 ꢀSB ꢁotal ꢂnadꢃusted Error ꢄMAꢅX3ꢆ6  
Full 12-Bit Performance without Adꢃustments  
X5 Supplꢇ Operation ꢄMAꢅX3ꢈ6  
Each DAC has a double-buffered input, organized as  
an input register followed by a DAC register. A 16-bit  
serial word is used to load data into each input/DAC  
register. The serial interface is compatible with either  
LPI/QLPI™ or MICROWIRE™, and allows the input and  
DAC registers to be updated independently or simulta-  
neously with a single software command. The DAC reg-  
isters can be simultaneously updated with a hardware  
LDAC pin. All logic inputs are TTꢀ/CMOL compatible.  
Double-Buffered Digital Inputs  
Buffered 5oltage Output  
1ꢆ-Pin DIP/SO Packages  
______________ Ordering Information  
PIN-  
PACKAGE  
INꢀ  
ꢄꢀSB6  
PARꢁ  
ꢁEMP RANGE  
________________________Applications  
MAꢅX3ꢆACPE+  
MAX536SCPE+  
MAX536ACWE+  
MAX536SCWE+  
MAX536AEPE+  
MAX536SEPE+  
MAX536AEWE+  
MAX536SEWE+  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
16 PDIP  
0.5  
1
Industrial Process Controls  
Automatic Test Equipment  
Digital Offset and Gain Adꢁustment  
Motion Control Devices  
16 PDIP  
16 Wide LO  
16 Wide LO  
16 PDIP  
0.5  
1
0.5  
1
16 PDIP  
Remote Industrial Controls  
Microprocessor-Controlled Lystems  
16 Wide LO  
16 Wide LO  
0.5  
1
+Denotes a lead(Pb)-free/RoHS-compliant package.  
________________Functional Diagram  
Ordering Information continued at end of data sheet.  
V
DD  
DGND  
AGND  
V
SS  
TP  
REFAB  
SDO LDAC  
__________________Pin Configuration  
DECODE  
CONTROL  
TOP VIEW  
MAX536/MAX537  
OUTA  
OUTB  
OUTC  
OUTD  
INPUT  
REG A  
DAC  
REG A  
+
DAC A  
OUTB  
OUTA  
OUTC  
OUTD  
V
1
2
3
4
5
6
7
8
16  
15  
INPUT  
REG B  
DAC  
REG B  
DAC B  
DAC C  
DAC D  
16-BIT  
SHIFT  
REGISTER  
V
SS  
14 DD  
MAX536  
MAX537  
AGND  
INPUT  
REG C  
DAC  
REG C  
TP  
13  
REFAB  
DGND  
LDAC  
SDI  
REFCD  
12  
11  
10  
9
INPUT  
REG D  
DAC  
REG D  
SDO  
SCK  
CS  
SR  
CONTROL  
SCK  
REFCD  
CS  
DIP/SO  
SDI  
SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
ABSOꢀꢂꢁE MAꢅIMꢂM RAꢁINGS  
DD  
to AGND or DGND  
Continuous Power Dissipation (T = +70°C)  
A
MAX536............................................................-0.3ꢂ to +13.2ꢂ  
MAX537.................................................................-0.3ꢂ to +7ꢂ  
Plastic DIP (derate 10.53mW/°C above +70°C) .................842mW  
Wide LO (derate 9.52mW/°C above +70°C).................762mW  
Operating Temperature Ranges  
to AGND or DGND ............................................-7ꢂ to +0.3ꢂ  
LL  
LDI, LCK, CS, LDAC, TP, LDO  
to AGND or DGND..................................-0.3ꢂ to (ꢂ  
REFAS, REFCD to AGND or DGND ..........-0.3ꢂ to (ꢂ  
OUT_ to AGND or DGND ..........................................ꢂ  
Maximum Current into Any Pin............................................50mA  
MAX53_AC_E/SC_E.............................................0°C to +70°C  
MAX53_AE_E/SE_E ..........................................-40°C to +85°C  
Ltorage Temperature Range.............................-65°C to +150°C  
ꢀead Temperature (soldering, 10s) .................................+300°C  
Loldering Temperature (reflow) .......................................+260°C  
+ 0.3ꢂ)  
+ 0.3ꢂ)  
DD  
DD  
to ꢂ  
DD  
LL  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
EꢀECꢁRICAꢀ CHARACꢁERISꢁICS—MAꢅX3ꢆ  
(ꢂ  
= +12ꢂ, ꢂ = -5ꢂ, REFAS/REFCD = 8ꢂ, AGND = DGND = 0ꢂ, R = 5k, C = 100pF, T = T  
to T  
, unless  
MAX  
DD  
LL  
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMEꢁER  
SYMBOꢀ  
CONDIꢁIONS  
MIN  
ꢁYP  
MAꢅ  
ꢂNIꢁS  
SꢁAꢁIC PERFORMANCE—ANAꢀOG SECꢁION  
Resolution  
N
12  
Sits  
MAX536A  
MAX536S  
MAX536AC  
MAX536SC  
MAX536AE  
MAX536SE  
1.0  
2.0  
2.0  
3.0  
2.5  
3.5  
0.50  
1
T
T
= +25°C  
A
Total Unadꢁusted Error (Note 1)  
TUE  
ꢀLS  
= T  
to T  
MAX  
A
MIN  
MAX536A  
MAX536S  
0.15  
Integral Nonlinearity  
INꢀ  
ꢀLS  
ꢀLS  
Differential Nonlinearity  
DNꢀ  
Guaranteed monotonic  
1
MAX536A  
MAX536S  
MAX536AC  
MAX536SC  
MAX536AE  
MAX536SE  
2.5  
5.0  
5.0  
7.5  
6.1  
8.5  
1.0  
1.5  
2.0  
T
= +25°C  
A
A
Offset Error  
Gain Error  
mꢂ  
T
= T  
to T  
MAX  
MIN  
R =   
-0.1  
-0.6  
ꢀLS  
MAX536_C/E  
MAX536_M  
R = 5kΩ  
Power-Lupply Reꢁection  
DD  
PLRR  
PLRR  
T
T
= +25°C, 10.8ꢂ < ꢂ  
< 13.2ꢂ  
0.02  
0.03  
0.125  
0.30  
ꢀLS/ꢂ  
ꢀLS/ꢂ  
A
A
DD  
Ratio  
Power-Lupply Reꢁection Ratio  
= +25°C, -5.5ꢂ < ꢂ  
< -4.5ꢂ  
LL  
DD  
2
____________________________________________________________________________________________________  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
EꢀECꢁRICAꢀ CHARACꢁERISꢁICS—MAꢅX3ꢆ ꢄcontinued6  
(ꢂ  
= +12ꢂ, ꢂ = -5ꢂ, REFAS/REFCD = 8ꢂ, AGND = DGND = 0ꢂ, R = 5k, C = 100pF, T = T  
to T  
, unless  
MAX  
DD  
LL  
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMEꢁER  
SYMBOꢀ  
CONDIꢁIONS  
MIN  
ꢁYP  
MAꢅ  
ꢂNIꢁS  
MAꢁCHING PERFORMANCE ꢄꢁ = +2X°C6  
A
MAX536A  
MAX536S  
1.0  
2.0  
1.0  
2.5  
5.0  
1.0  
Total Unadꢁusted Error  
Gain Error  
TUE  
ꢀLS  
ꢀLS  
mꢂ  
0.1  
1.2  
1.2  
0.2  
MAX536A  
MAX536S  
Offset Error  
Integral Nonlinearity  
INꢀ  
ꢀLS  
REFERENCE INPꢂꢁ  
Reference Input Range  
Reference Input Resistance  
REF  
0
5
DD  
- 4  
Code dependent, minimum at code 555  
R
kΩ  
REF  
MꢂꢀꢁIPꢀYING-MODE PERFORMANCE  
Reference 3dS Sandwidth  
= 2ꢂ  
700  
-100  
-82  
kHz  
dS  
REF  
P-P  
= 10ꢂ  
= 10ꢂ  
at 400Hz  
at 4kHz  
REF  
REF  
P-P  
Input code =  
all 0s  
Reference Feedthrough  
P-P  
Total Harmonic Distortion Plus  
Noise  
THD+N  
= 2.0ꢂ  
at 50kHz  
0.024  
%
REF  
P-P  
DIGIꢁAꢀ INPꢂꢁS ꢄSDI, SCK, CS, LDAC6  
Input High ꢂoltage  
2.4  
IH  
Input ꢀow ꢂoltage  
0.8  
Iꢀ  
Input ꢀeakage Current  
Input Capacitance (Note 2)  
DIGIꢁAꢀ OꢂꢁPꢂꢁ ꢄSDO6  
Output ꢀow ꢂoltage  
= 0ꢂ or ꢂ  
1.0  
10  
µA  
pF  
DD  
IN  
LDO sinking 5mA  
0.13  
0.40  
10  
Oꢀ  
Output ꢀeakage Current  
LDO = 0ꢂ to ꢂ  
µA  
DD  
DYNAMIC PERFORMANCE ꢄR = Xk, C = 100pF6  
ꢂoltage Output Llew Rate  
Output Lettling Time  
5
3
5
8
ꢂ/µs  
µs  
To 0.5 ꢀLS of full scale  
Digital Feedthrough  
nꢂ-s  
nꢂ-s  
Digital Crosstalk (Note 3)  
POWER SꢂPPꢀIES  
= 5ꢂ  
REF  
Positive Lupply Range  
Negative Lupply Range  
10.8  
-4.5  
13.2  
-5.5  
18  
DD  
LL  
T
A
T
A
T
A
T
A
= +25°C  
8
Positive Lupply Current  
(Note 4)  
I
mA  
mA  
DD  
= T  
to T  
25  
MIN  
MAX  
-6  
-16  
= +25°C  
= T to T  
Negative Lupply Current  
(Note 4)  
I
LL  
-23  
MIN  
MAX  
_______________________________________________________________________________________  
3
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
EꢀECꢁRICAꢀ CHARACꢁERISꢁICS—MAꢅX3ꢆ ꢄcontinued6  
(ꢂ  
= +12ꢂ, ꢂ = -5ꢂ, REFAS/REFCD = 8ꢂ, AGND = DGND = 0ꢂ, R = 5k, C = 100pF, T = T  
to T  
, unless  
MAX  
DD  
LL  
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMEꢁER  
SYMBOꢀ  
CONDIꢁIONS  
MIN  
ꢁYP  
MAꢅ  
ꢂNIꢁS  
ꢁIMING CHARACꢁERISꢁICS ꢄNote X6  
Internal Power-On Reset  
Pulse Width (Note 2)  
t
20  
µs  
POR  
LCK Clock Period  
t
100  
30  
ns  
ns  
ns  
CP  
LCK Pulse Width High  
LCK Pulse Width ꢀow  
t
CH  
t
30  
Cꢀ  
CS Fall to LCK Rise  
Letup Time  
t
20  
10  
ns  
ns  
CLL  
LCK Rise to CS Rise  
Hold Time  
t
CLH  
LDI Letup Time  
LDI Hold Time  
t
40  
0
26  
ns  
ns  
DL  
t
DH  
LDO high  
LDO low  
LDO high  
LDO low  
78  
50  
81  
53  
105  
80  
LCK Rise to LDO ꢂalid  
Propagation Delay (Note 6)  
1kpullup on LDO  
to ꢂ  
t
ns  
DO1  
DO2  
=
DD,  
C
50pF  
1kpullup on LDO  
to ꢂ  
ꢀOAD  
110  
85  
LCK Fall to LDO ꢂalid  
Propagation Delay (Note 7)  
t
ns  
ns  
ns  
=
50pF  
DD,  
C
OAD  
CS Fall to LDO Enable  
(Note 8)  
t
27  
40  
45  
60  
Dꢂ  
CS Rise to LDO Disable  
(Note 9)  
t
TR  
t
Continuous LCK, LCK edge ignored  
LCK edge ignored  
20  
20  
ns  
ns  
LCK Rise to CS Fall Delay  
CL0  
CS Rise to LCK Rise  
Hold Time  
t
CL1  
t
30  
40  
ns  
ns  
LDAC Pulse Width ꢀow  
CS Pulse Width High  
ꢀDAC  
t
CLW  
Note 1: TUE is specified with no resistive load.  
Note 2: Guaranteed by design.  
Note 3: Crosstalk is defined as the glitch energy at any DAC output in response to a full-scale step change on any other DAC  
.
Note 4: Digital inputs at 2.4ꢂ; with digital inputs at CMOL levels, I  
DD decreases slightly.  
Note X: All input signals are specified with t  
= t 5ns. ꢀogic input swing is 0 to 5ꢂ.  
R
F
Note ꢆ: Lerial data clocked out of LDO on LCK’s falling edge. (LDO is an open-drain output for the MAX536. The MAX537’s LDO  
pin has an internal active pullup.)  
Note ꢈ: Lerial data clocked out of LDO on LCK’s rising edge.  
Note 8: LDO changes from High-Z state to 90% of final value.  
Note 9: LDO rises 10% toward High-Z state.  
4
_______________________________________________________________________________________  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
EꢀECꢁRICAꢀ CHARACꢁERISꢁICS—MAꢅX3ꢈ  
(ꢂ  
= +5ꢂ, ꢂ = -5ꢂ, REFAS/REFCD = 2.5ꢂ, AGND = DGND = 0ꢂ, R = 5k, C = 100pF, T = T  
to T , unless  
MAX  
DD  
LL  
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMEꢁER  
SYMBOꢀ  
CONDIꢁIONS  
MIN  
ꢁYP  
MAꢅ  
ꢂNIꢁS  
SꢁAꢁIC PERFORMANCE—ANAꢀOG SECꢁION  
Resolution  
N
12  
Sits  
ꢀLS  
ꢀLS  
MAX537A  
MAX537S  
0.15  
0.50  
1
Integral Nonlinearity  
Differential Nonlinearity  
INꢀ  
DNꢀ  
Guaranteed monotonic  
1
MAX537A  
MAX537S  
MAX537AC  
MAX537SC  
MAX537AE  
MAX537SE  
3.0  
6.0  
6.0  
9.0  
7.0  
11.0  
1.5  
3.0  
0.5  
0.7  
T
= +25°C  
A
A
Offset Error  
mꢂ  
T
= T  
to T  
MAX  
MIN  
R = ∞  
-0.3  
-0.8  
0.01  
0.02  
Gain Error  
ꢀLS  
R
= 5kΩ  
A
A
Power-Lupply Reꢁection Ratio  
Power-Lupply Reꢁection Ratio  
PLRR  
PLRR  
T
T
= +25°C, 4.5ꢂ ꢂ  
5.5ꢂ  
DD  
ꢀLS/ꢂ  
ꢀLS/ꢂ  
DD  
LL  
= +25°C, -5.5ꢂ -4.5ꢂ  
LL  
MAꢁCHING PERFORMANCE ꢄꢁ = +2X°C6  
A
Gain Error  
0.1  
0.3  
1.25  
3.0  
ꢀLS  
mꢂ  
MAX537A  
MAX537S  
Offset Error  
0.3  
6.0  
Integral Nonlinearity  
INꢀ  
0.35  
1.0  
ꢀLS  
REFERENCE INPꢂꢁ  
Reference Input Range  
Reference Input Resistance  
REF  
0
5
DD -  
2.2  
RREF  
Code dependent, minimum at code 555 hex  
kΩ  
MꢂꢀꢁIPꢀYING-MODE PERFORMANCE  
Reference 3dS Sandwidth  
= 2ꢂ  
700  
kHz  
dS  
REF  
P-P  
= 10ꢂ  
at  
at  
REF  
P-P  
-100  
400Hz  
= 10ꢂ  
Reference Feedthrough  
Input code = all 0s  
REF  
P-P  
-82  
4kHz  
Total Harmonic Distortion Plus  
THD+N  
= 850mꢂ  
at 100kHz  
0.024  
%
REF  
P-P  
Noise  
DIGIꢁAꢀ INPꢂꢁS ꢄSDI, SCK, CS, ꢀDAC6  
Input High ꢂoltage  
2.4  
IH  
Input ꢀow ꢂoltage  
0.8  
1.0  
10  
Iꢀ  
Input ꢀeakage Current  
Input Capacitance (Note 2)  
= 0ꢂ or ꢂ  
µA  
pF  
IN  
DD  
_______________________________________________________________________________________  
X
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
EꢀECꢁRICAꢀ CHARACꢁERISꢁICS—MAꢅX3ꢈ ꢄcontinued6  
(ꢂ  
= +5ꢂ, ꢂ = -5ꢂ, REFAS/REFCD = 2.5ꢂ, AGND = DGND = 0ꢂ, R = 5k, C = 100pF, T = T  
to T , unless  
MAX  
DD  
LL  
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMEꢁER  
SYMBOꢀ  
CONDIꢁIONS  
MIN  
ꢁYP  
MAꢅ  
ꢂNIꢁS  
DIGIꢁAꢀ OꢂꢁPꢂꢁ ꢄSDO6  
-
-
DD  
DD  
Output High ꢂoltage  
LDO sourcing 2mA  
LDO sinking 2mA  
OH  
0.5  
0.25  
0.13  
Output ꢀow ꢂoltage  
0.40  
Oꢀ  
DYNAMIC PERFORMANCE ꢄR = Xk, C = 100pF6  
ꢂoltage Output Llew Rate  
Output Lettling Time  
5
5
5
5
ꢂ/µs  
µs  
To 0.5 ꢀLS of full scale  
Digital Feedthrough  
nꢂ-s  
nꢂ-s  
Digital Crosstalk (Note 3)  
POWER SꢂPPꢀIES  
Positive Lupply Range  
Negative Lupply Range  
4.5  
5.5  
-5.5  
12  
DD  
-4.5  
LL  
T
A
T
A
T
A
T
A
= +25°C  
5.5  
Positive Lupply Current (Note 4)  
Negative Lupply Current (Note 4)  
I
mA  
mA  
DD  
= T  
to T  
16  
MIN  
MAX  
= +25°C  
= T to T  
-4.7  
-10  
-14  
I
LL  
MIN  
MAX  
ꢁIMING CHARACꢁERISꢁICS ꢄNote X6  
Internal Power-On Reset Pulse  
Width (Note 2)  
t
50  
µs  
POR  
LCK Clock Period  
t
100  
35  
35  
40  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CP  
LCK Pulse Width High  
LCK Pulse Width ꢀow  
t
MAX537_C/E  
MAX537_C/E  
MAX537_C/E  
CH  
t
Cꢀ  
CS Fall to LCK Rise Letup Time  
LCK Rise to CS Rise Hold Time  
LDI Letup Time  
t
CLL  
CLH  
t
t
MAX537_C/E  
40  
0
24  
DL  
DH  
LDI Hold Time  
t
LCK Rise to LDO ꢂalid  
Propagation Delay (Note 6)  
LCK Fall To LDO ꢂalid  
Propagation Delay (Note 7)  
t
C
C
= 50pF, MAX537_C/E  
= 50pF, MAX537_C/E  
116  
123  
200  
210  
ns  
ns  
DO1  
DO2  
ꢀOAD  
ꢀOAD  
t
_______________________________________________________________________________________  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
EꢀECꢁRICAꢀ CHARACꢁERISꢁICS—MAꢅX3ꢈ ꢄcontinued6  
(ꢂ  
= +5ꢂ, ꢂ = -5ꢂ, REFAS/REFCD = 2.5ꢂ, AGND = DGND = 0ꢂ, R = 5k, C = 100pF, T = T  
to T , unless  
MAX  
DD  
LL  
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMEꢁER  
CS Fall to LDO Enable  
SYMBOꢀ  
CONDIꢁIONS  
= 50pF, MAX537_C/E  
= 50pF, MAX537_C/E  
MIN  
ꢁYP  
MAꢅ  
140  
ꢂNIꢁS  
ns  
t
C
C
75  
70  
Dꢂ  
ꢀOAD  
ꢀOAD  
CS Rise to DLO Disable (Note 10)  
LCK Rise to CS Fall Delay  
CS Rise to LCK Rise Hold Time  
LDAC Pulse Width High  
t
TR  
130  
ns  
t
Continuous LCK, LCK edge ignored  
LCK edge ignored, MAX537_C/E  
MAX537_C/E  
35  
35  
ns  
CLO  
t
ns  
CL1  
t
50  
ns  
ꢀDAC  
CS Pulse Width High  
t
MAX537_C/E  
100  
ns  
CLW  
Note 2: Guaranteed by design.  
Note 3: Crosstalk is defined as the glitch energy at any DAC output in response to a full-scale step change on any other DAC  
.
Note 4: Digital inputs at 2.4ꢂ; with digital inputs at CMOL levels, I  
DD decreases slightly.  
Note X: All input signals are specified with t  
= t 5ns. ꢀogic input swing is 0 to 5ꢂ.  
R
F
Note ꢆ: Lerial data clocked out of LDO on LCK’s falling edge. (LDO is an open-drain output for the MAX536. The MAX537’s LDO  
pin has an internal active pullup.)  
Note ꢈ: Lerial data clocked out of LDO on LCK’s rising edge.  
Note 10: When disabled, LDO is internally pulled high.  
_______________________________________________________________________________________  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
__________________________________________Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
MAX536  
MAX536  
REFERENCE VOLTAGE INPUT  
FREQUENCY RESPONSE  
MAX536  
MAX536  
INTEGRAL NONLINEARITY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. REFERENCE FREQUENCY  
ERROR vs. REFERENCE VOLTAGE  
1.0  
0.200  
20  
10  
V
= -5V  
DAC CODE = ALL 1s  
REFAB SWEPT 2V  
SS  
P-P  
REFAB = 10V  
V
MONITORED  
P-P  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
OUTA  
0.6  
0.2  
R = 10k, C = 100pF  
L
L
0
V
= +15V  
DD  
-10  
R = NO LOAD, C = 0pF  
L
L
-20  
-30  
-0.2  
V
= +12V  
DD  
--0.6  
-40  
-50  
-1.0  
0
4
8
12  
16  
10  
100  
200  
1k  
10k  
100k  
1M  
10M  
REFERENCE VOLTAGE (V)  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
MAX536  
MAX536  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. REFERENCE FREQUENCY  
MAX536  
SUPPLY CURRENT vs. TEMPERATURE  
FULL-SCALE ERROR vs. LOAD  
10  
6
0.200  
1
DAC CODE = ALL 1s  
REFAB = 5V  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
P-P  
0
-1  
-2  
-3  
I
DD  
V
V
= +15V  
= -5V  
DD  
SS  
2
R = 10k, C = 100pF  
L
L
-2  
R = NO LOAD, C = 0pF  
L
L
I
SS  
-6  
-4  
-5  
-10  
100  
60  
20  
TEMPERATURE (°C)  
140  
-60  
-20  
10  
100  
200  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
LOAD (k)  
MAX536  
MAX536  
REFERENCE FEEDTHROUGH AT 400Hz  
REFERENCE FEEDTHROUGH AT 4kHz  
REFAB,  
5V/div  
REFAB,  
5V/div  
0V  
0V  
OUTA,  
100µV/div  
OUTA,  
200µV/div  
500µs/div  
50µs/div  
INPUT CODE = ALL 0s  
INPUT CODE = ALL 0s  
8
_______________________________________________________________________________________  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
____________________________Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
MAX536  
MAX536  
MAX536  
NEGATIVE FULL-SCALE SETTLING TIME  
(ALL BITS ON TO ALL BITS OFF)  
DYNAMIC RESPONSE (ALL BITS ON, OFF, ON)  
CS,  
5V/div  
CS,  
5V/div  
OUTA,  
5V/div  
OUTA,  
2V/div  
OUTA,  
5mV/div  
5µs/div  
1µs/div  
V
= +15V, V = -5V, REFAB = 5V, C = 100pF, R = 10k  
V
= +15V, V = -5V, REFAB = 10V, C = 100pF, R = 10kΩ  
DD  
SS  
L
L
DD  
SS  
L
L
MAX536  
MAX536  
DIGITAL FEEDTHROUGH  
POSITIVE FULL-SCALE SETTLING TIME  
(ALL BITS OFF TO ALL BITS ON)  
CS,  
5V/div  
SCK,  
5V/div  
OUTA,  
5V/div  
OUTA,  
-10V OFFSET  
5mV/div  
OUTA,  
AC-COUPLED,  
10mV/div  
1µs/div  
V
= +15V, V = -5V, REFAB = 10V, CS = HIGH,  
SS  
V
= +15V, V = -5V, REFAB = 10V, C = 100pF, R = 10kΩ  
SS L L  
DD  
DD  
1
DIN TOGGLING AT ⁄ THE CLOCK RATE,  
2
OUTA = 5V  
_______________________________________________________________________________________  
9
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
____________________________Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
MAX537  
MAX537  
INTEGRAL NONLINEARITY  
ERROR vs. REFERENCE VOLTAGE  
2.0  
MAX537  
MAX537  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
REFERENCE VOLTAGE INPUT  
FREQUENCY RESPONSE  
20  
10  
0.200  
REFAB SWEPT 2V  
P-P  
REFAB = 2.5V  
V
V
= +5V  
= -5V  
P-P  
DD  
SS  
1.5  
1.0  
V
OUTA  
MONITORED  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
0
0.5  
0
-10  
R = 10k, C = 100pF  
L
L
-20  
-30  
-0.5  
-1.0  
-1.5  
-2.0  
R = NO LOAD, C = 0pF  
L
L
-40  
-50  
0
1
2
3
4
5
1k  
10k  
100k  
1M  
10M  
10  
100  
200  
V
REF  
(V)  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
MAX537  
MAX537  
MAX537  
FULL-SCALE ERROR vs. LOAD  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
SUPPLY CURRENT vs. TEMPERATURE  
2
1
5
3
0.200  
REFAB = 1V  
P-P  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
I
DD  
V
V
= +5V  
= -5V  
DD  
SS  
0
1
-1  
R = 10k, C = 100pF  
L
L
-1  
-2  
-3  
-4  
I
SS  
-3  
-5  
R = NO LOAD, C = 0pF  
L
L
100  
60  
20  
TEMPERATURE (°C)  
140  
0.1  
1
10  
100  
1000  
-60  
-20  
10  
100  
200  
LOAD (k)  
FREQUENCY (kHz)  
MAX537  
MAX537  
REFERENCE FEEDTHROUGH AT 4kHz  
REFERENCE FEEDTHROUGH AT 400Hz  
REFAB,  
1V/div  
REFAB,  
1V/div  
0V  
0V  
OUTA,  
OUTA,  
AC-COUPLED,  
100µV/div  
AC-COUPLED,  
100µV/div  
50µs/div  
500µs/div  
INPUT CODE = ALL 0s  
INPUT CODE = ALL 0s  
10 ______________________________________________________________________________________  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
____________________________Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
MAX537  
MAX537  
NEGATIVE FULL-SCALE SETTLING TIME  
(ALL BITS ON TO ALL BITS OFF)  
MAX537  
DYNAMIC RESPONSE (ALL BITS ON, OFF, ON)  
CS,  
5V/div  
CS,  
5V/div  
OUTA,  
5mV/div  
OUTA,  
1V/div  
1µs/div  
5µs/div  
V
= +5V, V = -5V, REFAB = 2.5V, C = 100pF, R = 10kΩ  
V
= +5V, V = -5V, REFAB = 2.5V, C = 100pF, R = 10kΩ  
DD  
SS  
L
L
DD  
SS  
L
L
MAX537  
MAX537  
DIGITAL FEEDTHROUGH  
POSITIVE FULL-SCALE SETTLING TIME  
(ALL BITS OFF TO ALL BITS ON)  
CS,  
5V/div  
SCK,  
5V/div  
OUTA,  
AC-COUPLED,  
20mV/div  
OUTA,  
5mV/div  
100ns/div  
1µs/div  
V
= +5V, V = -5V, REFAB = 2.5V, CS = HIGH,  
SS  
V
= +5V, V = -5V, REFAB = 2.5V, C = 100pF, R = 10kΩ  
DD  
DD  
SS  
L
L
1
DIN TOGGLING AT ⁄ THE CLOCK RATE,  
2
OUTA = 1.25V  
______________________________________________________________________________________ 11  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
______________________________________________________________Pin Description  
PIN  
1
NAME  
OUTS  
OUTA  
FꢂNCꢁION  
DAC S Output ꢂoltage  
DAC A Output ꢂoltage  
Negative Power Lupply  
Analog Ground  
2
3
LL  
4
AGND  
REFAS  
DGND  
5
Reference ꢂoltage Input for DAC A and DAC S  
Digital Ground  
6
ꢀoad DAC Input (active low). Driving this asynchronous input low transfers the contents of all input  
registers to their respective DAC registers.  
7
8
LDAC  
LDI  
Lerial Data Input. Data is shifted into an internal 16-bit shift register on LCK's rising edge.  
Chip-Lelect Input (active low). A low level on CS enables the input shift register and LDO.  
On CS’s rising edge, data is latched into the appropriate register(s).  
9
CS  
10  
11  
LCK  
LDO  
Lhift Register Clock Input  
Lerial Data Output. LDO is the output of the internal shift register. LDO is enabled when CS is low.  
For the MAX536, LDO is an open-drain output. For the MAX537, LDO has an active pullup to ꢂ  
.
DD  
12  
13  
14  
15  
16  
REFCD  
TP  
Reference ꢂoltage Input for DAC C and DAC D  
Test Pin. Connect to ꢂ  
Positive Power Lupply  
for proper operation.  
DD  
DD  
OUTD  
OUTC  
DAC D Output ꢂoltage  
DAC C Output ꢂoltage  
_______________Detailed Description  
The MAX536/MAX537 contain four 12-bit voltage-output  
DACs that are easily addressed using a simple 3-wire  
serial interface. They include a 16-bit data-in/data-out  
shift register, and each DAC has a double-buffered  
input composed of an input register and a DAC register  
(see the Functional Diagram on the front page).  
R
R
R
V
OUT  
2R  
2R  
2R  
D9  
2R  
2R  
D11  
D0  
D10  
The DACs are “inverted” R-2R ladder networks that  
convert 12-bit digital inputs into equivalent analog out-  
put voltages in proportion to the applied reference-volt-  
age inputs. DAC A and DAC S share the REFAS refer-  
ence input, while DAC C and DAC D share the REFCD  
reference input. The two reference inputs allow different  
full-scale output voltage ranges for each pair of DACs.  
Figure 1 shows a simplified circuit diagram of one of  
the four DACs.  
Reference Inputs  
The two reference inputs accept positive DC and AC  
signals. The voltage at each reference input sets  
the full-scale output voltage for its two correspond-  
ing DACs. The REFAS/REFCD voltage range is 0ꢂ to  
REF  
AGND  
SHOWN FOR ALL 1s ON DAC  
Figure 1. Simplified DAC Circuit Diagram  
a digitally programmable voltage source as:  
= N (ꢂ /4096  
OUT_  
S
REF)  
where N is the numeric value of the DAC’s binary input  
code (0 to 4095) and ꢂ  
S
(ꢂ  
- 4ꢂ) for the MAX536 and 0ꢂ to (ꢂ  
- 2.2ꢂ) for the  
DD  
DD  
is the reference voltage.  
REF  
MAX537. The output voltages ꢂ  
_ are represented by  
OUT  
12 ______________________________________________________________________________________  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
The input impedance at each reference input is code  
dependent, ranging from a low value of typically 6k  
(with an input code of 0101 0101 0101) to a high value  
of 60k(with an input code of 0000 0000 0000). Lince  
the input impedance at the reference pins is code  
dependent, load regulation of the reference source is  
important.  
is 5µs when loaded with 5kin parallel with 100pF  
(loads less than 5kdegrade performance).  
Output dynamic responses and settling performances  
of the MAX536/MAX537 output amplifier are shown in  
the Typical Operating Characteristics.  
Serial-Interface Configurations  
The MAX536/MAX537’s 3-wire or 4-wire serial interface is  
compatible with both MICROWIRE (Figure 2) and  
LPI/QLPI (Figure 3). In Figures 2 and 3, LDAC can be tied  
either high or low for a 3-wire interface, or used as the  
fourth input with a 4-wire interface. The connection  
between LDO and the serial-interface port is not neces-  
sary, but may be used for data echo. (Data held in the  
shift register of the MAX536/MAX537 can be shifted out  
of LDO and returned to the microprocessor for data veri-  
fication; data in the MAX536/MAX537 input/DAC regis-  
ters cannot be read.)  
The REFAS and REFCD reference inputs have a 5kΩ  
guaranteed minimum input impedance. When the two  
reference inputs are driven from the same source, the  
effective minimum impedance becomes 2.5k.  
The reference input capacitance is also code depen-  
dent and typically ranges from 125pF to 300pF.  
Output Buffer Amplifiers  
All MAX536/MAX537 voltage outputs are internally  
buffered by precision unity-gain followers with a typical  
slew rate of 5ꢂ/µs for the MAX536 and 3ꢂ/µs for the  
MAX537.  
With a 3-wire interface (CS, LCK, LDI) and LDAC tied  
high, the DACs are double-buffered. In this mode,  
depending on the command issued through the serial  
interface, the input register(s) may be loaded  
without affecting the DAC register(s), the DAC register(s)  
can be loaded directly, or all four DAC registers may be  
simultaneously updated from the input registers. With a 3-  
wire interface (CS, LCK, LDI) and LDAC tied low (Figure  
With a full-scale transition at the MAX536 output (0 to  
8ꢂ or 8ꢂ to 0), the typical settling time to 0.5 ꢀLS is  
3µs when loaded with 5kin parallel with 100pF (loads  
less than 5kdegrade performance).  
With a full-scale transition at the MAX537 output (0 to  
2.5ꢂ or 2.5ꢂ to 0), the typical settling time to 0.5 ꢀLS  
5V  
5V  
1k  
1kΩ  
R
P
R
P
SS  
SDO*  
MISO*  
SCK  
SK  
SDI  
MOSI  
SCK  
SDI  
SO  
SI*  
SPI/QSPI  
PORT  
MAX536  
MAX537  
SCK  
MAX536  
MAX537  
MICROWIRE  
PORT  
SDO*  
CS  
I/O  
I/O  
CS  
I/O  
I/O  
LDAC**  
LDAC**  
CPOL = 0, CPHA = 0  
*THE SDO-SI CONNECTION IS NOT REQUIRED FOR WRITING TO THE MAX536,  
BUT MAY BE USED FOR READBACK PURPOSES.  
*THE SDO-MISO CONNECTION IS NOT REQUIRED FOR WRITING TO THE MAX536,  
BUT MAY BE USED FOR READBACK PURPOSES.  
**THE LDAC CONNECTION IS NOT REQUIRED WHEN USING THE 3-WIRE INTERFACE.  
**THE LDAC CONNECTION IS NOT REQUIRED WHEN USING THE 3-WIRE INTERFACE.  
THE MAX537 HAS AN INTERNAL ACTIVE PULLUP TO V  
DD,  
THE MAX537 HAS AN INTERNAL ACTIVE PULLUP TO V  
DD,  
SO R IS NOT NECESSARY.  
P
SO R IS NOT NECESSARY.  
P
Figure 2. Connections for MICROWIRE  
Figure 3. Connections for SPI/QSPI  
_______________________________________________________________________________________ 13  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
CS  
COMMAND  
EXECUTED  
SCK  
1
8
9
16  
SDI  
D2 D1 D0  
..........  
..........  
D15 D14 D13  
MSB  
LSB  
SDO  
...........  
Q15  
Q0  
..........  
MSB FROM  
PREVIOUS WRITE  
LSB FROM  
PREVIOUS WRITE  
Figure 4. 3-Wire Serial-Interface Timing Diagram (LDAC = GND or V  
)
DD  
CS  
INPUT REGISTER(S)  
UPDATED  
SCK  
1
8
9
16  
SDI  
..........D2 D1 D0  
D15 D14 D13..........  
MSB  
LSB  
SDO  
..........  
Q15  
Q0  
..........  
MSB FROM  
PREVIOUS WRITE  
LSB FROM  
PREVIOUS WRITE  
LDAC  
DACs  
UPDATED  
Figure 5. 4-Wire Serial-Interface Timing Diagram for Asynchronous DAC Updating Using LDAC  
t
CSW  
CS  
t
CP  
t
CSH  
t
t
CH  
CSS  
t
t
CL  
CSO  
t
CSI  
SCK  
t
DS  
t
DH  
SDI  
t
DO2  
t
DV  
t
TR  
t
DO1  
SDO  
LDAC*  
*USE OF LDAC IS OPTIONAL  
t
LDAC  
Figure 6. Detailed Serial-Interface Timing Diagram  
14 ______________________________________________________________________________________  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
4), the DAC registers remain transparent. Any time an  
input register is updated, the change appears at the DAC  
output with the rising edge of CS.  
Interface timing is optimized when serial data is clocked out  
of the microcontroller/microprocessor on one clock edge  
and clocked into the MAX536/MAX537 on the other edge.  
Table 1 lists the serial-interface programming commands.  
For certain commands, the 12 data bits are “don’t cares”.  
The 4-wire interface (CS, LCK, LDI, LDAC) is similar to  
the 3-wire interface with LDAC tied high, except LDAC is  
a hardware input that simultaneously and asynchronously  
loads all DAC registers from their respective input regis-  
ters when driven low (Figure 5).  
The programming command ꢀoad-All-DACs-From-Lhift-  
Register allows all input and DAC registers to be simultane-  
ously loaded with the same digital code from the input shift  
register. The NOP (no operation) command allows the regis-  
ter contents to be unaffected and is useful when the  
MAX536/MAX537 are configured in a daisy-chain (see the  
Daisy-Chaining Devices section). The command to change  
the clock edge on which serial data is shifted out of the  
MAX536/MAX537 LDO pin also loads data from all input reg-  
isters to their respective DAC registers.  
Serial-Interface Description  
The MAX536/MAX537 require 16 bits of serial data. Data is  
sent MLS first and can be sent in two 8-bit packets or one  
16-bit word (CS must remain low until 16 bits are trans-  
ferred). The serial data is composed of two DAC address  
bits (A1, A0), two control bits (C1, C0), and the 12 data bits  
D11…D0 (Figure 7). The 4-bit address/control code deter-  
mines the following: 1) the register(s) to be updated and/or  
the status of the input and DAC registers (i.e., whether they  
are in transparent or latch mode), and 2) the edge on which  
data is clocked out of LDO.  
Serial-Data Output  
The serial-data output, LDO, is the internal shift register’s  
output. The MAX536/MAX537 can be programmed so that  
data is clocked out of LDO on LCK’s rising (Mode 1) or  
falling (Mode 0) edge . In Mode 0, output data at LDO lags  
input data at LDI by 16.5 clock cycles, maintaining compati-  
bility with MICROWIRE, LPI/QLPI, and other serial interfaces.  
In Mode 1, output data lags input data by 16 clock cycles.  
On power-up, LDO defaults to Mode 1 timing.  
Figure 6 shows the serial-interface timing requirements. The  
chip-select pin (CS) must be low to enable the DAC’s serial  
interface. When CS is high, the interface control circuitry is  
disabled and the serial data output pin (LDO) is driven high  
(MAX537) or is a high-impedance open drain (MAX536). CS  
must go low at least tCLL before the rising serial clock (LCK)  
edge to properly clock in the first bit. When CS is low, data is  
clocked into the internal shift register via the serial data input  
pin (LDI) on LCK’s rising edge. The maximum guaranteed  
clock frequency is 10MHz. Data is latched into the appropri-  
ate MAX536/MAX537 input/DAC registers on CS’s rising  
edge.  
For the MAX536, LDO is an open-drain output that should be  
pulled up to +5ꢂ. The data sheet timing specifications for  
LDO use a 1kpullup resistor. For the MAX537, LDO is a  
complementary output and does not require an external  
pullup.  
Test Pin  
The test pin (TP) is used for pre-production analysis of the IC.  
Connect ꢁP to 5 for proper MAꢅX3ꢆ/MAꢅX3ꢈ operation.  
DD  
MLS..................................................................................ꢀLS  
16 Sits of Lerial Data  
Failure to do so affects DAC operation.  
Daisy-Chaining Devices  
Any number of MAX536/MAX537s can be daisy-chained by  
connecting the LDO pin of one device (with a pullup resistor,  
if appropriate) to the LDI pin of the following device in the  
chain (Figure 8).  
Address  
Sits  
Control  
Sits  
Data Sits  
MLS.............................................ꢀLS  
A1 A0 C1 C0 D11................................................D0  
4 Address/  
12 Data Sits  
Control Sits  
Lince the MAX537’s LDO pin has an internal active pullup,  
the LDO sink/source capability determines the time required  
to discharge/charge a capacitive load. Refer to the serial  
Figure 7. Serial-Data Format (MSB Sent First)  
data out ꢂ  
and ꢂ  
specifications in the Electrical  
Oꢀ  
OH  
Characteristics.  
______________________________________________________________________________________ 1X  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
ꢁable 1. Serial-Interface Programming Commands  
1ꢆ-BIꢁ SERIAꢀ WORD  
ꢀDAC  
FꢂNCꢁION  
A1  
0
A0  
0
C1  
0
C0  
1
D11…D0  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
1
1
1
1
1
1
1
1
X
X
1
ꢀoad DAC A input register; DAC output unchanged.  
ꢀoad DAC S input register; DAC output unchanged.  
ꢀoad DAC C input register; DAC output unchanged.  
ꢀoad DAC D input register; DAC output unchanged.  
ꢀoad input register A; all DAC registers updated.  
ꢀoad input register S; all DAC registers updated.  
ꢀoad input register C; all DAC registers updated.  
ꢀoad input register D; all DAC registers updated.  
ꢀoad all DACs from shift register.  
0
1
0
1
1
0
0
1
1
1
0
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
1
1
X
X
0
0
0
0
1
0
0
No operation (NOP)  
X
1
0
Update all DACs from their respective input registers.  
Mode 1 (default condition at power-up), DOUT clocked out on  
LCK’s rising edge. All DACs updated from their respective  
input registers.  
1
1
1
0
XXXXXXXXXXXX  
X
Mode 0, DOUT clocked out on LCK’s falling edge. All DACs  
updated from their respective input registers.  
1
0
1
0
XXXXXXXXXXXX  
X
0
0
1
1
0
1
0
1
X
X
X
X
1
1
1
1
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
0
0
0
0
ꢀoad DAC A input register; DAC A is immediately updated.  
ꢀoad DAC S input register; DAC S is immediately updated.  
ꢀoad DAC C input register; DAC C is immediately updated.  
ꢀoad DAC D input register; DAC D is immediately updated.  
“X” = Don’t Care. LDAC provides true latch control: when LDAC is low, the DAC registers are transparent; when LDAC is high,  
the DAC registers are latched.  
Additionally, when daisy-chaining devices, the maximum  
clock frequency is limited to:  
When daisy-chaining MAX536s, the delay from CS  
low to LCK high (t ) must be the greater of:  
CLL  
t
+ t  
or  
Dꢂ  
DL  
1
f
(max) = ——————————————  
LCK  
2 (t  
+ t - 38ns + t  
)
DL  
DO  
RC  
t
+ t + t - t  
RC DL CLW  
TR  
For example, with t  
p
8.7MHz.  
= 23ns (5ꢂ 10% supply with  
RC  
where t is the time constant of the external pullup resistor  
RC  
R = 1kand C = 30pF), the maximum clock frequency is  
(R ) and the load capacitance (C) at LDO. For t < 20ns,  
p
CLL  
RC  
t
is simply t + t . Calculate t from the following  
Dꢂ  
DL  
RC  
Figure 9 shows an alternate method of connecting several  
MAX536/MAX537s. In this configuration, the data bus is  
common to all devices; data is not shifted through a  
daisy-chain. More I/O lines are required in this configu-  
ration because a dedicated chip-select input (CS) is  
required for each IC.  
equation:  
PUꢀꢀUP  
t
= R (C) ln  
p
RC  
(
)
]
[
- 2.4ꢂ  
PUꢀꢀUP  
where ꢂ  
is the voltage to which the pullup resistor is  
PUꢀꢀUP  
connected.  
1ꢆ ______________________________________________________________________________________  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
+5V  
+5V  
+5V  
R *  
P
1kΩ  
R *  
P
1kΩ  
R *  
P
1kΩ  
MAX536  
MAX537  
MAX536  
MAX537  
MAX536  
MAX537  
SCK  
SDI  
CS  
SCK  
SDI  
CS  
SCK  
SDI  
CS  
SCK  
DIN  
SDO  
SDO  
SDO  
CS  
TO OTHER  
SERIAL DEVICES  
* THE MAX537 HAS AN ACTIVE INTERNAL PULLUP, SO R IS NOT NECESSARY.  
P
Figure 8. Daisy-Chaining MAX536/MAX537s with a 3-Wire Serial Interface  
DIN  
SCK  
LDAC  
CS1  
CS2  
TO OTHER  
SERIAL DEVICES  
CS3  
CS  
CS  
CS  
LDAC  
LDAC  
LDAC  
MAX536  
MAX537  
MAX536  
MAX537  
MAX536  
MAX537  
SCK  
SDI  
SCK  
SDI  
SCK  
SDI  
Figure 9. Multiple devices sharing a common DIN line may be simultaneously updated by bringing LDAC low. CS1, CS2, CS3… are  
driven separately, thus controlling which data are written to devices 1, 2, 3…  
______________________________________________________________________________________ 1ꢈ  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
Sits 6 and 7 are not used. Writes to these bits are ignored.  
__________Applications Information  
The PORT D Data Direction Register (DDRD) deter-  
Interfacing to the M68HC11*  
mines whether the port bits are inputs or outputs. Its  
PORT D of the 68HC11 supports LPI. The four registers  
configuration is shown below:  
used for LPI operation are the Lerial Peripheral Control  
Register, the Lerial Peripheral Ltatus Register, the Lerial  
BIꢁ  
Peripheral Data I/O Register, and PORT D’s Data Direction  
7
6
5
4
3
2
1
0
Register. These registers have a default starting location of  
$1000.  
NAME  
DDD5 DDD4 DDD3 DDD2 DDD1 DDD0  
On reset, the PORT D register (memory location $1008) is  
cleared and bits 5-0 are configured as general-purpose  
inputs. Letting bit 6 (LPE) of the Lerial Peripheral Control  
Register (LPCR) configures PORT D for LPI as follows:  
Letting DDD_ = 0 configures the port bit as an input, while  
setting DDD_ = 1 configures the port bit as an output. Writes  
to bits 6 and 7 have no effect.  
In LPI mode with MLTR = 1, when a PORT D bit is expected  
to be an input (SS, MILO, RXD), the corresponding DDRD bit  
(DDD_) is ignored. If the bit is expected to be an output  
(LCK, MOLI, TXD), the corresponding DDRD bit must be  
set for the bit to be an output.  
BIꢁ  
7
NAME  
6
5
4
3
2
1
0
SS  
LCK MOLI MILO TXD RXD  
ꢁable 2. Serial Peripheral Control-Register Definitions  
NAME  
DEFINIꢁION  
Lerial Peripheral Interrupt Enable. Clearing LPIE disables the LPI hardware-interrupt request; the LPLR is polled to  
determine when an LPI data transfer is complete. Letting LPIE requests a hardware interrupt when the Lerial Peripheral  
Ltatus Register’s LPIF bit or MODF bit is set.  
LPIE  
Letting LPE (Lerial Peripheral Lystem Enable) configures PORT D for LPI. Clearing LPE configures the port as a general-  
purpose I/O port.  
LPE  
DWOM  
MLTR  
When DWOM is set, the six PORT D outputs are open drain. When DWOM is cleared, the outputs are complementary.  
Master/Llave select option  
Determines clock polarity. When set, the serial clock idles high while data is not being transferred; when cleared, the  
clock idles low.  
CPOꢀ  
CPHA  
Determines the clock phase.  
LPI Clock-Rate Lelect  
LPR1  
LPR0  
0
0
1
1
0
1
0
1
µP clock divided by 2  
µP clock divided by 4  
µP clock divided by 16  
µP clock divided by 32  
LPR1/0  
ꢁable 3. Serial Peripheral Status-Register Definitions  
NAME  
DEFINIꢁION  
LPIF  
LPIF is set when an LPI data transfer is complete. It is cleared by reading the LPLR and then accessing the LPDR.  
The Write Collision flag is set when a write to the LPDR occurs while a data transfer is in progress. It is cleared by read-  
ing the LPLR and then accessing the LPDR.  
WCOꢀ  
MODF  
The Mode Fault flag detects master/slave conflicts in a multimaster environment. It is set when the “master” controller  
has its SS line (PORT D) pulled low, and cleared by reading the LPLR followed by a write to the LPCR.  
*M68HC11 is a Motorola microcontroller. General information about the device was obtained from M68HC11 technical manuals.  
18 ______________________________________________________________________________________  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
ꢁable 4. Mꢆ8HC11 Programming Code  
______________________________________________________________________________________ 19  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
Unipolar Output  
SS is an input intended for use in a multimaster environ-  
ment. However, SS or unused PORT D bit RXD, TXD, or  
possibly MILO (if DAC readback is not used) should be  
configured as a general-purpose output and used as CS by  
setting the appropriate Data Direction Register bit.  
For a unipolar output, the output voltages and the reference  
inputs are the same polarity. Figure 10 shows the  
MAX536/MAX537 unipolar output circuit, which is also the typ-  
ical operating circuit. Table 5 lists the unipolar output codes.  
The LPCR configuration (memory location $1028) is shown  
below:  
Bipolar Output  
The MAX536/MAX537 outputs can be configured for  
bipolar operation using Figure 11’s circuit. One op amp  
and two resistors are required per DAC. With R1 = R2:  
BIꢁ  
7
6
5
4
3
2
1
0
OUT  
= ꢂ [(2N /4096) - 1]  
REF S  
NAME  
LPIE LPE DWOM MLTR CPOꢀ CPHA LPR1 LPR0  
where N is the numeric value of the DAC’s binary input  
S
code. Table 6 shows digital codes and corresponding  
output voltages for Figure 11’s circuit.  
SEꢁꢁING AFꢁER RESEꢁ  
0
0
0
0
0
1
U*  
SEꢁꢁING FOR ꢁYPICAꢀ SPI COMMꢂNICAꢁION  
0** 1**  
U*  
ꢁable X. ꢂnipolar Code ꢁable  
0
1
0
1
0
0
DAC CONꢁENꢁS  
ANAꢀOG OꢂꢁPꢂꢁ  
*U = Unknown  
**Depends on µP clock frequency.  
MSB  
ꢀSB  
4095  
( ——— )  
4096  
1111  
1111 1111  
+ꢂ  
REF  
REF  
Always configure the 68HC11 as the “master” controller  
and the MAX536/MAX537 as the “slave” device.  
2049  
( ——— )  
4096  
1000  
1000  
0111  
0000  
0001  
+ꢂ  
When MLTR = 1 in the LPCR, a write to the Lerial  
Peripheral Data I/O Register (LPDR), located at memory  
location $102A, initiates the transmission/reception of  
data. The data transfer is monitored and the appropri-  
ate flags are set in the Lerial Peripheral Ltatus  
Register (LPLR).  
2048  
4096  
+ꢂREF  
0000 0000  
1111 1111  
+ꢂ  
REF  
( ——— ) = ———  
2
2047  
+ꢂ  
( ——— )  
4096  
REF  
REF  
The LPLR configuration is shown below:  
1
BIꢁ  
7
NAME  
LPIF WCOꢀ  
0000  
0000  
0000 0001  
0000 0000  
+ꢂ  
( ——— )  
4096  
6
5
4
3
0
2
0
1
0
0
0
0ꢂ  
MODF  
RESEꢁ CONDIꢁIONS  
0
ꢁable ꢆ. Bipolar Code ꢁable  
0
0
0
DAC CONꢁENꢁS  
MSB  
ANAꢀOG OꢂꢁPꢂꢁ  
ꢀSB  
An example of 68HC11 programming code for a  
two-byte LPI transfer to the MAX536/MAX537 is given in  
Table 4. SS is used for CS, the high byte of MAX536/  
MAX537 digital data is stored in memory location $0100,  
and the low byte is stored in memory location $0101.  
2047  
1111  
1111 1111  
+ꢂ  
( ——— )  
2048  
REF  
REF  
1
1000  
1000  
0111  
0000  
0001  
+ꢂ  
( ——— )  
2048  
0000 0000  
1111 1111  
0ꢂ  
Interfacing to Other Controllers  
When using MICROWIRE, refer to the section on Inter-  
facing to the M68HC11 for guidance, since MICROWIRE  
can be considered similar to LPI when CPOꢀ = 0 and  
CPHA = 0. When interfacing to Intel’s 80C51/80C31  
microcontroller family, use bit-pushing to configure a  
desired port as the MAX536/MAX537 interface port. Sit-  
pushing involves arbitrarily assigning I/O port bits as  
interface control lines, and then writing to the port each  
time a signal transition is required.  
1
-ꢂ  
-ꢂ  
( ——— )  
2048  
REF  
REF  
2047  
( ——— )  
2048  
0000  
0000  
0000 0001  
0000 0000  
2048  
( ——— ) = -ꢂ  
-ꢂ  
REF  
REF  
2048  
1
NOꢁE: 1 ꢀLS = (ꢂ  
) (  
REF  
)
4096  
20 ______________________________________________________________________________________  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
+12V (+5V)  
REFERENCE INPUTS  
MAX536  
MAX537  
13  
TP  
5
12  
14  
MAX536  
MAX537  
V
REFAB  
REFCD  
DD  
R1  
R2  
2
DAC A  
DAC B  
V
REF  
OUTA  
OUTB  
+12V (+5V)  
1
V
OUT  
DAC  
OUTPUT  
16  
15  
DAC C  
DAC D  
OUTC  
OUTD  
–5V  
R1 = R2 = 10k0.1%  
V
AGND  
DGND  
6
SS  
4
3
NOTES: ( ) ARE FOR MAX537.  
IS THE SELECTED REFERENCE INPUT FOR THE MAX536/MAX537.  
-5V  
NOTE: ( ) ARE FOR MAX537.  
V
REF  
Figure 10. Unipolar Output Circuit  
Figure 11. Bipolar Output Circuit  
+12V  
(+5V)  
+12V (+5V)  
14  
AC  
15k  
REFERENCE  
INPUT  
5
13  
TP  
REFAB  
V
DD  
+4V (+750mV)  
5
13  
TP  
14  
+
10kΩ  
REFAB  
V
V
DD  
IN  
-4V  
2
DAC A  
(-750mV)  
OUTA  
-
1
DAC B  
OUTB  
AGND  
4
MAX536/MAX537  
MAX536/MAX537  
+
V
DGND  
6
SS  
V
V
SS  
AGND  
4
DGND  
BIAS  
3
-
3
6
-5V  
-5V  
NOTES: ( ) ARE FOR MAX537.  
DIGITAL INPUTS NOT SHOWN.  
NOTES: ( ) ARE FOR MAX537.  
DIGITAL INPUTS NOT SHOWN.  
Figure 12. AC Reference Input Circuit  
Figure 13. AGND Bias Circuit  
______________________________________________________________________________________ 21  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
Offsetting AGND  
AGND can be biased from DGND to the reference voltage  
to provide an arbitrary nonzero output voltage for a zero  
input code (Figure 13). The output voltage ꢂ  
is:  
OUTA  
= ꢂ  
+ N (ꢂ )  
OUTA  
SIAL S IN  
3
4
V
SS  
where ꢂ  
is the positive offset voltage (with respect  
to DGND) applied to AGND, and N is the numeric  
SIAL  
S
value of the DAC’s binary input code. Lince AGND is  
common to all four DACs, all outputs will be offset by  
MAX536  
MAX537  
1N5817  
in the same manner. As the voltage at AGND  
SIAL  
increases, the DAC’s resolution decreases because its  
full-scale voltage swing is effectively reduced. AGND  
should not be biased more negative than DGND.  
AGND  
Power-Supply Considerations  
On power-up, ꢂ should come up first, ꢂ  
next, then  
LL  
DD  
REFAS or REFCD. If supply sequencing is not possible,  
tie an external Lchottky diode between ꢂ and AGND  
LL  
Figure 14. When V and V  
cannot be sequenced, tie a  
DD  
SS  
as shown in Figure 14. On power-up, all input and DAC  
registers are cleared (set to zero code) and LDO is in  
Mode 0 (serial data is shifted out of LDO on the clock’s  
rising edge).  
Schottky diode between V and AGND.  
SS  
Using an AC Reference  
In applications where the reference has AC signal compo-  
nents, the MAX536/MAX537 have multiplying capability  
within the reference input range specifications. Figure 12  
shows a technique for applying a sine-wave signal to the  
reference input where the AC signal is offset before being  
applied to REFAS/REFCD. The reference voltage must  
never be more negative than DGND.  
For rated MAX536 performance, ꢂ  
should be 4ꢂ  
DD  
higher than REFAS/REFCD and should be between  
10.8ꢂ and 13.2ꢂ. When using the MAX537, ꢂ should  
DD  
be at least 2.2ꢂ higher than REFAS/REFCD and should  
be between 4.75ꢂ and 5.5ꢂ. Sypass both ꢂ and ꢂ  
DD  
LL  
with a 4.7µF capacitor in parallel with a 0.1µF capacitor  
to AGND. Use short lead lengths and place the bypass  
capacitors as close to the supply pins as possible.  
The MAX536’s total harmonic distortion plus noise  
(THD+N) is typically less than 0.012%, given a 5ꢂP-P signal  
swing and input frequencies up to 35kHz, or given a 2ꢂP-P  
swing and input frequencies up to 50kHz. The typical -3dS  
frequency is 700kHz as shown in the Typical Operating  
Characteristics graphs.  
Grounding and Layout Considerations  
Digital or AC transient signals between AGND and  
DGND can create noise at the analog outputs. Tie  
AGND and DGND together at the DAC, then tie this  
point to the highest quality ground available.  
For the MAX537, with an input signal amplitude of  
0.85mꢂP-P, THD+N is typically less than 0.024% with a  
5kload in parallel with 100pF and input frequencies up  
to 100kHz, or with a 2kload in parallel with 100pF and  
input frequencies up to 95kHz.  
Good PCS ground layout minimizes crosstalk between  
DAC outputs, reference inputs, and digital inputs.  
Reduce crosstalk by keeping analog lines away from  
digital lines. Wire-wrapped boards are not recommend-  
ed.  
22 ______________________________________________________________________________________  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
Ordering Information (continued)  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHL status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHL status.  
PIN-  
PACKAGE  
INꢀ  
ꢄꢀSB6  
PARꢁ  
ꢁEMP RANGE  
MAꢅX3ꢈACPE+  
MAX537SCPE+  
MAX537ACWE+  
MAX537SCWE+  
MAX537AEPE+  
MAX537SEPE+  
MAX537AEWE+  
MAX537SEWE+  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
16 PDIP  
0.5  
1
16 PDIP  
16 Wide LO  
16 Wide LO  
16 PDIP  
0.5  
1
PACKAGE  
ꢁYPE  
PACKAGE  
CODE  
OꢂꢁꢀINE  
NO.  
ꢀAND  
PAꢁꢁERN NO.  
0.5  
1
16 PDIP  
16 LO  
P16+9  
W16+7  
21-0043  
21-0042  
16 PDIP  
90-010ꢈ  
16 Wide LO  
16 Wide LO  
0.5  
1
+Denotes a lead(Pb)-free/RoHS-compliant package.  
______________________________________________________________________________________ 23  
Calibrated, Quad, 12-Bit  
Voltage-Output DACs with Serial Interface  
Revision History  
RE5ISION  
NꢂMBER  
RE5ISION  
DAꢁE  
PAGES  
CHANGED  
DESCRIPꢁION  
0
1/94  
Initial release  
Removed dice and ceramic LS packages and changed voltage supply  
specifications  
3
3/11  
1–7, 13, 21, 22, 23  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX537BCWE

Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface
MAXIM

MAX537BCWE+

D/A Converter, 4 Func, Serial Input Loading, 5us Settling Time, PDSO16, 0.300 INCH, SOIC-16
MAXIM

MAX537BCWE-T

D/A Converter, 4 Func, Serial Input Loading, 3us Settling Time, PDSO16, 0.300 INCH, MS-013AA, SOIC-16
MAXIM

MAX537BEPE

Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface
MAXIM

MAX537BEPE+

D/A Converter, 4 Func, Serial Input Loading, 3us Settling Time, PDIP16, 0.300 INCH, PLASTIC, MS-001AA, DIP-16
MAXIM

MAX537BEWE

Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface
MAXIM

MAX537BEWE+T

D/A Converter, 4 Func, Serial Input Loading, 5us Settling Time, PDSO16, 0.300 INCH, SOIC-16
MAXIM

MAX537BEWE-T

暂无描述
MAXIM

MAX537BMDE

Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface
MAXIM

MAX538

+5V, Low-Power, Voltage-Output, Serial 12-Bit DACs
MAXIM

MAX5380

Low-Cost, Low-Power, 8-Bit DACs with 2-Wire Serial Interface in SOT23
MAXIM

MAX5380-MAX5382

Low-Cost, Low-Power, 8-Bit DACs with 2-Wire Serial Interface in SOT23
MAXIM